首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Low levels of allozyme heterozygosity in populations are often attributed to previous population bottlenecks; however, few experiments have examined the relationship between heterozygosity and bottlenecks under natural conditions. The composition and number of founders of 55 experimental populations of the eastern mosquitofish (Gambusia holbrooki), maintained under simulated field conditions, were manipulated to examine the effects of bottlenecks on three components of allozyme diversity. Correlations between observed and expected values of allozyme heterozygosity, proportions of polymorphic loci, and numbers of alleles per locus were 0.423, 0.602, and 0.772, respectively. The numbers of polymorphic loci and of alleles per locus were more sensitive indicators of differences in genetic diversity between the pre-bottleneck and post-bottleneck populations than was multiple-locus heterozygosity. In many populations, single- and multiple-locus heterozygosity actually increased as a result of the founder event. The weak relationship between a population's heterozygosity and the number and composition of its founders resulted from an increase in the variance of heterozygosity due to drift of allele frequencies. There was little evidence that selection influenced the loss of allozyme variation. When it is not possible to estimate heterozygosity at a large number of polymorphic loci, allozyme surveys attempting to detect founder events and other types of bottlenecks should focus on levels of locus polymorphism and allelic diversity rather than on heterozygosity.  相似文献   

2.
Mammal species characterized by highly fluctuating populations often maintain genetic diversity in response to frequent demographic bottlenecks, suggesting the ameliorating influence of life history and behavioral factors. Immigration in particular is expected to promote genetic recovery and is hypothesized to be the most likely process maintaining genetic diversity in fluctuating mammal populations. Most demographic bottlenecks have been inferred retrospectively, and direct analysis of a natural population before, during, and after a bottleneck is rare. Using a continuous 10-year dataset detailing the complete demographic and genetic history of a fluctuating population of golden-mantled ground squirrels (Spermophilus lateralis), we analyzed the genetic consequences of a 4-year demographic bottleneck that reduced the population to seven adult squirrels, and we evaluated the potential “rescue effect” of immigration. Analysis of six microsatellite loci revealed that, while a decline in allelic richness was observed during the bottleneck, there was no observed excess of heterozygosity, a characteristic bottleneck signature, and no evidence for heterozygote deficiency during the recovery phase. In addition, we found no evidence for inbreeding depression during or after the bottleneck. By identifying immigrants and analyzing their demographic and genetic contributions, we found that immigration promoted demographic recovery and countered the genetic effects of the bottleneck, especially the loss of allelic richness. Within 3 years both population size and genetic variation had recovered to pre-bottleneck levels, supporting the role of immigration in maintaining genetic variation during bottleneck events in fluctuating populations. Our analyses revealed considerable variation among analytical techniques in their ability to detect genetic bottlenecks, suggesting that caution is warranted when evaluating bottleneck events based on one technique.  相似文献   

3.
Population declines caused by natural and anthropogenic factors can quickly erode genetic diversity in natural populations. In this study, we examined genetic variation within 10 tiger salamander populations across northern Yellowstone National Park in Wyoming and Montana, USA using eight microsatellite loci. We tested for the genetic signature of population decline using heterozygosity excess, shifts in allele frequencies, and low ratios of allelic number to allelic size range (M-ratios). We found different results among the three tests. All 10 populations had low M-ratios, five had shifts in allele frequencies and only two had significant heterozygosity excesses. These results support theoretical expectations of different temporal signatures among bottleneck tests and suggest that both historical fish stocking, recent, sustained drought, and possibly an emerging amphibian disease have contributed to declines in effective population size.  相似文献   

