首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Two-phase partitioning bioreactors (TPPBs) can be used to biodegrade environmental contaminants after their extraction from soil. TPPBs are typically stirred tank bioreactors containing an aqueous phase hosting the degrading microorganism and an immiscible, non-toxic and non-bioavailable organic phase functioning as a reservoir for hydrophobic compounds. Biodegradation of these compounds in the aqueous phase results in thermodynamic disequilibrium and partitioning of additional compounds from the organic phase into the aqueous phase. This self-regulated process can allow the delivery of large amounts of hydrophobic substances to degrading microorganisms. This paper explores the reactor conditions under which the polychlorinated biphenyl (PCB) degrader Burkholderia xenovorans LB400 can degrade significant amounts of the PCB mixture Aroclor(R) 1242. Aroclor(R) degradation was found to stall after approximately 40 h if no carbon source other than PCBs was available in the reactor. Sodium pyruvate was found to be a suitable carbon source to maintain microbial activity against PCBs and to function as a substrate for additional cell growth. Both biphenyl (while required during the inoculum preparation) and glucose had a negative effect during the Aroclor(R) degradation phase. Initial Aroclor(R) 1242 degradation rates in the presence of pyruvate were high (6.2 mg L(-1) h(-1)) and 85% of an equivalent concentration of 100 mg Aroclor(R) 1242 per L aqueous phase could be degraded in 48 h, which suggest that solvent extraction of PCBs from soil followed by their biodegradation in TPPBs might be a feasible remediation option.  相似文献   

2.
Plant terpenes have proven to be effective in stimulation of polychlorinated biphenyls (PCBs) biodegradation in soil systems. However, data on the application of plant terpenes in marine sediments contaminated with PCBs remains limited. The aim of this study was to ascertain the roles of a PCB degrading consortium and plant terpenes in stimulation of PCB biodegradation in marine sediments. The consortium culture 1-2Mix (strains 1-2M and 1-2T in commensalism), a utilizer of biphenyl and a natural substrate was enriched and isolated from marine sediments from the Busan coast, South Korea. PCB degradation by this culture was shown to be more effectively induced by tangerine peel extract than other known substrates (limonene, pinene, and cymene). Coastal sediment microcosms inoculated with 1-2Mix were set up to elucidate the effect of the consortium and plant terpenes on degradation of Aroclor 1242. After four weeks, the highest removal rates of PCBs, compared with the control (autoclaved sediment and no inoculation of 1-2Mix), were observed in order of the inducers tested; biphenyl (71.1%), tangerine peel extract (69.5%), surfactant (66.0%), and limonene (63.0%). Bioaugmentation effect was doubled in the presence of natural substrates such as tangerine peel extract and limonene, indicating effectiveness of these substrates in biostimulation. It was concluded that the tangerine peel extract could replace biphenyl as a feasible induction substrate for effective remediation of PCBs in the marine sediment.  相似文献   

3.
 通过微体繁殖技术在多氯联苯(PCBs)污染土壤基质上进行大金发藓(Polytrichum commune)的室内培养, 研究了不同浓度(5、10和20 mg·kg–1)低氯PCBs (Aroclor 1242)和高氯PCBs (Aroclor 1254)对大金发藓生理生态指标的影响。经6个月的培养, 大金发藓的密度和盖度分别达93%和50株·cm–2以上, PCBs处理组与对照组相比无显著差异, 表明PCBs对大金发藓茎叶碎片再生成新植株体的能力没有产生不利影响。大金发藓鲜质量和株高随低氯PCBs (Aroclor 1242)浓度增加而增加、随高氯PCBs (Aroclor 1254)浓度增加而减小, 但均高于对照, 表明PCBs处理对大金发藓的生长具有一定的促进作用。PCBs处理组大金发藓叶绿素a、b以及叶绿素a + b含量较对照组有所增加, 叶绿素a/b值与对照组相比基本没有变化。PCBs处理组大金发藓膜脂过氧化产物丙二醛含量和超氧化物歧化酶活性与对照组相比无显著差异, 谷胱甘肽含量较对照组显著增加, 表明谷胱甘肽在大金发藓体内活性氧清除过程中起重要作用。总体来看, 大金发藓能在所设浓度的PCBs范围内正常生长, 对PCBs有较强的耐性。  相似文献   

