首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phenomenon of subnanosecond electrical breakdown in a strong electric field observed in an open discharge in helium at pressures of 6–20 Torr can be used to create ultrafast plasma switches triggering into a conducting state for a time shorter than 1 ns. To evaluate the possible repetition rate of such a subnanosecond switch, it is interesting to study the decay dynamics of the plasma remaining in the discharge gap after ultrafast breakdown. In this paper, a kinetic model based on the particle-in-cell Monte Carlo collision method is used to study the dynamics of the plasma afterglow in the discharge gap of a subnanosecond switch operating with helium at a pressure of 6 Torr. The simulation results show that the radiative, collisional-radiative, and three-body collision recombination mechanisms significantly contribute to the afterglow decay only while the plasma density remains higher than 1012 cm?3; the main mechanism of the further plasma decay is diffusion of plasma particles onto the wall. Therefore, the effect of recombination in the plasma bulk is observed only during the first 10–20 μs of the afterglow. Over nearly the same time, plasma electrons become thermalized. The afterglow time can be substantially reduced by applying a positive voltage Uc to the cathode. Since diffusive losses are limited by the ion mobility, the additional ion drift toward the wall significantly accelerates plasma decay. As Uc increases from 0 to +500 V, the characteristic time of plasma decay is reduced from 35 to 10 μs.  相似文献   

2.
The formation times of self-sustained subnanosecond discharges in nitrogen at pressures of 1?40 atm and in hydrogen at pressures of 1–60 atm are analyzed in terms of the avalanche model. In experiments, a subnanosecond voltage pulse with an amplitude of 102 ± 2 kV was applied to a 0.5-mm-long discharge gap with a uniformly distributed electric field (the curvature radii of both the cathode and anode ends were 1 cm). The rise time of the voltage pulse from 0.1 to 0.9 of its amplitude value was about 250 ps. Breakdown occurred at the leading edge of the pulse. The discharge formation time was measured at different gas pressures with a step of 5–10 atm. Analysis of the experimental results shows that, in nitrogen at pressures of 10–40 atm and in hydrogen at pressures of 20–50 atm, breakdown occurs earlier than the electron avalanche reaches its critical length and that the critical avalanche length lies in the range of (2–8) × 10–2 mm, which is one order of magnitude shorter than the discharge gap length. This means that the avalanche–streamer model is inapplicable in this case. The fast formation of a conducting channel under these conditions can be explained by ionization of gas by runaway electrons. In this case, the conducting column develops as a result of simultaneous development of a large number of electron avalanches in the gas volume. An increase in the hydrogen pressure from 50 to 60 atm leads to an abrupt increase in the discharge formation time by about 50%. As a result, the growth time of the electron avalanche to its critical length becomes shorter than the discharge formation time. In this case, the electrons cease to pass into the runaway regime and the discharge is initiated from the cathode due to field emission from microinhomogeneities on its surface. Under these conditions, the discharge formation time is well described by the avalanche–streamer model.  相似文献   

3.
The expansion of the cathode spot and the generation of shock waves during the formation and development of a pulsed volume discharge in atmospheric-pressure helium were studied by analyzing the emission spectra of the cathode plasma and the spatiotemporal behavior of the plasma glow. The transition of a diffuse volume discharge in a centimeter-long gap into a high-current diffuse mode when the gas pressure increased from 1 to 5 atm and the applied voltage rose from the statistical breakdown voltage to a 100% overvoltage was investigated. Analytical expressions for the radius of the cathode spot and its expansion velocity obtained in the framework of a spherically symmetric model agree satisfactorily with the experimental data.  相似文献   

4.
As was shown earlier for pulsed discharges that occur in electric fields rising with extremely high rates (1018 V/(cm s)) during the pulse rise time, the electron current in a vacuum discharge is lower than the current of runaway electrons in an atmospheric air discharge in a 1-cm-long gap. In this paper, this is explained by that the field emission current from cathode microprotrusions in a gas discharge is enhanced due to gas ionization. This hastens the initiation of explosive electron emission, which occurs within 10–11 s at a current density of up to 1010 A/cm2. Thereafter, a first-type cathode spot starts forming. The temperature of the cathode spot decreases due to heat conduction, and the explosive emission current ceases. Thus, the runaway electron current pulse is similar in nature to the ecton phenomenon in a vacuum discharge.  相似文献   