4.
Single-sample methods of bottleneck detection are now routine analyses in studies of wild populations and conservation genetics. Three common approaches to bottleneck detection are the heterozygosity excess, mode-shift, and M-ratio tests. Empirical groundtruthing of these methods is difficult, but their performances are critical for the accurate reconstruction of population demography. We use two banner-tailed kangaroo rat (Dipodomys spectabilis) populations from southeastern Arizona (USA) that are known to have experienced recent demographic reductions to search for genetic bottleneck signals with eight microsatellite loci. Over eight total sample-years, neither population showed a genetic bottleneck signature. M-ratios in both populations were large, stable, and never fell below a critical significance value (Mc). The mode shift test did not detect any distortion of allele frequencies, and tests of heterozygosity excess were not significant in postbottleneck samples when we used standard microsatellite mutation models. The genetic effects of bottlenecks like those experienced by our study populations should be strongly influenced by rates of mutation and migration. We used genetic parentage data to estimate a relatively high mutation rate in D. spectabilis (0.0081 mutants/generation/locus), but mutation alone is unlikely to explain the temporal distribution of rare alleles that we observed. Migration (gene flow) is a more likely explanation, despite prior mark-recapture analysis that estimated very low rates of interpopulation dispersal. We interpret our kangaroo rat data in light of the broader literature and conclude that in natural populations connected by dispersal, demographic bottlenecks may prove difficult to detect using molecular genetic data.  相似文献   

5.
The impact of founder events on levels of genetic variation in natural populations remains a topic of significant interest. Well-documented introductions provide a valuable opportunity to examine how founder events influence genetic diversity in invasive species. House finches (Carpodacus mexicanus) are passerine birds native to western North America, with the large eastern North American population derived from a small number of captive individuals released in the 1940s. Previous comparisons using amplified fragment length polymorphism (AFLP) markers found equivalent levels of diversity in eastern and western populations, suggesting that any genetic effects of the founder event were ameliorated by the rapid growth of the newly established population. We used an alternative marker system, 10 highly polymorphic microsatellites, to compare levels of genetic diversity between four native and five introduced house finch populations. In contrast to the AFLP comparisons, we found significantly lower allelic richness and heterozygosity in introduced populations across all loci. Three out of five introduced populations showed significant reductions in the ratio of the number of alleles to the allele size range, a within-population characteristic of recent bottlenecks. Finally, native and introduced populations showed significant pairwise differences in allele frequencies in every case, with stronger isolation by distance within the introduced than native range. Overall, our results provide compelling molecular evidence for a founder effect during the introduction of eastern house finches that reduced diversity levels at polymorphic microsatellite loci and may have contributed to the emergence of the Mycoplasma epidemic which recently swept the eastern range of this species.  相似文献   

6.
The population of elk (Cervus elaphus roosevelti) inhabiting Afognak Island, Alaska, USA arose from an introduction of 8 individuals from an established population in Washington, USA in 1929, and recently peaked at approximately 1,400 individuals. We examined indices of diversity for 15 microsatellite loci in the Afognak population and compared them to levels in the parent population to determine effects of translocation and demography on genetic variation. The Afognak population differed significantly (P < 0.0001) from the source population in both allele and genotype frequencies. Allelic richness, number of private alleles and multilocus heterozygosity, but not percent loci polymorphic, were significantly lower in Afognak elk. Mean inbreeding coefficients within Afognak (f = 0.019) and source (f = −0.006) populations did not differ significantly from zero. Despite the demographic bottleneck, no evidence of a genetic bottleneck in the Afognak population was detected using a test for heterozygosity excess or mode shift of allele frequencies. Simulations indicated that rapid population growth after the translocation resulted in heterozygosity excess for only 8 years. Conversely, a statistic testing for a bottleneck signature in the ratio of allele number to allele size range (M-ratio) was significant for both the Afognak and source populations, suggesting that the Afognak population had effectively undergone serial bottlenecks. Nonetheless, Afognak failed to show a smaller M-ratio than the parent population, suggesting a failure of that statistic to detect the bottleneck associated with introduction. We show that a severe bottleneck followed by rapid population growth may be undetectable using available tests.  相似文献   

