首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pooling robustness property of distance sampling results in unbiased abundance estimation even when sources of variation in detection probability are not modeled. However, this property cannot be relied upon to produce unbiased subpopulation abundance estimates when using a single pooled detection function that ignores subpopulations. We investigate by simulation the effect of differences in subpopulation detectability upon bias in subpopulation abundance estimates. We contrast subpopulation abundance estimates using a pooled detection function with estimates derived using a detection function model employing a subpopulation covariate. Using point transect survey data from a multispecies songbird study, species-specific abundance estimates are compared using pooled detection functions with and without a small number of adjustment terms, and a detection function with species as a covariate. With simulation, we demonstrate the bias of subpopulation abundance estimates when a pooled detection function is employed. The magnitude of the bias is positively related to the magnitude of disparity between the subpopulation detection functions. However, the abundance estimate for the entire population remains unbiased except when there is extreme heterogeneity in detection functions. Inclusion of a detection function model with a subpopulation covariate essentially removes the bias of the subpopulation abundance estimates. The analysis of the songbird point count surveys shows some bias in species-specific abundance estimates when a pooled detection function is used. Pooling robustness is a unique property of distance sampling, producing unbiased abundance estimates at the level of the study area even in the presence of large differences in detectability between subpopulations. In situations where subpopulation abundance estimates are required for data-poor subpopulations and where the subpopulations can be identified, we recommend the use of subpopulation as a covariate to reduce bias induced in subpopulation abundance estimates.  相似文献   

2.
For regression with covariates missing not at random where the missingness depends on the missing covariate values, complete-case (CC) analysis leads to consistent estimation when the missingness is independent of the response given all covariates, but it may not have the desired level of efficiency. We propose a general empirical likelihood framework to improve estimation efficiency over the CC analysis. We expand on methods in Bartlett et al. (2014, Biostatistics 15 , 719–730) and Xie and Zhang (2017, Int J Biostat 13 , 1–20) that improve efficiency by modeling the missingness probability conditional on the response and fully observed covariates by allowing the possibility of modeling other data distribution-related quantities. We also give guidelines on what quantities to model and demonstrate that our proposal has the potential to yield smaller biases than existing methods when the missingness probability model is incorrect. Simulation studies are presented, as well as an application to data collected from the US National Health and Nutrition Examination Survey.  相似文献   

3.
Chen B  Zhou XH 《Biometrics》2011,67(3):830-842
Longitudinal studies often feature incomplete response and covariate data. Likelihood-based methods such as the expectation-maximization algorithm give consistent estimators for model parameters when data are missing at random (MAR) provided that the response model and the missing covariate model are correctly specified; however, we do not need to specify the missing data mechanism. An alternative method is the weighted estimating equation, which gives consistent estimators if the missing data and response models are correctly specified; however, we do not need to specify the distribution of the covariates that have missing values. In this article, we develop a doubly robust estimation method for longitudinal data with missing response and missing covariate when data are MAR. This method is appealing in that it can provide consistent estimators if either the missing data model or the missing covariate model is correctly specified. Simulation studies demonstrate that this method performs well in a variety of situations.  相似文献   

4.
Right-truncated data arise when observations are ascertained retrospectively, and only subjects who experience the event of interest by the time of sampling are selected. Such a selection scheme, without adjustment, leads to biased estimation of covariate effects in the Cox proportional hazards model. The existing methods for fitting the Cox model to right-truncated data, which are based on the maximization of the likelihood or solving estimating equations with respect to both the baseline hazard function and the covariate effects, are numerically challenging. We consider two alternative simple methods based on inverse probability weighting (IPW) estimating equations, which allow consistent estimation of covariate effects under a positivity assumption and avoid estimation of baseline hazards. We discuss problems of identifiability and consistency that arise when positivity does not hold and show that although the partial tests for null effects based on these IPW methods can be used in some settings even in the absence of positivity, they are not valid in general. We propose adjusted estimating equations that incorporate the probability of observation when it is known from external sources, which results in consistent estimation. We compare the methods in simulations and apply them to the analyses of human immunodeficiency virus latency.  相似文献   

5.
In this paper, we develop a Gaussian estimation (GE) procedure to estimate the parameters of a regression model for correlated (longitudinal) binary response data using a working correlation matrix. A two‐step iterative procedure is proposed for estimating the regression parameters by the GE method and the correlation parameters by the method of moments. Consistency properties of the estimators are discussed. A simulation study was conducted to compare 11 estimators of the regression parameters, namely, four versions of the GE, five versions of the generalized estimating equations (GEEs), and two versions of the weighted GEE. Simulations show that (i) the Gaussian estimates have the smallest mean square error and best coverage probability if the working correlation structure is correctly specified and (ii) when the working correlation structure is correctly specified, the GE and the GEE with exchangeable correlation structure perform best as opposed to when the correlation structure is misspecified.  相似文献   

