首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Human sPLA2-III [group III secreted PLA2 (phospholipase A2)] is an atypical sPLA2 isoenzyme that consists of a central group III sPLA2 domain flanked by unique N- and C-terminal domains. In the present study, we found that sPLA2-III is expressed in neuronal cells, such as peripheral neuronal fibres, spinal DRG (dorsal root ganglia) neurons and cerebellar Purkinje cells. Adenoviral expression of sPLA2-III in PC12 cells (pheochromocytoma cells) or DRG explants facilitated neurite outgrowth, whereas expression of a catalytically inactive sPLA2-III mutant or use of sPLA2-III-directed siRNA (small interfering RNA) reduced NGF (nerve growth factor)-induced neuritogenesis. sPLA2-III also suppressed neuronal death induced by NGF deprivation. Lipid MS revealed that sPLA2-III overexpression increased the cellular level of lysophosphatidylcholine, a PLA2 reaction product with neuritogenic and neurotropic activities, whereas siRNA knockdown reduced the level of lysophosphatidylcholine. These observations suggest the potential contribution of sPLA2-III to neuronal differentiation and its function under certain conditions.  相似文献   

2.
Although the secreted phospholipase A(2) (sPLA(2)) family has been generally thought to participate in pathologic events such as inflammation and atherosclerosis, relatively high and constitutive expression of group X sPLA(2) (sPLA(2)-X) in restricted sites such as reproductive organs, the gastrointestinal tract, and peripheral neurons raises a question as to the roles played by this enzyme in the physiology of reproduction, digestion, and the nervous system. Herein we used mice with gene disruption or transgenic overexpression of sPLA(2)-X to clarify the homeostatic functions of this enzyme at these locations. Our results suggest that sPLA(2)-X regulates 1) the fertility of spermatozoa, not oocytes, beyond the step of flagellar motility, 2) gastrointestinal phospholipid digestion, perturbation of which is eventually linked to delayed onset of a lean phenotype with reduced adiposity, decreased plasma leptin, and improved muscle insulin tolerance, and 3) neuritogenesis of dorsal root ganglia and the duration of peripheral pain nociception. Thus, besides its inflammatory action proposed previously, sPLA(2)-X participates in physiologic processes including male fertility, gastrointestinal phospholipid digestion linked to adiposity, and neuronal outgrowth and sensing.  相似文献   

3.
We have previously shown the expression of group X secretory phospholipase A(2) (sPLA(2)-X) in mouse splenic macrophages and its powerful potency for releasing fatty acids from various intact cell membranes. Here, we examined the potency of sPLA(2)-X in the production of lipid mediators in murine peritoneal macrophages. Mouse sPLA(2)-X was found to induce a marked release of fatty acids including arachidonic acid and linoleic acid, which contrasted with little, if any, release by the action of group IB and IIA sPLA(2)s. In resting macrophages, sPLA(2)-X elicited a modest production of prostaglandin E(2) and thromboxane A(2). After the induction of cyclooxygenase-2 (COX-2) by pretreatment with lipopolysaccharide, a dramatic increase in the production of these eicosanoids was observed in sPLA(2)-X-treated macrophages, which was completely blocked by the addition of either the specific sPLA(2) inhibitor indoxam or the COX inhibitor indomethacin. In accordance with its higher hydrolyzing activity toward phosphatidylcholine, mouse sPLA(2)-X induced a potent production of lysophosphatidylcholine. These findings strongly suggest that sPLA(2)-X plays a critical role in the production of various lipid mediators from macrophages. These events might be relevant to the progression of various pathological states, including chronic inflammation and atherosclerosis.  相似文献   