5.
Breakdown dynamics in the course of glow discharge ignition in a long discharge tube (80 cm in length and 25 mm in diameter) filled with argon at a pressure of 3–4 Torr and mercury vapor at room temperature was studied experimentally. Rectangular voltage pulses with amplitudes from 1 to 2.5 kV were applied to the tube anode, the cathode being grounded. Complex electrical and optical measurements of the breakdown dynamics were carried out. Breakdown begins with a primary discharge between the anode and the tube wall. In this stage, a jump in the anode current and a sharp decrease in the anode voltage are observed and prebreakdown ionization wave arises near the anode. The cathode current appears only after the ionization wave reaches the cathode. The wave propagation velocity was measured at different points along the tube axis. The wave emission spectrum contains Hg, Ar, and Ar+ lines. The intensities of these lines measured at a fixed point exhibit very different time behaviors. The effect of the tube shielding on the breakdown characteristics was examined. It is found that, at a sufficiently narrow gap between the shield and the tube, this effect can be substantial.  相似文献   

6.
A one-dimensional hydrodynamic model of a dielectric-barrier discharge (DBD) in pure chlorine is developed, and the properties of the discharge are modeled. The discharge is excited in an 8-mm-long discharge gap between 2-mm-thick dielectric quartz layers covering metal electrodes. The DBD spatiotemporal characteristics at gas pressures of 15–100 Torr are modeled for the case in which a 100-kHz harmonic voltage with an amplitude of 8 kV is applied to the electrodes. The average power density deposited in the discharge over one voltage period is 2.5–5.8 W/cm3. It is shown that ions and electrons absorb about 95 and 5% of the discharge power, respectively. In this case, from 67 to 97% of the power absorbed by electrons is spent on the dissociation and ionization of Cl2 molecules. Two phases can be distinguished in the discharge dynamics: the active (multispike) phase, which follows the breakdown of the discharge gap, and the passive phase. The active phase is characterized by the presence of multiple current spikes, a relatively high current, small surface charge density on the dielectrics, and large voltage drop across the discharge gap. The passive phase (with no current spikes) is characterized by a low current, large surface charge density on the dielectrics, and small voltage drop across the discharge gap. The peak current density in the spikes at all pressures is about 4 mA/cm2. In the multispike phase, there are distinct space charge sheaths with thicknesses of 1.5–1.8 mm and a mean electron energy of 4.3–7 eV and the central region of quasineutral plasma with a weak electric field and a mean electron energy of 0.8–3 eV. The degree of ionization of chlorine molecules in the discharge is ~0.02% at a pressure of 15 Torr and ~0.01% at 100 Torr. The DBD plasma is electronegative due to the fast attachment of electrons to chlorine atoms: e + Cl2 → Cl + Cl. The most abundant charged particles are Cl 2 + and Cl? ions, and the degree of ionization during current spikes in the active phase is (4.1–5.5) × 10–7. The mechanism of discharge sustainment is analyzed. The appearance of a series of current spikes in the active phase of the discharge is explained.  相似文献   

7.
Results are presented from experiments on the initiation of a homogeneous stable capacitive RF discharge at a frequency of 1.76 MHz in a high-speed molecular gas flow between metal electrodes at a pressure of 5 Torr or dielectric-coated electrodes at a pressure of up to 50 Torr. A mechanism of the current closure in the electrode sheaths related to the primary photoelectric current generated alternately from different electrodes is proposed. The average electron energy increases via second-kind (superelastic) collisions, and fast electrons with energies corresponding to the amplitude value of the RF voltage appear in the electron energy spectrum. As a result, primary emission arises due to the excitation of emitting states from metastable molecular levels. The primary photoelectric current initiates electron avalanches in the electrode sheaths due to secondary photoelectron emission. According to calculations, the current?voltage characteristic of the sheath in this type of discharge is ascending and the field strengths in the electrode sheath and positive column are lower than those in a self-sustained dc discharge. The calculated results are compared with the experimental data.  相似文献   

