首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K Yu  J Kowalski    W Cheevers 《Journal of virology》1975,15(6):1409-1417
The formation of viral DNA was inhibited in polyoma virus-infected cells in which protein synthesis had been blocked by cycloheximide. The present studies show the following. (i) The pool of replicating viral DNA molecules was reduced in cycloheximide-treated cells by an amount consistent with inhibition of [3-H]thymidine incorporation into viral DNA, whereas the rate of turnover of the replicating population was not affected. (ii) The rate of conversion of replicating molecules into closed-circular DNA was not affected by cycloheximide. (iii) The rate of elongation of nascent viral DNA fragments into strands of unit genome length was unaffected by cycloheximide. It is concluded that viral DNA synthesis is inhibited in the absence of protein synthesis exclusively at the level of initiation of new rounds of genome replication. Replicating molecules already initiated at the time of addition of cycloheximide matured into progeny closed-circular DNA at a normal rate.  相似文献   

2.
Under normal growth conditions, all of the newly synthesized polyoma deoxyribonucleic acid (py DNA) that could be extracted from infected mouse cell cultures by the Triton procedure of Green, Miller, and Hendler was in the form of a 55S nucleoprotein complex. Inhibition of protein synthesis by cycloheximide reduced the sedimentation rate of the polyoma complex synthesized during the first hour after addition of the drug to 25 to 35S. Since the 55S and the 25 to 35S complexes each contain closed circular 20S py DNA, it is suggested that the slower complex contains less protein per DNA molecule and that there is normally a small or unstable pool of protein available for binding to newly replicated py DNA. In the presence of cycloheximide, the newly formed 25 to 35S complex was not derived from preexisting 55S complex. Thus, some py DNA which was not solubilized by the Triton method served as a template for replication. Further evidence for the existence of polyoma replication sites is provided by the demonstration that, during the inhibition of protein synthesis, a class of newly replicated py DNA can be solubilized by the sodium dodecyl sulfate procedure of Hirt, but not by the Triton method. It is postulated that continuous protein synthesis is required to release py DNA from replication sites in the form of a Triton-extractable nucleoprotein complex.  相似文献   

3.
The macromolecular reguirements for the initiation and maintenance of macronuclear DNA replication were studied in heat synchronized Tetrahymena pyriformis GL-C. Previous work had established that macronuclear S periods could occur in a consecutive fashion without intervening cell divisions during a multiple heat shock treatment, as well as immediately following the synchronized cell divisions. Cycloheximide treatment prior to or during the S period which follows the first synchronized cell division resulted in abolition of the initiation of DNA synthesis or an almost immediate cessation of DNA synthesis in progress. Temporary inhibition of DNA synthesis occurred when cycloheximide was added late in the S period. Treatment with actinomycin D was found to block the initiation of DNA synthesis but did not appreciably affect the continuation of the S period. It was concluded that RNA synthesis was required for the initiation but not the maintenance of DNA replication, whereas protein synthesis was necessary for both processes. The dependency of the initiation of an S period on prior RNA and protein synthesis was also shown to exist when a second consecutive S period was initiated without a preceding cell division. Treatment with actinomycin or cycloheximide prior to a supernumerary S period during a multiple heat shock treatment completely abolished the initiation of DNA synthesis. In T. pyriformis the synthesis of RNA and protein related to the initiation of the S period is tightly coupled to each cycle of DNA replication.  相似文献   

4.
THE REGENERATION OF CILIA IN PARTIALLY DECILIATED TETRAHYMENA   总被引:7,自引:4,他引:3       下载免费PDF全文
Partial deciliation of Tetrahymena resulted in cells losing 75% of their cilia, with the balance being paralyzed. The paralyzed cilia are resorbed in the first 20 min after partial deciliation, and regeneration of cilia begins before resorption is completed. Inhibition of protein synthesis with cycloheximide does not inhibit ciliary resorption or regeneration, whereas vinblastine sulfate inhibits regeneration but not resorption. Inhibition of regeneration occurs in completely deciliated cells when they are treated with cyclohexmimide or vinblastine sulfate. It is concluded that the resorbing cilia contribute materials which allow regeneration to occur in the absence of protein synthesis. The volume of cilia regenerated in the presence of cycloheximide in partially deciliated cells is greater than the ciliary volume which is resorbed. This suggests the Tetrahymena cells have a pool of ciliary precursors. This pool does not contribute materials for regeneration in completely deciliated cells which are treated with cycloheximide. It is concluded that resorbing cilia in partially deciliated cells contribute materials which potentiate assembly of cilia from the pool of precursors.  相似文献   