4.
Given the potent hydrolyzing activity toward phosphatidylcholine, group X secretory phospholipase A(2) (sPLA(2)-X) elicits a marked release of arachidonic acid linked to the potent production of lipid mediators in various cell types. We have recently shown that sPLA(2)-X can also act as a ligand for mouse phospholipase A(2) receptor (PLA(2)R). Here, we found that sPLA(2)-X was internalized and degraded via binding to PLA(2)R associated with the diminished prostaglandin E(2) (PGE(2)) formation in PLA(2)R-expressing Chinese hamster ovary (CHO) cells compared to CHO cells. Indirect immunocytochemical analysis revealed that internalized sPLA(2)-X was co-localized with PLA(2)R in the punctate structures in PLA(2)R-expressing CHO cells. Moreover, in mouse osteoblastic MC3T3-E(1) cells that endogenously express the PLA(2)R, the internalized sPLA(2)-X was localized in lysosomes. These findings demonstrate that PLA(2)R acts as a clearance receptor for sPLA(2)-X to suppress its strong enzymatic activity.  相似文献   

5.
Secreted phospholipase A2 group X (sPLA(2)-X) is one of the most potent enzymes of the phospholipase A(2) lipolytic enzyme superfamily. Its high catalytic activity toward phosphatidylcholine (PC), the major phospholipid of cell membranes and low-density lipoproteins (LDL), has implicated sPLA(2)-X in chronic inflammatory conditions such as atherogenesis. We studied the role of sPLA(2)-X enzyme activity in vitro and in vivo, by generating sPLA(2)-X-overexpressing macrophages and transgenic macrophage-specific sPLA(2)-X mice. Our results show that sPLA(2)-X expression inhibits macrophage activation and inflammatory responses upon stimulation, characterized by reduced cell adhesion and nitric oxide production, a decrease in tumor necrosis factor (TNF), and an increase in interleukin (IL)-10. These effects were mediated by an increase in IL-6, and enhanced production of prostaglandin E(2) (PGE(2)) and 15-deoxy-Delta12,14-prostaglandin J(2) (PGJ(2)). Moreover, we found that overexpression of active sPLA(2)-X in macrophages strongly increases foam cell formation upon incubation with native LDL but also oxidized LDL (oxLDL), which is mediated by enhanced expression of scavenger receptor CD36. Transgenic sPLA(2)-X mice died neonatally because of severe lung pathology characterized by interstitial pneumonia with massive granulocyte and surfactant-laden macrophage infiltration. We conclude that overexpression of the active sPLA(2)-X enzyme results in enhanced foam cell formation but reduced activation and inflammatory responses in macrophages in vitro. Interestingly, enhanced sPLA(2)-X activity in macrophages in vivo leads to fatal pulmonary defects, suggesting a crucial role for sPLA(2)-X in inflammatory lung disease.  相似文献   

6.
Phospholipase A(2) receptor (PLA(2)R) mediates various biological responses elicited by group IB secretory phospholipase A(2) (sPLA(2)-IB). The recently cloned group X sPLA(2) (sPLA(2)-X) possesses several structural features characteristic of sPLA(2)-IB. Here, we detected a specific binding site of sPLA(2)-X in mouse osteoblastic MC3T3-E(1) cells. Cross-linking experiments demonstrated its molecular weight (180 kDa) to be similar to that of PLA(2)R. In fact, sPLA(2)-X was found to bind the recombinant PLA(2)R expressed in COS-7 cells, and its specific binding detected in mouse lung membranes was abolished by the deficiency of PLA(2)R. These findings demonstrate sPLA(2)-X to be one of the high-affinity ligands for mouse PLA(2)R.  相似文献   