4.
In an effort to improve reactor performance and process operability, the microbial biotransformation of (-)-trans-carveol to (R)-(-)-carvone by hydrophobic Rhodococcus erythropolis DCL14 was carried out in a two phase partitioning bioreactor (TPPB) with solid polymer beads acting as the partitioning phase. Previous work had demonstrated that the substrate and product become inhibitory to the organism at elevated aqueous concentrations and the use of an immiscible second phase in the bioreactor was intended to provide a reservoir for substrates to be delivered to the aqueous phase based on the metabolic rate of the cells, while also acting as a sink to uptake the product as it is produced. The biotransformation was previously undertaken in a two liquid phase TPPB with 1-dodecene and with silicone oil as the immiscible second phase and, although improvement in the reactor performance was obtained relative to a single phase system, the hydrophobic nature of the organism caused the formation of severe emulsions leading to significant operational challenges. In the present work, eight types of polymer beads were screened for their suitability for use in a solid-liquid TPPB for this biotransformation. The use of selected solid polymer beads as the second phase completely prevented emulsion formation and therefore improved overall operability of the reactor. Three modes of solid-liquid TPPB operation were considered: the use of a single polymer bead type (styrene/butadiene copolymer) in the reactor, the use of a mixture of polymer beads in the reactor (styrene/butadiene copolymer plus Hytrel(R) 8206), and the use of one type of polymer beads in the reactor (styrene/butadiene copolymer), and another bead type (Hytrel(R) 8206) in an external column through which fermentation medium was recirculated. This last configuration achieved the best reactor performance with 7 times more substrate being added throughout the biotransformation relative to a single aqueous phase benchmark reactor and 2.7 times more substrate being added relative to the best two liquid TPPB case. Carvone was quantitatively recovered from the polymer beads via single stage extraction into methanol, allowing for bead re-use.  相似文献   

5.
An Altamont soil containing no measurable population of chlorobenzoate utilizers was examined for the potential to enhance polychlorinated biphenyl (PCB) mineralization by inoculation with chlorobenzoate utilizers, a biphenyl utilizer, combinations of the two physiological types, and chlorobiphenyl-mineralizing transconjugants. Biphenyl was added to all soils, and biodegradation of 14C-Aroclor 1242 was assessed by disappearance of that substance and by production of 14CO2. Mineralization of PCBs was consistently greatest (up to 25.5%) in soils inoculated with chlorobenzoate degraders alone. Mineralization was significantly lower in soils receiving all other treatments: PCB cometabolizer (10.7%); chlorobiphenyl mineralizers (8.7 and 14.9%); and mixed inocula of PCB cometabolizers and chlorobenzoate utilizers (11.4 and 18.0%). However, all inoculated soils had higher mineralization than did the uninoculated control (3.1%). PCB disappearance followed trends similar to that observed with the mineralization data, with the greatest degradation occurring in soils inoculated with the chlorobenzoate-degrading strains Pseudomonas aeruginosa JB2 and Pseudomonas putida P111 alone. While the mechanism by which the introduction of chlorobenzoate degraders alone enhanced biodegradation of PCBs could not be elucidated, the possibility that chlorobenzoate inoculants acquired the ability to metabolize biphenyl and possibly PCBs was explored. When strain JB2, which does not utilize biphenyl, was inoculated into soil containing biphenyl and Aroclor 1242, the frequency of isolates able to utilize biphenyl and 2,5-dichlorobenzoate increased progressively with time from 3.3 to 44.4% between 15 and 48 days, respectively. Since this soil contained no measurable level of chlorobenzoate utilizers yet did contain a population of biphenyl utilizers, the possibility of genetic transfer between the latter group and strain JB2 cannot be excluded.  相似文献   