7.
Selection maintains MHC diversity through a natural population bottleneck   总被引:1,自引:0,他引:1  
A perceived consequence of a population bottleneck is the erosion of genetic diversity and concomitant reduction in individual fitness and evolutionary potential. Although reduced genetic variation associated with demographic perturbation has been amply demonstrated for neutral molecular markers, the effective management of genetic resources in natural populations is hindered by a lack of understanding of how adaptive genetic variation will respond to population fluctuations, given these are affected by selection as well as drift. Here, we demonstrate that selection counters drift to maintain polymorphism at a major histocompatibility complex (MHC) locus through a population bottleneck in an inbred island population of water voles. Before and after the bottleneck, MHC allele frequencies were close to balancing selection equilibrium but became skewed by drift when the population size was critically low. MHC heterozygosity generally conformed to Hardy-Weinberg expectations except in one generation during the population recovery where there was a significant excess of heterozygous genotypes, which simulations ascribed to strong differential MHC-dependent survival. Low allelic diversity and highly skewed frequency distributions at microsatellite loci indicated potent genetic drift due to a strong founder affect and/or previous population bottlenecks. This study is a real-time examination of the predictions of fundamental evolutionary theory in low genetic diversity situations. The findings highlight that conservation efforts to maintain the genetic health and evolutionary potential of natural populations should consider the genetic basis for fitness-related traits, and how such adaptive genetic diversity will vary in response to both the demographic fluctuations and the effects of selection.  相似文献   

8.
Population increases over the past several decades provide natural settings in which to study the evolutionary processes that occur during bottleneck, growth, and spatial expansion. We used parallel natural experiments of historical decline and subsequent recovery in two sympatric pinniped species in the Northwest Atlantic, the gray seal (Halichoerus grypus atlantica) and harbor seal (Phoca vitulina vitulina), to study the impact of recent demographic change in genomic diversity. Using restriction site‐associated DNA sequencing, we assessed genomic diversity at over 8,700 polymorphic gray seal loci and 3,700 polymorphic harbor seal loci in samples from multiple cohorts collected throughout recovery over the past half‐century. Despite significant differences in the degree of genetic diversity assessed in the two species, we found signatures of historical bottlenecks in the contemporary genomes of both gray and harbor seals. We evaluated temporal trends in diversity across cohorts, as well as compared samples from sites at both the center and edge of a recent gray seal range expansion, but found no significant change in genomewide diversity following recovery. We did, however, find that the variance and degree of allele frequency change measured over the past several decades were significantly different from neutral expectations of drift under population growth. These two cases of well‐described demographic history provide opportunities for critical evaluation of current approaches to simulating and understanding the genetic effects of historical demographic change in natural populations.  相似文献   

9.
It is important to detect population bottlenecks in threatened and managed species because bottlenecks can increase the risk of population extinction. Early detection is critical and can be facilitated by statistically powerful monitoring programs for detecting bottleneck-induced genetic change. We used Monte Carlo computer simulations to evaluate the power of the following tests for detecting genetic changes caused by a severe reduction in a population's effective size ( N e): a test for loss of heterozygosity, two tests for loss of alleles, two tests for change in the distribution of allele frequencies, and a test for small N e based on variance in allele frequencies (the 'variance test'). The variance test was most powerful; it provided an 85% probability of detecting a bottleneck of size N e = 10 when monitoring five microsatellite loci and sampling 30 individuals both before and one generation after the bottleneck. The variance test was almost 10-times more powerful than a commonly used test for loss of heterozygosity, and it allowed for detection of bottlenecks before 5% of a population's heterozygosity had been lost. The second most powerful tests were generally the tests for loss of alleles. However, these tests had reduced power for detecting genetic bottlenecks caused by skewed sex ratios. We provide guidelines for the number of loci and individuals needed to achieve high-power tests when monitoring via the variance test. We also illustrate how the variance test performs when monitoring loci that have widely different allele frequency distributions as observed in five wild populations of mountain sheep ( Ovis canadensis ).  相似文献   

10.
Polynesians have lower heterozygosities at minisatellite VNTR (Variable Number of Tandem Repeat) loci than have Melanesians; this has been taken as evidence of population-size bottlenecks during the colonisation of Polynesia. We have analysed the allelic distribution of several minisatellite loci in the population of Rapa, a Polynesian island that is known to have undergone a demographic reduction of approximately 95% since first contact with European explorers 200 years ago, leaving a surviving population of 120. We found that the minisatellite diversity of this population does not differ significantly from that of other Polynesian populations, and appears consistent with the neutral expectation of diversity assuming the infinite alleles model. This suggests that the demographic crisis that Rapa underwent did not perturb the allele distribution to the extent that the tests used here could detect. Thus we cannot say that a demographic change of this magnitude constitutes a genetic bottleneck detectable at these loci. The reduced diversity seen in Polynesia must therefore be explained either by more severe bottlenecks as might be expected during colonisation, or else by other causes.  相似文献   