7.
Secreted phospholipase A(2) group X (sPLA(2)-X) has recently been identified in the airways of patients with asthma and may participate in cysteinyl leukotriene (CysLT; C(4), D(4), and E(4)) synthesis. We examined CysLT synthesis and arachidonic acid (AA) and lysophospholipid release by eosinophils mediated by recombinant human sPLA(2)-X. We found that recombinant sPLA(2)-X caused marked AA release and a rapid onset of CysLT synthesis in human eosinophils that was blocked by a selective sPLA(2)-X inhibitor. Exogenous sPLA(2)-X released lysophospholipid species that arise from phospholipids enriched in AA in eosinophils, including phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine as well as plasmenyl phosphatidylcholine and phosphatidylethanolamine. CysLT synthesis mediated by sPLA(2)-X but not AA release could be suppressed by inhibition of cPLA(2)α. Exogenous sPLA(2)-X initiated Ser(505) phosphorylation of cPLA(2)α, an intracellular Ca(2+) flux, and translocation of cPLA(2)α and 5-lipoxygenase in eosinophils. Synthesis of CysLTs in response to sPLA(2)-X or lysophosphatidylcholine was inhibited by p38 or JNK inhibitors but not by a MEK 1/2 inhibitor. A further increase in CysLT synthesis was induced by the addition of sPLA(2)-X to eosinophils under conditions of N-formyl-methionyl-leucyl-phenylalanine-mediated cPLA(2)α activation. These results indicate that sPLA(2)-X participates in AA and lysophospholipid release, resulting in CysLT synthesis in eosinophils through a mechanism involving p38 and JNK MAPK, cPLA(2)α, and 5-lipoxygenase activation and resulting in the amplification of CysLT synthesis during cPLA(2)α activation. Transactivation of eosinophils by sPLA(2)-X may be an important mechanism leading to CysLT formation in the airways of patients with asthma.  相似文献   

8.
Although perturbed lipid metabolism can often lead to skin abnormality, the role of phospholipase A(2) (PLA(2)) in skin homeostasis is poorly understood. In the present study we found that group X-secreted PLA(2) (sPLA(2)-X) was expressed in the outermost epithelium of hair follicles in synchrony with the anagen phase of hair cycling. Transgenic mice overexpressing sPLA(2)-X (PLA2G10-Tg) displayed alopecia, which was accompanied by hair follicle distortion with reduced expression of genes related to hair development, during a postnatal hair cycle. Additionally, the epidermis and sebaceous glands of PLA2G10-Tg skin were hyperplasic. Proteolytic activation of sPLA(2)-X in PLA2G10-Tg skin was accompanied by preferential hydrolysis of phosphatidylethanolamine species with polyunsaturated fatty acids as well as elevated production of some if not all eicosanoids. Importantly, the skin of Pla2g10-deficient mice had abnormal hair follicles with noticeable reduction in a subset of hair genes, a hypoplasic outer root sheath, a reduced number of melanin granules, and unexpected up-regulation of prostanoid synthesis. Collectively, our study highlights the spatiotemporal expression of sPLA(2)-X in hair follicles, the presence of skin-specific machinery leading to sPLA(2)-X activation, a functional link of sPLA(2)-X with hair follicle homeostasis, and compartmentalization of the prostanoid pathway in hair follicles and epidermis.  相似文献   

9.
Globoid cell leukodystrophy (Krabbe disease) is an inherited neurological disorder caused by the pathogenomic accumulation of psychosine (galactosylsphingosine), a substrate for the deficient enzyme galactocerebroside beta-galactosidase. This study underscores the mechanism of action of psychosine in the regulation of oligodendrocyte cell death via the generation of lysophosphatidylcholine (LPC) and arachidonic acid (AA) by the activation of secretory phospholipase A2 (sPLA2). There was a significant increase in the level of LPC, indicating a phospholipase A2 (PLA2)-dependent pathobiology, in the brains of Krabbe disease patients and those of twitcher mice, an animal model of Krabbe disease. In vitro studies of the treatment of primary oligodendrocytes and the oligodendrocyte MO3.13 cell line with psychosine also showed the generation of LPC and the release of AA in a dose- and time-dependent manner, indicating psychosine-induced activation of PLA2. Studies with various pharmacological inhibitors of cytosolic phospholipase A2 and sPLA2 and psychosine-mediated induction of sPLA2 enzymatic activity in media supernatant suggest that psychosine-induced release of AA and generation of LPC is mainly contributed by sPLA2. An inhibitor of sPLA2, 7,7-dimethyl eicosadienoic acid, completely attenuated the psychosine-mediated accumulation of LPC levels, release of AA, and generation of reactive oxygen species, and blocked oligodendroyte cell death, as evident from cell survival, DNA fragmentation, and caspase 3 activity assays. This study documents for the first time that psychosine-induced cell death is mediated via the sPLA2 signaling pathway and that inhibitors of sPLA2 may hold a therapeutic potential for protection against oligodendrocyte cell death and resulting demyelination in Krabbe disease.  相似文献   