6.
Orange peels, eucalyptus leaves, pine needles and ivy leaves were addedseparately to soil spiked with Aroclor 1242 (100 mgkg-1.Polychorinated biphenyls (PCBs) disappeared after six months in all theamended soils, but not in unamended soils. Although biphenyl was not addedto any of the soils, all four amended soils had much higher levels(108/g) of biphenyl-utilizing bacteria than the unamendedcontrol (103/g). Ten random isolates obtained from these soilswere identified as coryneform bacteria. Five isolates, that were distinctlydifferent, were studied further with respect to growth on pure terpenes andmetabolism of PCBs. The most effective strains were Cellulomonas sp. T109and R. rhodochrous T100, which metabolized 83% and 80% ofAroclor 1242, respectively, during a six day period of growth on cymene andlimonene, respectively. The bphA gene, cloned as a 2.8 Kb Sa/I fragment ofpAW6194 from cbpA (Walia et al. 1990) hybridized to total DNA of allcoryneform isolates, and to the well-established PCB degrader Rhodococcusgloberulus. In contrast, a 5 Kb XhoI-SmaI fragment of the bphA gene(Furukawa & Miyazaki 1986) did not show any homology to the genomic DNAof any of the isolates or to R. globerulus, but did hybridize to two otherwell-known PCB degraders Pseudomonas sp. LB400, and Alcaligenes eutrophusH850. The data presented herein indicate that terpenes may be naturalsubstrates for biphenyl-degrading bacteria and may enhance substantialtransformation of Aroclor 1242.  相似文献   

7.
Weathered soils contaminated with commercial-grade Aroclor 1260 from three sites in Canada were used to investigate the polychlorinated biphenyl (PCB) phytoextraction potential of nine plant species (Festuca arundinacea, Glycine max, Medicago sativa, Phalaris arundinacea, Lolium multiflorum, Carex normalis, and three varieties of Cucurbita pepo ssp. pepo) under controlled greenhouse conditions. The soils used varied in PCB concentration (90-4200 microg/g) and total organic content (0.06-2.02%). Greenhouse experiments controlled for PCB volatilization through the use of a vented enclosure and by isolating the contaminated soils with parafilm. After 8 wks, PCB concentrations of 47-6700 microg/g were observed in root tissues. Although PCB concentrations in shoot tissues were lower (< 1-470 microg/g), the absolute amounts of PCBs observed in shoot tissue were significant (1.7-290 microg) once shoot biomass was accounted for. Congener signatures indicated that tetra- to hexa-chlorobiphenyls contributed the largest proportions to shoot tissues, but hepta-to nona-chorobiphenyls were also present in measurable amounts. Overall, the results indicate that varieties of C. pepo were more effective at extracting PCBs from soil than other plants screened The evidence suggests that this was mainly due to root uptake of PCBs and tranlocation to the shoots, rather than volatilization of PCBs from soil. All plants screened showed signs of stress in the most highly contaminated soil (4200 microg/g), but not in the two lower PCB contaminated soils (250 and 90 microg/g, respectively). No detectable decreases in soil PCB concentrations were observed in these short-term greenhouse experiments, but the results suggest that this may be achievable through multiple plantings.  相似文献   

8.
We have isolated and characterized a strain of Alcaligenes eurtrophus, designated H850, that rapidly degrades a broad and unusual spectrum of polychlorinated biphenyls (PCBs) including many tetra- and pentachlorobiphenyls and several hexachlorobiphenyls. This strain, which was isolated from PCB-containing dredge spoils by enrichment on biphenyl, grows well on biphenyl and 2-chlorobiphenyl but poorly on 3- and 4-chlorobiphenyl. Capillary gas-chromatographic analysis showed that biphenyl-grown resting cells of H850 degraded the components of 38 of the 41 largest peaks of Aroclor 1242 and 15 of the 44 largest peaks of Aroclor 1254, resulting in an overall reduction of PCBs by 81% for Aroclor 1242 (10 ppm) and 35% for Aroclor 1254 (10 ppm) in 2 days. Furthermore, H850 metabolized the predominantly ortho-substituted PCB congeners that resulted from the environmental transformation of the more highly chlorinated congeners of Aroclor 1242 by the upper Hudson River anaerobic meta-, para-dechlorination agent system C (J. F. Brown, R. E. Wagner, Jr., D. L. Bedard, M. J. Brennan, J. C. Carnahan, R. J. May, and J. J. Tofflemire, Northeast Environ. Sci. 3:167-179, 1984). The congener selectivity patterns indicate that a two-step process consisting of anaerobic dechlorination followed by oxidation by H850 can effectively degrade all of the congeners in Aroclor 1242 and possibly all those in Aroclor 1254.  相似文献   