6.
Missing data is a common issue in research using observational studies to investigate the effect of treatments on health outcomes. When missingness occurs only in the covariates, a simple approach is to use missing indicators to handle the partially observed covariates. The missing indicator approach has been criticized for giving biased results in outcome regression. However, recent papers have suggested that the missing indicator approach can provide unbiased results in propensity score analysis under certain assumptions. We consider assumptions under which the missing indicator approach can provide valid inferences, namely, (1) no unmeasured confounding within missingness patterns; either (2a) covariate values of patients with missing data were conditionally independent of treatment or (2b) these values were conditionally independent of outcome; and (3) the outcome model is correctly specified: specifically, the true outcome model does not include interactions between missing indicators and fully observed covariates. We prove that, under the assumptions above, the missing indicator approach with outcome regression can provide unbiased estimates of the average treatment effect. We use a simulation study to investigate the extent of bias in estimates of the treatment effect when the assumptions are violated and we illustrate our findings using data from electronic health records. In conclusion, the missing indicator approach can provide valid inferences for outcome regression, but the plausibility of its assumptions must first be considered carefully.  相似文献   

7.
Cho Paik M 《Biometrics》2004,60(2):306-314
Matched case-control data analysis is often challenged by a missing covariate problem, the mishandling of which could cause bias or inefficiency. Satten and Carroll (2000, Biometrics56, 384-388) and other authors have proposed methods to handle missing covariates when the probability of missingness depends on the observed data, i.e., when data are missing at random. In this article, we propose a conditional likelihood method to handle the case when the probability of missingness depends on the unobserved covariate, i.e., when data are nonignorably missing. When the missing covariate is binary, the proposed method can be implemented using standard software. Using the Northern Manhattan Stroke Study data, we illustrate the method and discuss how sensitivity analysis can be conducted.  相似文献   

8.
Summary .  In this article, we study the estimation of mean response and regression coefficient in semiparametric regression problems when response variable is subject to nonrandom missingness. When the missingness is independent of the response conditional on high-dimensional auxiliary information, the parametric approach may misspecify the relationship between covariates and response while the nonparametric approach is infeasible because of the curse of dimensionality. To overcome this, we study a model-based approach to condense the auxiliary information and estimate the parameters of interest nonparametrically on the condensed covariate space. Our estimators possess the double robustness property, i.e., they are consistent whenever the model for the response given auxiliary covariates or the model for the missingness given auxiliary covariate is correct. We conduct a number of simulations to compare the numerical performance between our estimators and other existing estimators in the current missing data literature, including the propensity score approach and the inverse probability weighted estimating equation. A set of real data is used to illustrate our approach.  相似文献   

9.
In recent studies of humans estimating non-stationary probabilities, estimates appear to be unbiased on average, across the full range of probability values to be estimated. This finding is surprising given that experiments measuring probability estimation in other contexts have often identified conservatism: individuals tend to overestimate low probability events and underestimate high probability events. In other contexts, repulsive biases have also been documented, with individuals producing judgments that tend toward extreme values instead. Using extensive data from a probability estimation task that produces unbiased performance on average, we find substantial biases at the individual level; we document the coexistence of both conservative and repulsive biases in the same experimental context. Individual biases persist despite extensive experience with the task, and are also correlated with other behavioral differences, such as individual variation in response speed and adjustment rates. We conclude that the rich computational demands of our task give rise to a variety of behavioral patterns, and that the apparent unbiasedness of the pooled data is an artifact of the aggregation of heterogeneous biases.  相似文献   

10.
Data with missing covariate values but fully observed binary outcomes are an important subset of the missing data challenge. Common approaches are complete case analysis (CCA) and multiple imputation (MI). While CCA relies on missing completely at random (MCAR), MI usually relies on a missing at random (MAR) assumption to produce unbiased results. For MI involving logistic regression models, it is also important to consider several missing not at random (MNAR) conditions under which CCA is asymptotically unbiased and, as we show, MI is also valid in some cases. We use a data application and simulation study to compare the performance of several machine learning and parametric MI methods under a fully conditional specification framework (MI-FCS). Our simulation includes five scenarios involving MCAR, MAR, and MNAR under predictable and nonpredictable conditions, where “predictable” indicates missingness is not associated with the outcome. We build on previous results in the literature to show MI and CCA can both produce unbiased results under more conditions than some analysts may realize. When both approaches were valid, we found that MI-FCS was at least as good as CCA in terms of estimated bias and coverage, and was superior when missingness involved a categorical covariate. We also demonstrate how MNAR sensitivity analysis can build confidence that unbiased results were obtained, including under MNAR-predictable, when CCA and MI are both valid. Since the missingness mechanism cannot be identified from observed data, investigators should compare results from MI and CCA when both are plausibly valid, followed by MNAR sensitivity analysis.  相似文献   