5.
The behaviour of a pool of flagellar precursors, assayed by the ability of cells to regenerate flagella in the absence of de novo protein synthesis, has been examined during organelle morphogenesis in the biflagellate alga Chlamydomonas. The results demonstrate that flagellar elongation can continue even when this pool is apparently empty and suggest that 2 sources of precursors are available to the regenerating flagella: those pre-existing in the cellular pool and those synthesized de novo. Further evidence for this was obtained by subjecting regenerating cells to pulses of cycloheximide. Cells exposed to this drug during the first 60 min post deflagellation formed only half-length (5-mum) flagella, whereas a pulse administered after this point allowed the formation of longer flagella and suggested that some de novo protein synthesis was required for the formation of full-length flagella, although it was not a prerequisite for the initiation of regeneration. In addition, it was found that, subsequent to the removal of the cycloheximide, flagellar regeneration did not recommence immediately, but was delayed for a period of approximately 45 min, irrespective of length of flagella formed prior to drug inhibition. The nature of this cycloheximide-induced delay is unclear and certain alternatives, based on the exhaustion of structural/regulatory components are considered. Although it is not possible to distinguish between these alternatives, tubulin is not the limiting component, since a pool of this protein is present when flagellar elongation is prevented by cycloheximide.  相似文献   

6.
The effect of protein synthesis inhibitors on DNA replication was studied on L cells. After a 10 minutes' action of the inhibitors, protein synthesis was seen to be completely blocked, and DNA synthesis decreased by 85%. Four hours after a 20-minutes' cycloheximide treatment, the cells completely restored their ability to protein synthesis and DNA replication and even surpass the control level, due, probably, to a partial cell synchronization in S period. The short action of cycloheximide did not interfere with thymidine uptake by the cells. The rate of the exogenous precursor uptake was even higher than that in the control, apparently, because of its much reduced utilization in the inhibited DNA synthesis.  相似文献   

7.
8.
We have investigated the effects of inhibiting protein synthesis on the overall rate of DNA synthesis and on the rate of replication fork movement in mammalian cells. In order to test the validity of using [3H]thymidine incorporation as a measure of the overall rate of DNA synthesis during inhibition of protein synthesis, we have directly measured the size and specific radioactivity of the cells' [3H]dTTP pool. In three different mammalian cell lines (mouse L, Chinese hamster ovary, and HeLa) nearly complete inhibition of protein synthesis has little effect on pool size (±26%) and even less effect on its specific radioactivity (±11%). Thus [3H]thymidine incorporation can be used to measure accurately changes in rate of DNA synthesis resulting from inhibition of protein synthesis.Using the assay of [3H]thymidine incorporation to measure rate of DNA synthesis, and the assay of [14C]leucine or [14C]valine incorporation to measure rate of protein synthesis, we have found that eight different methods of inhibiting protein synthesis (cycloheximide, puromycin, emetine, pactamycin, 2,4-dinitrophenol, the amino acid analogs canavanine and 5-methyl tryptophan, and a temperature-sensitive leucyl-transfer tRNA synthetase) all cause reduction in rate of DNA synthesis in mouse L, Chinese hamster ovary, or HeLa cells within two hours to a fairly constant plateau level which is approximately the same as the inhibited rate of protein synthesis.We have used DNA fiber autoradiography to measure accurately the rate of replication fork movement. The rate of movement is reduced at every replication fork within 15 minutes after inhibiting protein synthesis. For the first 30 to 60 minutes after inhibiting protein synthesis, the decline in rate of fork movement (measured by fiber autoradiography) satisfactorily accounts for the decline in rate of DNA synthesis (measured by [3H]thymidine incorporation). At longer times after inhibiting protein synthesis, inhibition of fork movement rate does not entirely account for inhibition of overall DNA synthesis. Indirect measurements by us and direct measurements suggest that the additional inhibition is the result of decline in the frequency of initiation of new replicons.  相似文献   