9.
The bioremediation of aged polychlorinated biphenyl (PCB)-contaminated soils is adversely affected by the low bioavailability of the pollutants. Randomly methylated-beta-cyclodextrins (RAMEB) were tested as a potential PCB-bioavailability-enhancing agent in the aerobic treatment of two aged-contaminated soils. The soils, contaminated by about 890 and 8500 mg/kg of Aroclor 1260 PCBs, were amended with biphenyl (4 g/kg), inorganic nutrients (to adjust their C:N ratio to 20:1), and variable amounts of RAMEB (0%, 0.5%, or 1.0% [w/w]) and treated in both aerobic 3-L solid-phase reactors and 1.5-L packed-bed loop reactors for 6 months. Notably, significant enhancement of the PCB biodegradation and dechlorination, along with a detectable depletion of the initial soil ecotoxicity, were generally observed in the RAMEB-treated reactors of both soils. RAMEB effects were different in the two soils, depending upon the treatment conditions employed, and generally increased proportionally with the concentration at which RAMEB was applied. RAMEB, which was slowly metabolized by the soil's aerobic microorganisms, was found to markedly enhance the occurrence of the indigenous aerobic, cultivable biphenyl-growing bacteria harboring genes homologous to those of two highly specialized PCB degraders (i.e., bphABC genes of Pseudomonas pseudoalcaligenes KF707 and bphA1A2A3A4BC1 genes of Rhodococcus globerulus P6) and chlorobenzoic acid-degrading bacteria as well as the occurrence of PCBs in the water phase of the soil reactors. These findings indicate that RAMEB enhanced the aerobic bioremediation of the two soils by increasing the bioavailability of PCBs and the occurrence of specialized bacteria in the soil reactors.  相似文献   

10.
We have isolated and characterized a strain of Alcaligenes eurtrophus, designated H850, that rapidly degrades a broad and unusual spectrum of polychlorinated biphenyls (PCBs) including many tetra- and pentachlorobiphenyls and several hexachlorobiphenyls. This strain, which was isolated from PCB-containing dredge spoils by enrichment on biphenyl, grows well on biphenyl and 2-chlorobiphenyl but poorly on 3- and 4-chlorobiphenyl. Capillary gas-chromatographic analysis showed that biphenyl-grown resting cells of H850 degraded the components of 38 of the 41 largest peaks of Aroclor 1242 and 15 of the 44 largest peaks of Aroclor 1254, resulting in an overall reduction of PCBs by 81% for Aroclor 1242 (10 ppm) and 35% for Aroclor 1254 (10 ppm) in 2 days. Furthermore, H850 metabolized the predominantly ortho-substituted PCB congeners that resulted from the environmental transformation of the more highly chlorinated congeners of Aroclor 1242 by the upper Hudson River anaerobic meta-, para-dechlorination agent system C (J. F. Brown, R. E. Wagner, Jr., D. L. Bedard, M. J. Brennan, J. C. Carnahan, R. J. May, and J. J. Tofflemire, Northeast Environ. Sci. 3:167-179, 1984). The congener selectivity patterns indicate that a two-step process consisting of anaerobic dechlorination followed by oxidation by H850 can effectively degrade all of the congeners in Aroclor 1242 and possibly all those in Aroclor 1254.  相似文献   