8.
Experimental data on the spatial structure of a single-pulse sliding discharge in neon at voltages below, equal to, and above the threshold for spark breakdown are discussed. The experiments were carried at gas pressures of 30 and 100 kPa and different polarities of the discharge voltage. Photographs of the plasma structure in two discharge chambers with different dimensions of the discharge zone and different thicknesses of an alumina dielectric plate on the surface of which the discharge develops are inspected. Common features of the prebreakdown discharge and its specific features depending on the voltage polarity and gas pressure are analyzed. It is shown that, at voltages below the threshold for spark breakdown, a low-current glow discharge with cathode and anode spots develops in the electrode gap. Above the breakdown threshold, regardless of the voltage polarity, spark channels directed from the cathode to the anode develop against the background of a low-current discharge.  相似文献   

9.
Pulse-periodic generation of supershort avalanche electron beams (SAEBs) and X-ray emission in nitrogen, as well as the transition from a single-pulse mode to a pulse-periodic mode with a high repetition frequency, was studied experimentally. It is shown that, in the pulse-periodic mode, the full width at halfmaximum of the SAEB is larger and the decrease rate of the gap voltage is lower than those in the single-pulse mode. It is found that, when the front duration of the voltage pulse at a nitrogen pressure of 90 Torr decreases from 2.5 to 0.3 ns, the X-ray exposure dose in the pulse-periodic mode increases by more than one order of magnitude and the number of SAEB electrons also increases. It is shown that, in the pulse-periodic mode of a diffuse discharge, gas heating in the discharge gap results in a severalfold increase in the SAEB amplitude (the number of electrons in the beam). At a generator voltage of 25 kV, nitrogen pressure of 90 Torr, and pulse repetition frequency of 3.5 kHz, a runaway electron beam was detected behind the anode foil.  相似文献   

10.
The influence of a transverse magnetic field and the working-gas pressure on the rotation frequency of the current channel, as well as on the electric field in the positive column and the cathode voltage drop in a dc gas discharge, was studied experimentally. The working gases were pure hydrogen and hydrogen-methane, hydrogen-argon, and hydrogen-argon-methane mixtures. It is shown that a transverse (with respect to the discharge current) magnetic field stabilizes a normal glow discharge against a transition to an arc discharge at specific absorbed powers above 300 W/cm3. The cathode voltage drop and the electric field in the positive column are measured. It is shown that the electric field does not depend on the magnetic field strength, whereas the cathode voltage drop increases with increasing magnetic field. It is found that the rotation frequency of the current channel is a complicated function of the discharge parameters and attains 400 Hz.  相似文献   

11.
Results are presented from experimental and computational studies of a subnanosecond breakdown of atmospheric-pressure air in a nonuniform electric field. It is shown that the ionization waves (streamers) formed in the prebreakdown stage have a nearly spherical or conical shape. The diameter of the streamer in its widest part is found to increase with increasing voltage and discharge gap length. For a rise time of the voltage pulse of ≈0.5 ns and its amplitude of ≈250 kV, streamers about 8 cm in diameter were observed in a 7-cm-long gap.  相似文献   