10.
11.
Group X secretory phospholipase A(2) (sPLA(2)-X) possesses several structural features characteristic of both group IB and IIA sPLA(2)s (sPLA(2)-IB and -IIA) and is postulated to be involved in inflammatory responses owing to its restricted expression in the spleen and thymus. Here, we report the purification of human recombinant COOH-terminal His-tagged sPLA(2)-X, the preparation of its antibody, and the purification of native sPLA(2)-X. The affinity-purified sPLA(2)-X protein migrated as various molecular species of 13-18 kDa on SDS-polyacrylamide gels, and N-glycosidase F treatment caused shifts to the 13- and 14-kDa bands. NH(2)-terminal amino acid sequencing analysis revealed that the 13-kDa form is a putative mature sPLA(2)-X and the 14-kDa protein possesses a propeptide of 11 amino acid residues attached at the NH(2) termini of the mature protein. Separation with reverse-phase high performance liquid chromatography revealed that N-linked carbohydrates are not required for the enzymatic activity and pro-sPLA(2)-X has a relatively weak potency compared with the mature protein. The mature sPLA(2)-X induced the release of arachidonic acid from phosphatidylcholine more efficiently than other human sPLA(2) groups (IB, IIA, IID, and V) and elicited a prompt and marked release of arachidonic acid from human monocytic THP-1 cells compared with sPLA(2)-IB and -IIA with concomitant production of prostaglandin E(2). A prominent release of arachidonic acid was also observed in sPLA(2)-X-treated human U937 and HL60 cells. Immunohistochemical analysis of human lung preparations revealed its expression in alveolar epithelial cells. These results indicate that human sPLA(2)-X is a unique N-glycosylated sPLA(2) that releases arachidonic acid from human myeloid leukemia cells more efficiently than sPLA(2)-IB and -IIA.  相似文献   

12.
In an effort to elucidate the functions of secreted phospholipase A2 (sPLA2) enzymes in vivo, we generated transgenic (Tg) mice for group V sPLA2 (sPLA2-V) and group X sPLA2 (sPLA2-X), which act potently on phosphatidylcholine in vitro.We found that sPLA2-V Tg mice died in the neonatal period because of respiratory failure. The lungs of sPLA2-V Tg mice exhibited atelectasis with thickened alveolar walls and narrow air spaces, accompanied by infiltration of macrophages and only modest changes in eicosanoid levels. This severe pulmonary defect in sPLA2-V Tg mice was attributable to marked reduction of the lung surfactant phospholipids, phosphatidylcholine and phosphatidylglycerol. Given that the expression of sPLA2-V is greatly elevated in human lungs with severe inflammation, our present results raise the intriguing possibility that this isozyme may contribute to ongoing surfactant hydrolysis often observed in the lungs of patients with respiratory distress syndrome. In contrast, sPLA2-X Tg neonates displayed minimal abnormality of the respiratory tract with normal alveolar architecture and surfactant composition. This unexpected result was likely because sPLA2-X protein existed as an inactive zymogen in most tissues. The active form of sPLA2-X was detected in tissues with inflammatory granulation in sPLA2-X Tg mice. These results suggest that sPLA2-X mostly remains inactive under physiological conditions and that its proteolytic activation occurs during inflammation or other as yet unidentified circumstances in vivo.  相似文献   