11.
A pot experiment and afield trial were conducted to study the remediation of an aged field soil contaminated with cadmium, copper and polychlorinated biphenyls (PCBs) (7.67 +/- 0.51 mg kg(-1) Cd, 369 +/- 1 mg kg(-1) Cu in pot experiment; 8.46 +/- 0.31 mg kg(-1) Cd, 468 +/- 7 mg kg(-1) Cu, 323 +/- 12 microg kg(-1) PCBs for field experiment) under different cropping patterns. In the pot experiment Sedum plumbizincicola showed pronounced Cd phytoextraction. After two periods (14 months) of cropping the Cd removal rates in these two treatments were 52.2 +/- 12.0 and 56.1 +/- 9.1%, respectively. Total soil PCBs in unplanted control pots decreased from 323 +/- 11 to 49.3 +/- 6.6 microg kg(-1), but with no significant difference between treatments. The field microcosm experiment intercropping of three plant species reduced the yield of S. plumbizincicola, with a consequent decrease in soil Cd removal. S. plumbizincicola intercropped with E. splendens had the highest shoot Cd uptake (18.5 +/- 1.8 mg pot(-1)) after 6 months planting followed by intercropping with M. sativa (15.9 +/- 1.9 mg pot(-1)). Liming with S. plumbizincicola intercropped with M. sativa significantly promoted soil PCB degradation by 25.2%. Thus, adjustment of soil pH to 5.56 combined with intercropping with S. plumbizincicola and M. sativagave high removal rates of Cd, Cu, and PCBs.  相似文献   

12.
A Gram-negative bacterium, named LY402, was isolated from contaminated soil. 16S rDNA sequencing and measurement of the physiological and biochemical characteristics identified it as belonging to the genus Enterobacter. Degradation experiments showed that LY402 had the ability to aerobically transform 79 of the 91 major congeners of Aroclor 1242, 1254, and 1260. However, more interestingly, the strain readily degraded certain highly chlorinated and recalcitrant polychlorinated biphenyls (PCBs). Almost all the tri- and tetra-chlorobiphenyls (CBs), except for 3,4,3',4'-CB, were degraded in 3 days, whereas 73% of 3,4,3',4'-, 92% of the penta-, 76% of the hexa-, and 37% of the hepta-CBs were transformed after 6 days. In addition, among 12 octa-CBs, 2,2',3,3',5,5',6,6- CB was obviously degraded, and 2,2',3,3',4,5,6,6'- and 2,2',3,3',4,5,5',6'-CB were slightly transformed. In a metabolite analysis, mono- and di-chlorobenzoic acids (CBAs) were identified, and parts of them were also transformed by strain LY402. Analysis of PCB degradation indicated that strain LY402 could effectively degrade PCB congeners with chlorine substitutions in both ortho- and para-positions. Consequently, this is the first report of an Enterobacteria that can efficiently degrade both low and highly chlorinated PCBs under aerobic conditions.  相似文献   

13.
Psychrotolerant polychlorinated biphenyl (PCB)-degrading bacteria were isolated at 7°C from PCB-contaminated Arctic soil by using biphenyl as the sole organic carbon source. These isolates were distinguished from each other by differences in substrates that supported growth and substrates that were oxidized. 16S ribosomal DNA sequences suggest that these isolates are most closely related to the genus Pseudomonas. Total removal of Aroclor 1242, and rates of removal of selected PCB congeners, by cell suspensions of Arctic soil isolates and the mesophile Burkholderia cepacia LB400 were determined at 7, 37, and 50°C. Total removal values of Aroclor 1242 at 7°C by LB400 and most Arctic soil isolates were similar (between 2 and 3.5 μg of PCBs per mg of cell protein). However the rates of removal of some individual PCB congeners by Arctic isolates were up to 10 times higher than corresponding rates of removal by LB400. Total removal of Aroclor 1242 and the rates of removal of individual congeners by the Arctic soil bacteria were higher at 37°C than at 7°C but as much as 90% lower at 50°C than at 37°C. In contrast, rates of PCB removal by LB400 were higher at 50°C than at 37°C. In all cases, temperature did not affect the congener specificity of the bacteria. These observations suggest that the PCB-degrading enzyme systems of the bacteria isolated from Arctic soil are cold adapted.  相似文献   

14.
Plant compounds that induced Arthrobacter sp. strain B1B to cometabolize polychlorinated biphenyls (PCBs) were identified by a screening assay based on the formation of a 4,4'-dichlorobiphenyl ring fission product. A chemical component of spearmint (Mentha spicata), l-carvone, induced Arthrobacter sp. strain B1B to cometabolize Aroclor 1242, resulting in significant degradation of 26 peaks in the mixture, including selected tetra- and pentachlorobiphenyls. Evidence for PCB biodegradation included peak disappearance, formation of a phenylhexdienoate ring fission product, and chlorobenzoate accumulation in the culture supernatant. Carvone was not utilized as a growth substrate and was toxic at concentrations of greater than 500 mg liter-1. Several compounds structurally related to l-carvone, including limonene, p-cymene, and isoprene, also induced cometabolism of PCBs by Arthrobacter sp. strain B1B. A structure-activity analysis showed that chemicals with an unsaturated p-menthane structural motif promoted the strongest cometabolism activity. These data suggest that certain plant-derived terpenoids may be useful for promoting enhanced rates of PCB biodegradation by soil bacteria.  相似文献   

15.