12.
Results are presented from experimental studies of breakdown and the initial stage of a discharge in a long tube (with an interelectrode distance of 40 cm and a diameter of 2.8 cm) at a pressure of ~1 Torr and pulse discharge current of ~10 mA. Breakdown was produced by positive voltage pulses with a linearly growing leading edge with a steepness of dU/dt ~ 106–108 V/s. The time interval between pulses was varied from τ = 0.5 ms to 1 s, the pulse duration being 10 ms. The work was aimed at studying the memory effect of the discharge gap, namely, the influence of the previous pulse on the breakdown characteristics of the next one. In the experiments, the breakdown voltage was measured at different values of dU/dt and τ. It was found that the memory effect was absent at τ ~ 1 s. At the same time, an increase in the breakdown voltage with increasing dU/dt was observed. In the range of τ ≈ 50–200 ms, the breakdown voltage also did not depend on τ, but the memory effect took place. The memory effect in this case consisted in that the breakdown voltage decreased with increasing dU/dt, so that, at dU/dt ~ 107 V/s, the breakdown voltage was two times lower than in the case of τ ~ 1 s. For τ ~ 1–10 ms, the memory effect manifested itself in that the breakdown voltage depended on τ: it could either decrease (the “normal” effect) or increase (the “anomalous” effect) with increasing τ. Breakdown of the discharge gap was preceded by the propagation of an ionization wave, except for the case of small τ values in the domain of existence of the anomalous effect. Estimates allowing one to qualitatively explain the experimental results are made.  相似文献   

13.
Conditions are investigated at which two current pulses of ranaway electron beams are generated in elevated-pressure nitrogen during one voltage pulse. It is shown that the regime with two runaway electron beam current pulses takes place at decreased values of the electric field strength E in the gap (or decreased values of the parameter E/p, where p is the gas pressure). The regime with two runaway electron beam current pulses is observed both at high (1500?C3000 Torr) and low (below 100 Torr) pressures. It is shown that, for the second runaway electron beam current pulse to form, the voltage across the gap should be partially reduced during the first pulse. At low nitrogen pressures (~10 Torr), the regime in which two runaway electron beams are generated can be implemented by increasing the breakdown strength of the gap and/or increasing the value of E/p. In experiments carried out in atmospheric-pressure air with a picosecond time resolution, a rather complicated structure of the beam current pulse is observed at a voltage rise time of ~300 ps.  相似文献   

14.
Results are presented from experimental studies of the breakdown stage of a low-pressure discharge (1 and 5 Torr) in a glass tube the length of which (75 cm) is much larger than its diameter (2.8 cm). Breakdowns occurred under the action of positive voltage pulses with an amplitude of up to 9.4 kV and a characteristic rise time of 2–50 μs. The discharge current in the steady-state mode was 10–120 mA. The electrode voltage, discharge current, and radiation from the discharge gap were detected simultaneously. The dynamic breakdown voltage was measured, the prebreakdown ionization wave was recorded, and its velocity was determined. The dependence of the discharge parameters on the time interval between voltage pulses (the socalled “memory effect”) was analyzed. The memory effect manifests itself in a decrease or an increase in the breakdown voltage and a substantial decrease in its statistical scatter. The time interval between pulses in this case can reach 0.5 s. The effect of illumination of the discharge tube with a light source on the breakdown was studied. It is found that the irradiation of the anode region of the tube by radiation with wavelengths of ≤500 nm substantially reduces the dynamic breakdown voltage. Qualitative explanations of the obtained results are offered.  相似文献   

15.
Results are presented from experimental investigations of the dynamics of optical emission from a nanosecond diffuse discharge in a rod-plane electrode system. A study was made of discharges in a 10-cm-long interelectrode gap in atmospheric-pressure air (the cathode being a 1-cm-diameter rod with a bullet-shaped end). The voltage across the discharge gap was 220 kV and the voltage pulse duration was 180 ns, the voltage rise time being 10 ns. In experiments, the discharges were observed to evolve through two stages: the bridging stage and the conduction stage. The bridging stage begins with intense optical emission from the cathode region, the onset of the emission being delayed with respect to the beginning of the voltage pulse. Simultaneously with the onset of optical emission, a displacement current corresponding to the motion of charged particles begins to be generated in the cathode region. The duration of this current corresponds to the time the emission front takes to bridge the gap. As the emission front reaches the anode region, the current increases abruptly, indicating the beginning of the conduction stage. It was found that the time delay of optical emission relative to the beginning of the voltage pulse largely governs the discharge parameters: as the time delay becomes longer, the emission front velocity in the bridging stage increases from 0.6 to 1.5 cm/ns, the probability of realizing a multichannel structure of the discharge becomes higher, and the discharge current and the intensity of X-ray emission from the discharge grow.  相似文献   