11.
Linking temporal variations of genetic diversity, including allelic richness and heterozygosity, and spatio-temporal fluctuations in population abundance has emerged as an important tool for understanding demographic and evolutionary processes in natural populations. This so-called genetic monitoring was conducted across 12 consecutive years (1996-2007) at three sites for the feral cat, introduced onto the Kerguelen archipelago fifty years ago. Temporal changes in allelic richness and heterozygosity at 18 microsatellite DNA loci were compared with temporal changes in the adult population abundance index, obtained by typical demographic monitoring. No association was found at the island spatial scale, but we observed an association between genetic diversity and adult population indices from year to year within each study site. More particularly, the magnitude of successive increases or decreases in the adult population abundance index appeared to be the major factor linking the trajectories of genetic diversity and adult population abundance indices. Natal dispersal and/or local recruitment, both facilitated by high juvenile survival when the adult population size is small, is proposed as the major demographic processes contributing to such an observed pattern. Finally, we suggested avoiding the use of the harmonic mean as an estimator of long-term population size to study the relationships between demographic fluctuations and heterozygosity in populations characterized by strong multiannual density fluctuations.  相似文献   

12.
Few bottlenecks of wild populations are sufficiently well-documented to constitute models for testing theories about the impact of bottlenecks on genetic variation, and subsequent population persistence. Relevant details of the Bennett's wallaby (Macropus rufogriseus rufogriseus) introduction into New Zealand were recorded (founder number, source and approximate bottleneck duration) and suggest this may provide a rare opportunity to examine the efficacy of tests designed to detect recent bottlenecks in wild populations. We first assessed the accuracy of historic accounts of the introduction using genetic diversity detected in mitochondrial DNA (mtDNA) and at five microsatellite loci. Phylogenetic analyses of mtDNA D-loop sequence haplotypes were consistent with the reported origin of the founders as Tasmania, rather than one of the Bass Strait islands in which Bennett's wallabies are also found. Microsatellite allele frequencies from the Tasmanian source population were then used to seed bottleneck simulations encompassing varying sizes and numbers of generations, in order to assess the severity of bottleneck consistent with diversity observed in the New Zealand population. The results suggested that the founder number was unlikely to have been as small as the three animals suggested by the account of the introduction. Nonetheless, the bottleneck was probably severe; in the range of three to five pairs of wallabies for one to three generations. It resulted in significantly reduced levels of allelic diversity and heterozygosity relative to the source population. This bottleneck is only detectable under the infinite allele model (IAM) and not under the stepwise mutation model (SMM) or the two-phase model (TPM), and possible explanations for this are discussed.  相似文献   

13.
Species introductions provide a rare opportunity to study rapid evolutionary and genetic processes in natural systems, often under novel environmental pressures. Few empirical studies have been able to characterize genetic founder effects associated with demographic bottlenecks at the earliest stages of species introductions. This study utilizes prior mitochondrial DNA information which identifies the putative source population for a recently established ( c . 7 years between import and sampling) species introduction. We investigated the evidence for a founder effect in a highly successful introduction of a Puerto Rican Anolis species that has established itself on Dominica to the localized exclusion of the native, endemic anole. Five highly polymorphic microsatellite loci were used to explore the partitioning of genetic diversity within and between native source, native nonsource, and introduced populations of Anolis cristatellus . Group comparisons reveal significantly lower allelic richness and expected heterozygosity in introduced populations compared to native populations; however, tests for heterozygosity excess relative to allelic richness failed to provide consistent evidence for a founder effect within introduced populations. Significant levels of within-population genetic variation were present in both native and introduced populations. We suggest that aspects of the reproductive ecology of Anolis (high fecundity, sperm storage and multiple paternity) offer an important mechanism by which genetic variation may be maintained following demographic bottlenecks and founder events in some squamate taxa.  相似文献   