11.
Toledano AY  Gatsonis C 《Biometrics》1999,55(2):488-496
We propose methods for regression analysis of repeatedly measured ordinal categorical data when there is nonmonotone missingness in these responses and when a key covariate is missing depending on observables. The methods use ordinal regression models in conjunction with generalized estimating equations (GEEs). We extend the GEE methodology to accommodate arbitrary patterns of missingness in the responses when this missingness is independent of the unobserved responses. We further extend the methodology to provide correction for possible bias when missingness in knowledge of a key covariate may depend on observables. The approach is illustrated with the analysis of data from a study in diagnostic oncology in which multiple correlated receiver operating characteristic curves are estimated and corrected for possible verification bias when the true disease status is missing depending on observables.  相似文献   

12.
This paper develops a model for repeated binary regression when a covariate is measured with error. The model allows for estimating the effect of the true value of the covariate on a repeated binary response. The choice of a probit link for the effect of the error-free covariate, coupled with normal measurement error for the error-free covariate, results in a probit model after integrating over the measurement error distribution. We propose a two-stage estimation procedure where, in the first stage, a linear mixed model is used to fit the repeated covariate. In the second stage, a model for the correlated binary responses conditional on the linear mixed model estimates is fit to the repeated binary data using generalized estimating equations. The approach is demonstrated using nutrient safety data from the Diet Intervention of School Age Children (DISC) study.  相似文献   

13.
Generalized estimating equations (Liang and Zeger, 1986) is a widely used, moment-based procedure to estimate marginal regression parameters. However, a subtle and often overlooked point is that valid inference requires the mean for the response at time t to be expressed properly as a function of the complete past, present, and future values of any time-varying covariate. For example, with environmental exposures it may be necessary to express the response as a function of multiple lagged values of the covariate series. Despite the fact that multiple lagged covariates may be predictive of outcomes, researchers often focus interest on parameters in a 'cross-sectional' model, where the response is expressed as a function of a single lag in the covariate series. Cross-sectional models yield parameters with simple interpretations and avoid issues of collinearity associated with multiple lagged values of a covariate. Pepe and Anderson (1994), showed that parameter estimates for time-varying covariates may be biased unless the mean, given all past, present, and future covariate values, is equal to the cross-sectional mean or unless independence estimating equations are used. Although working independence avoids potential bias, many authors have shown that a poor choice for the response correlation model can lead to highly inefficient parameter estimates. The purpose of this paper is to study the bias-efficiency trade-off associated with working correlation choices for application with binary response data. We investigate data characteristics or design features (e.g. cluster size, overall response association, functional form of the response association, covariate distribution, and others) that influence the small and large sample characteristics of parameter estimates obtained from several different weighting schemes or equivalently 'working' covariance models. We find that the impact of covariance model choice depends highly on the specific structure of the data features, and that key aspects should be examined before choosing a weighting scheme.  相似文献   

14.
Sensitivity and specificity are common measures of the accuracy of a diagnostic test. The usual estimators of these quantities are unbiased if data on the diagnostic test result and the true disease status are obtained from all subjects in an appropriately selected sample. In some studies, verification of the true disease status is performed only for a subset of subjects, possibly depending on the result of the diagnostic test and other characteristics of the subjects. Estimators of sensitivity and specificity based on this subset of subjects are typically biased; this is known as verification bias. Methods have been proposed to correct verification bias under the assumption that the missing data on disease status are missing at random (MAR), that is, the probability of missingness depends on the true (missing) disease status only through the test result and observed covariate information. When some of the covariates are continuous, or the number of covariates is relatively large, the existing methods require parametric models for the probability of disease or the probability of verification (given the test result and covariates), and hence are subject to model misspecification. We propose a new method for correcting verification bias based on the propensity score, defined as the predicted probability of verification given the test result and observed covariates. This is estimated separately for those with positive and negative test results. The new method classifies the verified sample into several subsamples that have homogeneous propensity scores and allows correction for verification bias. Simulation studies demonstrate that the new estimators are more robust to model misspecification than existing methods, but still perform well when the models for the probability of disease and probability of verification are correctly specified.  相似文献   