16.
A dc cylindrical coaxial glow discharge with an inner grid anode has been studied. The region between the two electrodes is seen dark, while a brightly glowing region forms inside the grid anode up to the center. The current-voltage characteristic of a dc cylindrical glow discharge in nitrogen is similar to that of a normal glow discharge, while the normal glow discharge voltage decreases with increasing pressure. The minimum plasma potentials are observed in the hollow cathode region due to the accumulation of electrons at the back of the grid anode. At the center, some of the passed electrons are converged, so their potential is decreased. These electrons have a sufficient time to be redistributed to form one group with a Maxwellian electron energy distribution function. The electron temperature measured by electric probes varies from 1.6 to 3.6 eV, while the plasma density varies from 3.9 × 1016 to 7 × 1013 m−3, depending on the discharge current and probe position. The plasma density increases as the electrons move radially from the grid toward the central region, while their temperature decreases.  相似文献   

17.
The effect of the direction of a preionization current on the generation of 469-Å X-ray emission from the plasma of a fast capillary discharge in argon was studied experimentally in the SIGNAL facility (the discharge current I = 25–40 kA and the current rise rate dI/dt ~ 1012 A/s). The experiments were performed with 3.1-mm-diameter 157-mm-long ceramic capillaries filled with argon at a pressure of 0.2–1.0 Torr.  相似文献   

18.
The dynamics of a repetitive barrier discharge in xenon at a pressure of 400 Torr is simulated using a one-dimensional drift-diffusion model. The thicknesses of identical barriers with a dielectric constant of 4 are 2 mm, and the gap length is 4 mm. The discharge is fed with an 8-kV ac voltage at a frequency of 25 or 50 kHz. The development of the ionization wave and the breakdown and afterglow phases of a barrier discharge are analyzed using two different kinetic schemes of elementary processes in a xenon plasma. It is shown that the calculated waveforms of the discharge voltage and current, the instant of breakdown, and the number of breakdowns per voltage half-period depend substantially on the properties of the kinetic scheme of plasmachemical processes.  相似文献   

19.
Results of two-dimensional hydrodynamic simulations of a surface glow discharge operating at pressures of 0.2–0.5 Torr in a nitrogen flow propagating with a velocity of 1000 m/s in the presence of external ionization are presented. The effect of the external ionization rate on discharge operation is analyzed. The current-voltage characteristics of the discharge are calculated for different intensities of external ionization in both the presence and absence of secondary electron emission from the cathode. The discharge structure and plasma parameters in the vicinity of the loaded electrode are considered. It is shown that, when the discharge operates at the expense of secondary emission from the cathode, the discharge current and cathode sheath configuration are insensitive to external ionization. It is also demonstrated that, even at a high rate of external ionization, the discharge operates due to secondary emission from the cathode.  相似文献   

20.
The characteristics of the initial stage of the formation of the positive column of a glow discharge in nitrogen at reduced pressures are studied experimentally and numerically. A dip in the plasma emission intensity in the initial stage of the discharge (the so-called “dark phase”) is observed experimentally at the positive polarity of the high-voltage electrode (the cathode is grounded). The dark phase is preceded by an ionization wave (IW). When the anode is grounded, neither an IW nor a dip in the discharge emission intensity are observed. A theoretical model capable of describing the discharge development under the actual experimental conditions is constructed. It is shown that the dark phase effect may be caused by the high electron density (above the steady-state one) produced in the gas during the passage of the IW across the discharge gap. This mechanism of the dark phase formation differs from the mechanism proposed earlier to explain a similar effect in noble gases. Additional experiments carried out with pure argon, helium, and helium with a nitrogen admixture have shown that, in the case of a grounded cathode, gas breakdown is also accompanied by the passage of an IW, whereas in the case of a grounded anode, no IW is observed; however, the dark phase is present in both cases. It is shown using computer simulations that, in nitrogen (in contrast to noble gases), the mechanism resulting in the dark phase effect does not operate in the absence of an IW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号