14.
Three mainland and two island roe deer ( Capreolus capreolus ) populations with a total sample size of 105 individuals from Schleswig–Holstein, northern Germany, were analysed with regard to genetic variability within and differentiation among populations as revealed by eight allozyme loci known to be polymorphic in roe deer, eight microsatellite loci and 404 bp of the mitochondrial control region. Surprisingly, the allozymes were completely monomorphic, but microsatellite and control region variability were high. Hypotheses as to demographic reasons for the variability patterns found, including bottlenecks, founder effects and translocations, are put forward. There were no statistically significant differences between the island and the mainland populations in terms of genetic variability as measured by expected heterozygosity, inbreeding coefficient and allelic richness. The correlations of the various variability indices were not statistically significant after Bonferroni correction. Nevertheless, there was a clear tendency for differentiation indices to yield concordant results for microsatellite and mitochondrial markers.  相似文献   

15.
Cyclical parthenogens, including aphids, are attractive models for comparing the genetic outcomes of sexual and asexual reproduction, which determine their respective evolutionary advantages. In this study, we examined how reproductive mode shapes genetic structure of sexual (cyclically parthenogenetic) and asexual (obligately parthenogenetic) populations of the aphid Rhopalosiphum padi by comparing microsatellite and allozyme data sets. Allozymes showed little polymorphism, confirming earlier studies with these markers. In contrast, microsatellite loci were highly polymorphic and showed patterns very discordant from allozyme loci. In particular, microsatellites revealed strong heterozygote excess in asexual populations, whereas allozymes showed heterozygote deficits. Various hypotheses are explored that could account for the conflicting results of these two types of genetic markers. A strong differentiation between reproductive modes was found with both types of markers. Microsatellites indicated that sexual populations have high allelic polymorphism and heterozygote deficits (possibly because of population subdivision, inbreeding or selection). Little geographical differentiation was found among sexual populations confirming the large dispersal ability of this aphid. In contrast, asexual populations showed less allelic polymorphism but high heterozygosity at most loci. Two alternative hypotheses are proposed to explain this heterozygosity excess: allele sequence divergence during long-term asexuality or hybrid origin of asexual lineages. Clonal diversity of asexual lineages of R. padi was substantial suggesting that they could have frozen genetic diversity from the pool of sexual lineages. Several widespread asexual genotypes were found to persist through time, as already seen in other aphid species, a feature seemingly consistent with the general-purpose genotype hypothesis.  相似文献   

16.
Six polymorphic microsatellites (eight loci) were used to study the genetic diversity and population structure of common carp from Dongting Lake (DTC), Poyang Lake (PYC), and the Yangtze River (YZC) in China. The gene diversity was high among populations with values close to 1. The number of alleles per locus ranged from 2 to 11, and the average number of alleles among 3 populations ranged from 6.5 to 7.9. The mean observed (H O) and expected (H E) heterozygosity ranged from 0.4888 to 0.5162 and from 0.7679 to 0.7708, respectively. Significant deviations from Hardy–Weinberg Equilibrium expectation were found at majority of the loci and in all three populations in which heterozygote deficits were apparent. The analysis of molecular variance (AMOVA) indicated that the percent of variance among populations and within populations were 3.03 and 96.97, respectively. The Fst values between populations indicated that there were significant genetic differentiations for the common carp populations from the Yangtze River and two largest Chinese freshwater lakes. The factors that may result in genetic divergence and significant reduction of the observed heterozygosity were discussed.  相似文献   