15.
Albert PS  Follmann DA  Wang SA  Suh EB 《Biometrics》2002,58(3):631-642
Longitudinal clinical trials often collect long sequences of binary data. Our application is a recent clinical trial in opiate addicts that examined the effect of a new treatment on repeated binary urine tests to assess opiate use over an extended follow-up. The dataset had two sources of missingness: dropout and intermittent missing observations. The primary endpoint of the study was comparing the marginal probability of a positive urine test over follow-up across treatment arms. We present a latent autoregressive model for longitudinal binary data subject to informative missingness. In this model, a Gaussian autoregressive process is shared between the binary response and missing-data processes, thereby inducing informative missingness. Our approach extends the work of others who have developed models that link the various processes through a shared random effect but do not allow for autocorrelation. We discuss parameter estimation using Monte Carlo EM and demonstrate through simulations that incorporating within-subject autocorrelation through a latent autoregressive process can be very important when longitudinal binary data is subject to informative missingness. We illustrate our new methodology using the opiate clinical trial data.  相似文献   

16.
Wang CY  Huang WT 《Biometrics》2000,56(1):98-105
We consider estimation in logistic regression where some covariate variables may be missing at random. Satten and Kupper (1993, Journal of the American Statistical Association 88, 200-208) proposed estimating odds ratio parameters using methods based on the probability of exposure. By approximating a partial likelihood, we extend their idea and propose a method that estimates the cumulant-generating function of the missing covariate given observed covariates and surrogates in the controls. Our proposed method first estimates some lower order cumulants of the conditional distribution of the unobserved data and then solves a resulting estimating equation for the logistic regression parameter. A simple version of the proposed method is to replace a missing covariate by the summation of its conditional mean and conditional variance given observed data in the controls. We note that one important property of the proposed method is that, when the validation is only on controls, a class of inverse selection probability weighted semiparametric estimators cannot be applied because selection probabilities on cases are zeroes. The proposed estimator performs well unless the relative risk parameters are large, even though it is technically inconsistent. Small-sample simulations are conducted. We illustrate the method by an example of real data analysis.  相似文献   

17.
给出协变量带有不可忽略缺失数据的非线性再生散度模型的Bayes方法,缺失数据机制由Logistic回归模型来确定.Gibbs抽样技术和Metropolis-Hastings算法(简称MH算法)用来得到模型参数、缺失数据机制中回归系数的联合Bayes估计,并用实例加以说明.  相似文献   

18.
This article investigates an augmented inverse selection probability weighted estimator for Cox regression parameter estimation when covariate variables are incomplete. This estimator extends the Horvitz and Thompson (1952, Journal of the American Statistical Association 47, 663-685) weighted estimator. This estimator is doubly robust because it is consistent as long as either the selection probability model or the joint distribution of covariates is correctly specified. The augmentation term of the estimating equation depends on the baseline cumulative hazard and on a conditional distribution that can be implemented by using an EM-type algorithm. This method is compared with some previously proposed estimators via simulation studies. The method is applied to a real example.  相似文献   

19.
Neuhaus JM  Scott AJ  Wild CJ 《Biometrics》2006,62(2):488-494
Case-control studies augmented by the values of responses and covariates from family members allow investigators to study the association between the response and genetics and environment by relating differences in the response directly to within-family differences in covariates. However, existing approaches for case-control family data parameterize covariate effects in terms of the marginal probability of response, the same effects that one estimates from standard case-control studies. This article focuses on the estimation of family-specific covariate effects and develops efficient methods to fit family-specific models such as binary mixed-effects models. We also extend the approach to cover any setting where one has a fully specified model for the vector of responses in a family. We illustrate our approach using data from a case-control family study of brain cancer and consider the use of weighted and conditional likelihood methods as alternatives.  相似文献   

20.
We study the effect of misclassification of a binary covariate on the parameters of a logistic regression model. In particular we consider 2 × 2 × 2 tables. We assume that a binary covariate is subject to misclassification that may depend on the observed outcome. This type of misclassification is known as (outcome dependent) differential misclassification. We examine the resulting asymptotic bias on the parameters of the model and derive formulas for the biases and their approximations as a function of the odds and misclassification probabilities. Conditions for unbiased estimation are also discussed. The implications are illustrated numerically using a case control study. For completeness we briefly examine the effect of covariate dependent misclassification of exposures and of outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号