Background  

Polychlorinated biphenyls (PCBs) are widespread toxic pollutants. Bioremediation might be an effective, cost competitive and environment-friendly solution for remediating environmental matrices contaminated by PCBs but it is still unsatisfactory, mostly for the limited biodegradation potential of bacteria involved in the processes. Very little is known about mitosporic fungi potential in PCB bioremediation and their occurrence in actual site historically contaminated soils. In the present study, we characterised the native mycoflora of an aged dump site soil contaminated by about 0.9 g kg-1 of Aroclor 1260 PCBs and its changing after aerobic biotreatment with a commercial complex source of bacteria and fungi. Fungi isolated from the soil resulting from 120 days of treatment were screened for their ability to adsorb or metabolise 3 target PCBs.  相似文献   

16.
Anaerobic microbial dechlorination is an important step in the detoxification and elimination of polychlorinated biphenyls (PCBs), but a microorganism capable of coupling its growth to PCB dechlorination has not been isolated. Here we describe the isolation from sediment of an ultramicrobacterium, strain DF-1, which is capable of dechlorinating PCBs containing double-flanked chlorines added as single congeners or as Aroclor 1260 in contaminated soil. The isolate requires Desulfovibrio spp. in coculture or cell extract for growth on hydrogen and PCB in mineral medium. This is the first microorganism in pure culture demonstrated to grow by dehalorespiration with PCBs and the first isolate shown to dechlorinate weathered commercial mixtures of PCBs in historically contaminated sediments. The ability of this isolate to grow on PCBs in contaminated sediments represents a significant breakthrough for the development of in situ treatment strategies for this class of persistent organic pollutants.  相似文献   

17.
A polychlorobiphenyl (PCB)-dechlorinating inoculum eluted from upper Hudson River sediments was treated with either heat or ethanol or both. The treated cultures retained the ability to dechlorinate PCBs (Aroclor 1242) under strictly anaerobic conditions. The dechlorination activity was maintained in serial cultures inoculated with transfers of 1% inoculum when the transferred inoculum was treated each time in the same manner. No methane production was detected in any treated culture, although dechlorination of PCBs in the untreated cultures was always accompanied by methane production. All treated cultures preferentially removed meta chlorines, yielding a dechlorination pattern characterized by accumulation of certain ortho- and para-subsituted congeners such as 2-4-chlorobiphenyl (2-4-CB), 2,4-2-CB, and 2,4-4-CB. In contrast, the untreated cultures showed more extensive dechlorination activities, which almost completely removed both meta and para chlorines from Aroclor 1242. These results suggest that microorganisms responsible for the dechlorination of PCBs in the upper Hudson River sediments can be grouped into two populations according to their responses to the heat and ethanol treatments. Microorganisms surviving the heat and ethanol treatments preferentially remove meta chlorines, while microorganisms lost from the enrichment mainly contribute to the para dechlorination activity. These results indicate that anaerobic sporeformers are at least one of the physiological groups responsible for the reductive dechlorination of PCBs. The selection of a dechlorinating population by such treatments may be an important step in isolation of PCB-dechlorinating microorganisms.  相似文献   