17.
Genetic factors such as decreased genetic diversity and increased homozygosity can have detrimental effects on rare species, and may ultimately limit potential adaptation and exacerbate population declines. The Gulf and Atlantic Coastal Plain physiographic region has the second highest level of endemism in the continental USA, but habitat fragmentation and land use changes have resulted in catastrophic population declines for many species. Astragalus michauxii (Fabaceae) is an herbaceous plant endemic to the region that is considered vulnerable to extinction, with populations generally consisting of fewer than 20 individuals. We developed eight polymorphic microsatellites and genotyped 355 individuals from 24 populations. We characterized the population genetic diversity and structure, tested for evidence of past bottlenecks, and identified evidence of contemporary gene flow between populations. The mean ratios of the number of alleles to the allelic range (M ratio) across loci for A. michauxii populations were well below the threshold of 0.68 identified as indicative of a past genetic bottleneck. Genetic diversity estimates were similar across regions and populations, and comparable to other long-lived perennial species. Within-population genetic variation accounted for 92 % of the total genetic variation found in the species. Finally, there is evidence for contemporary gene flow among the populations in North Carolina. Although genetic factors can threaten rare species, maintaining habitats through prescribed burning, in concert with other interventions such as population augmentation or (re)introduction, are likely most critical to the long term survival of A. michauxii.  相似文献   

18.
Genetic diversity in nine African buffalo (Syncerus caffer) populations throughout Africa was analysed with 14 microsatellites to study the effects of rinderpest epidemics and habitat fragmentation during the 20th century. A gradient of declining expected heterozygosity was observed among populations in Save Valley Conservancy (Zimbabwe), and northern and southern Kruger National Park (South Africa). This was explained by a high mortality in northern Kruger National Park during the rinderpest pandemic at the end of the 19th century followed by recolonization from neighbouring populations, resulting in intermediate heterozygosity levels in northern Kruger National Park. In other populations expected heterozygosity was very high, indicating that rinderpest and recent habitat fragmentation had a limited effect on genetic diversity. From expected heterozygosity, estimates of long-term effective population size were derived. Migration rates among populations in eastern and southern Africa were very high, as shown by a weak isolation by distance and significant correlation in allele frequencies between populations. However, there were indications that dry habitats could limit migration. Genetic distances within buffalo in central Africa were relatively large, supporting their status as distinct subspecies. Finally, it was observed that the higher polymorphic microsatellites were less sensitive at detecting isolation by distance and differences in Ne, which may be a result of the high mutation pressure at these loci.  相似文献   

19.
High genetic diversity is thought to characterize successful invasive species, as the potential to adapt to new environments is enhanced and inbreeding is reduced. In the last century, guppies, Poecilia reticulata, repeatedly invaded streams in Australia and elsewhere. Quantitative genetic studies of one Australian guppy population have demonstrated high additive genetic variation for autosomal and Y-linked morphological traits. The combination of colonization success, high heritability of morphological traits, and the possibility of multiple introductions to Australia raised the prediction that neutral genetic diversity is high in introduced populations of guppies. In this study we examine genetic diversity at nine microsatellite and one mitochondrial locus for seven Australian populations. We used mtDNA haplotypes from the natural range of guppies and from domesticated varieties to identify source populations. There were a minimum of two introductions, but there was no haplotype diversity within Australian populations, suggesting a founder effect. This was supported by microsatellite markers, as allelic diversity and heterozygosity were severely reduced compared to one wild source population, and evidence of recent bottlenecks was found. Between Australian populations little differentiation of microsatellite allele frequencies was detected, suggesting that population admixture has occurred historically, perhaps due to male-biased gene flow followed by bottlenecks. Thus success of invasion of Australia and high additive genetic variance in Australian guppies are not associated with high levels of diversity at molecular loci. This finding is consistent with the release of additive genetic variation by dominance and epistasis following inbreeding, and with disruptive and negative frequency-dependent selection on fitness traits.  相似文献   

20.
We report on the isolation and characterization of eight polymorphic and five monomorphic microsatellites in the Amami rabbit (Pentalagus furnessi). Microsatellite polymorphism was determined using 25 individuals. There were 2–11 alleles for each polymorphic locus with heterozygosity ranging between 0.08 and 0.76. Linkage disequilibrium was not suggested between any pairs among the eight polymorphic loci. We suggest that these primers be used in future studies to monitor population size, determine dispersal patterns, and genetic diversity within and between populations of this and related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号