13.
Group X secretory phospholipase A2 (sPLA2-X) and cytosolic phospholipase A2 alpha (cPLA2alpha) are involved in the release of arachidonic acid (AA) from membrane phospholipids linked to the eicosanoid production in various pathological states. Recent studies have indicated the presence of various types of cross-talk between sPLA2s and cPLA2alpha resulting in effective AA release. Here we examined the dependence of sPLA2-X-induced potent AA release on the cPLA2alpha activation by using specific cPLA2alpha or sPLA2 inhibitors as well as cPLA2alpha-deficient mice. We found that Pyrrophenone, a cPLA2alpha-specific inhibitor, did not suppress the sPLA2-X-induced potent AA release and prostaglandin E2 formation in mouse spleen cells. Furthermore, the amount of AA released by sPLA2-X from spleen cells was not significantly altered by cPLA2alpha deficiency. These results suggest that sPLA2-X induces potent AA release without activation of cPLA2a, which might be relevant to eicosanoid production in some pathological states where cPLA2a is not activated.  相似文献   

14.
The quantitative or qualitative decline of high-density lipoprotein (HDL) is linked to the pathogenesis of atherosclerosis because of its antiatherogenic functions, including the mediation of reverse cholesterol transport from the peripheral cells to the liver. We have recently shown that group X secretory phospholipase A(2) (sPLA(2)-X) is involved in the pathogenesis of atherosclerosis via potent lipolysis of low-density lipoprotein (LDL) leading to macrophage foam cell formation. We demonstrate here that sPLA(2)-X as well as group V secretory PLA(2) (sPLA(2)-V), another group of sPLA(2) that can potently hydrolyze phosphatidylcholine (PC), also possess potent hydrolytic potency for PC in HDL linked to the production of a large amount of unsaturated fatty acids and lysophosphatidylcholine (lysoPC). In contrast, the classical types of group IB and IIA secretory PLA(2)s evoked little, if any, lypolytic modification of HDL. Treatment with sPLA(2)-X or -V also caused an increase in the negative charge of HDL with no oxidation and little modification of apolipoprotein AI (apoAI). Modification with sPLA(2)-X or -V resulted in significant decrease in the capacity of HDL to cause cellular cholesterol efflux from lipid-loaded macrophages. Immunohistochemical analysis revealed significant expression of sPLA(2)-X in foam cell lesions in the arterial intima of Watanabe heritable hyperlipidemic (WHHL) rabbit. These findings suggest that lipolytic modification of HDL by sPLA(2)-X or -V causes drastic change of HDL in terms of the production of a large amount of unsaturated fatty acids and lysoPC linked to the reduction of its antiatherogenic functions. These sPLA(2)-mediated modifications of plasma lipoproteins might be relevant to the pathogenesis of atherosclerosis.  相似文献   

15.
16.
17.
Although the expression of the prototypic secretory phospholipase A(2) (sPLA(2)), group IIA (sPLA(2)-IIA), is known to be up-regulated during inflammation, it remains uncertain if other sPLA(2) enzymes display similar or distinct profiles of induction under pathological conditions. In this study, we investigated the expression of several sPLA(2)s in rodent inflammation models. In lipopolysaccharide (LPS)-treated mice, the expression of sPLA(2)-V, and to a lesser extent that of sPLA(2)-IID, -IIE, and -IIF, were increased, whereas that of sPLA(2)-X was rather constant, in distinct tissues. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema, in which the expression of sPLA(2)-IID, -IIF and -V was increased, was significantly reduced by YM-26734, a competitive sPLA(2)-IIA inhibitor that turned out to inhibit sPLA(2)-IID, -IIE, -V and -X as well. In contrast, sPLA(2)-IIA was dominant in carageenin-induced pleurisy in rats, where the accumulation of exudate fluids and leukocytes was significantly ameliorated by YM-26734. These results indicate that distinct sPLA(2)s can participate in inflammatory diseases according to tissues, animal species, and types of inflammation.  相似文献   