18.
The uptake of persistent organic pollutants by plants   总被引:1,自引:0,他引:1  
In a field experiment, the transfer of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) from contaminated soil to maize (Zea mays L.), sunflower (Helianthus annuus), poplar (Populus nigra × P. maximowiczii) and willow (Salix × smithiana) and the distribution of PCB congeners in maize and sunflower was investigated. The former waste incinerator in Hradec Králové (Czech Republic) was chosen for the experiment. Results of plot screening showed heterogenous contamination by PCBs and PAHs. PCB soil contamination was evidently caused by Delor 106 or Aroclor 1260 stocking and PAH contamination by chemicals containing fluoranthene, benzo/b/fluoranthene, phenanthrene and pyrene. Tested plants were planted on a contaminated field site, in soil contaminated with 1530 μg/kg of total PCBs and 0.138 and 3.42 mg/kg of total PAHs. The results show that maize and sunflower roots accumulated the most PCBs from soil. These plants accumulated hexa- and heptachlorobiphenyl congeners more than tri-, tetra-, and pentachlorobiphenyl congeners. Total concentrations of PAHs in tested plants ranged from 0.096 to 1.34 mg/kg. The highest phenanthrene concentration was found in aboveground biomass of sunflower and the highest concentration of pyrene, in maize roots.  相似文献   

19.
D Ye  J F Quensen  rd  J M Tiedje    S A Boyd 《Applied microbiology》1992,58(4):1110-1114
A polychlorobiphenyl (PCB)-dechlorinating inoculum eluted from upper Hudson River sediments was treated with either heat or ethanol or both. The treated cultures retained the ability to dechlorinate PCBs (Aroclor 1242) under strictly anaerobic conditions. The dechlorination activity was maintained in serial cultures inoculated with transfers of 1% inoculum when the transferred inoculum was treated each time in the same manner. No methane production was detected in any treated culture, although dechlorination of PCBs in the untreated cultures was always accompanied by methane production. All treated cultures preferentially removed meta chlorines, yielding a dechlorination pattern characterized by accumulation of certain ortho- and para-subsituted congeners such as 2-4-chlorobiphenyl (2-4-CB), 2,4-2-CB, and 2,4-4-CB. In contrast, the untreated cultures showed more extensive dechlorination activities, which almost completely removed both meta and para chlorines from Aroclor 1242. These results suggest that microorganisms responsible for the dechlorination of PCBs in the upper Hudson River sediments can be grouped into two populations according to their responses to the heat and ethanol treatments. Microorganisms surviving the heat and ethanol treatments preferentially remove meta chlorines, while microorganisms lost from the enrichment mainly contribute to the para dechlorination activity. These results indicate that anaerobic sporeformers are at least one of the physiological groups responsible for the reductive dechlorination of PCBs. The selection of a dechlorinating population by such treatments may be an important step in isolation of PCB-dechlorinating microorganisms.  相似文献   

20.
Aims: Pseudomonas fluorescens F113Rifpcb is a genetically engineered rhizosphere bacterium with the potential to degrade polychlorinated biphenyls (PCBs). F113Rifpcbgfp and F113L::1180gfp are biosensor strains capable of detecting PCB bioavailability and biodegradation. The aim of this paper is to evaluate the use of alginate beads as a storage, delivery and containment system for use of these strains in PCB contaminated soils. Methods and Results: The survival and release of Ps. fluorescens F113Rifpcb from alginate beads were evaluated. Two Ps. fluorescens F113‐based biosensor strains were encapsulated, and their ability to detect 3‐chlorobenzoate (3‐CBA) and 3‐chlorobiphenyl (3‐CBP) degradation in soil was assessed. After 250 days of storage, 100% recovery of viable F113Rifpcb cells was possible. Amendments to the alginate formulation allowed for the timed release of the inoculant. Encapsulation of the F113Rifpcb cells provided a more targeted approach for the inoculation of plants and resulted in lower inoculum populations in the bulk soil, which may reduce the risk of unintentional spread of these genetically modified micro‐organisms in the environment. Encapsulation of the biosensor strains in alginate beads did not interfere with their ability to detect either 3‐CBA or 3‐CBP degradation. In fact, detection of 3‐CBP degradation was enhanced in encapsulated biosensors. Conclusions: Alginate beads are an effective storage and delivery system for PCB degrading inocula and biosensors. Significance and Impact of the Study: Pseudomonas fluorescens F113Rifpcb and the F113 derivative PCB biosensor strains have excellent potential for detecting and bioremediation of PCB contaminated soils. The alginate bead delivery system could facilitate the application of these strains as biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号