18.
Secretory phospholipases A(2) (sPLA(2)s) are a diverse family of low molecular mass enzymes (13-18 kDa) that hydrolyze the sn-2 fatty acid ester bond of glycerophospholipids to produce free fatty acids and lysophospholipids. We have previously shown that group X sPLA(2) (sPLA(2)-X) had a strong hydrolyzing activity toward phosphatidylcholine in low-density lipoprotein (LDL) linked to the formation of lipid droplets in the cytoplasm of macrophages. Here, we show that group V sPLA(2) (sPLA(2)-V) can also cause the lipolysis of LDL, but its action differs remarkably from that of sPLA(2)-X in several respects. Although sPLA(2)-V released almost the same amount of fatty acids from LDL, it released more linoleic acid and less arachidonic acid than sPLA(2)-X. In addition, the requirement of Ca(2+) for the lipolysis of LDL was about 10-fold higher for sPLA(2)-V than sPLA(2)-X. In fact, the release of fatty acids from human serum was hardly detectable upon incubation with sPLA(2)-V in the presence of sodium citrate, which contrasted with the potent response to sPLA(2)-X. Moreover, sPLA(2)-X, but not sPLA(2)-V, was found to specifically interact with LDL among the serum proteins, as assessed by gel-filtration chromatography as well as sandwich enzyme-immunosorbent assay using anti-sPLA(2)-X and anti-apoB antibodies. Surface plasmon resonance studies have revealed that sPLA2-X can bind to LDL with high-affinity (K(d) = 3.1 nM) in the presence of Ca(2+). Selective interaction of sPLA(2)-X with LDL might be involved in the efficient hydrolysis of cell surface or intracellular phospholipids during foam cell formation.  相似文献   

19.
Of 10 mammalian secreted phospholipase A(2) (sPLA(2)) enzymes identified to date, group V and X sPLA(2)s, which are two potent plasma membrane-acting sPLA(2)s, are capable of preventing host cells from being infected with adenovirus, and this anti-viral action depends on the conversion of phosphatidylcholine (PC) to lysophosphatidylcholine (LPC) in the host cell membrane. Here, we show that human group III sPLA(2), which is structurally more similar to bee venom PLA(2) than to other mammalian sPLA(2)s, also has the capacity to inhibit adenovirus infection into host cells. Mass spectrometry (MS) demonstrated that group III sPLA(2) hydrolyzes particular molecular species of PC to generate LPC in human bronchial epithelial cells. Remarkably, in addition to the catalytically active sPLA(2) domain, the N-terminal, but not C-terminal, domain unique to this enzyme was required for the anti-adenovirus effect. To our knowledge, this is the first demonstration that the biological action of group III sPLA(2) depends on its N-terminal domain. Finally, our MS analysis provided additional and novel evidence that group III, V and X sPLA(2)s target distinct phospholipid molecular species in cellular membranes.  相似文献   

20.
In macrophages and other major immunoinflammatory cells, two phospholipase A(2) (PLA(2)) enzymes act in concert to mobilize arachidonic acid (AA) for immediate PG synthesis, namely group IV cytosolic phospholipase A(2) (cPLA(2)) and a secreted phospholipase A(2) (sPLA(2)). In this study, the molecular mechanism underlying cross-talk between the two PLA(2)s during paracrine signaling has been investigated. U937 macrophage-like cells respond to Con A by releasing AA in a cPLA(2)-dependent manner, and addition of exogenous group V sPLA(2) to the activated cells increases the release. This sPLA(2) effect is abolished if the cells are pretreated with cPLA(2) inhibitors, but is restored by adding exogenous free AA. Inhibitors of cyclooxygenase and 5-lipoxygenase have no effect on the response to sPLA(2). In contrast, ebselen strongly blocks it. Reconstitution experiments conducted in pyrrophenone-treated cells to abolish cPLA(2) activity reveal that 12- and 15-hydroperoxyeicosatetraenoic acid (HPETE) are able to restore the sPLA(2) response to levels found in cells displaying normal cPLA(2) activity. Moreover, 12- and 15-HPETE are able to enhance sPLA(2) activity in vitro, using a natural membrane assay. Neither of these effects is mimicked by 12- or 15-hydroxyeicosatetraenoic acid, indicating that the hydroperoxy group of HPETE is responsible for its biological activity. Collectively, these results establish a role for 12/15-HPETE as an endogenous activator of sPLA(2)-mediated phospholipolysis during paracrine stimulation of macrophages and identify the mechanism that connects sPLA(2) with cPLA(2) for a full AA mobilization response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号