9.
The replication of simian virus 40 (SV40) deoxyribonucleic acid (DNA) was inhibited by 99% 2 hr after the addition of cycloheximide to SV40-infected primary African green monkey kidney cells. The levels of 25S (replicating) and 21S (mature) SV40 DNA synthesized after cycloheximide treatment were always lower than those observed in an infected untreated control culture. This is consistent with a requirement for a protein(s) or for protein synthesis at the initiation step in SV40 DNA replication. The relative proportion of 25S DNA as compared with 21S viral DNA increased with increasing time after cycloheximide treatment. Removal of cycloheximide from inhibited cultures allowed the recovery of viral DNA synthesis to normal levels within 3 hr. During the recovery period, the ratio of 25S DNA to 21S DNA was 10 times higher than that observed after a 30-min pulse with (3)H-thymidine with an infected untreated control culture. The accumulation of 25S replicating SV40 DNA during cycloheximide inhibition or shortly after its removal is interpreted to mean that a protein(s) or protein synthesis is required to convert the 25S replicating DNA to 21S mature viral DNA. Further evidence of a requirement for protein synthesis in the 25S to 21S conversion was obtained by comparing the rate of this conversion in growing and resting cells. The conversion of 25S DNA to 21S DNA took place at a faster rate in infected growing cells than in infected confluent monolayer cultures. A temperature-sensitive SV40 coat protein mutation (large-plaque SV40) had no effect on the replication of SV40 DNA at the nonpermissive temperature.  相似文献   

10.
Protein synthesis in polyoma virus-infected cells was inhibited by 99% within 4 min after exposure to 10 mug of cycloheximide per ml. Subsequent to the block in protein synthesis, the rate of viral DNA synthesis declined via inhibition of the rate of initiation of new rounds of genome replication (Yu and Cheevers, 1976). This process was inhibited with complex kinetics: within 15 min after the addition of cycloheximide, the rate of formation of closed-circular viral DNA was reduced by about one-half. Thereafter, DNA synthesis in cycloheximide-treated cells declined more slowly, reaching a level of 10% of untreated cells only after approximately 2 h. Protein synthesis was also required for normal closure of progeny form I DNA: in the presence of cycloheximide, DNA synthesis was diverted from the production of form I to form Ic, a monomeric closed-circular DNA component deficient in superhelical turns (Yu and Cheevers, 1976). Form I is replaced by Ic with first-order exponential kinetics. It is concluded that at least two proteins are involved in the control of polyoma DNA replication. One is apparently a stoichiometric requirement involved in the initiation step of viral DNA synthesis, since this process cannot be maintained at a normal rate for more than a few minutes in the absence of protein synthesis. The second protein requirement, governing the closure of newly synthesized progeny DNA, is considered distinct from the "initiation" protein on the basis of the kinetic data.  相似文献   

11.
Incidents that slow or stall replication fork progression, collectively known as replication stress, represent a major source of spontaneous genomic instability. Here, we determine the requirement for global protein biosynthesis on DNA replication and associated downstream signaling. We study this response side by side with dNTP deprivation; one of the most commonly used means to investigate replication arrest and replicative stress. Our in vitro interrogations reveal that inhibition of translation by cycloheximide (CHX) rapidly impairs replication fork progression without decoupling helicase and polymerase activities or inducing DNA damage. In line with this, protein deprivation stress does not activate checkpoint signaling. In contrast to the direct link between insufficient dNTP pools and genome instability, our findings suggest that replication forks remain stable during short-term protein deficiency. We find that replication forks initially endure fluctuations in protein supply in order to efficiently resume DNA synthesis upon reversal of the induced protein deprivation stress. These results reveal distinct cellular responses to replication arrest induced by deprivation of either nucleotides or proteins.  相似文献   

12.
A marked reduction in the rate of viral DNA synthesis is accompanied by an alteration to the superhelicity of progeny DNA in polyoma virus-infected cells in which protein synthesis has been inhibited by cycloheximide. Viral DNA molecules formed in the presence of cycloheximide consist predominantly of closed-circular monometric species (referred to as form Ic) characterized by a decreased superhelix density, corresponding to deltasigmao = 0.0195, as compared to form I DNA by propidium diiodide-cesium chloride isopycnic analysis. Form Ic is synthesized on pre-existing form I templates without the intervention of progeny form I as an intermediate. It is concluded that inhibition of protein synthesis results in the alteration of some process in the closure of daughter DNA that leads to a marked reduction of superhelical turns of progeny molecules. About two-thirds of form Ic molecules return to the form I conformation upon reversal of cycloheximide inhibition by a mechanism independent of DNA replication.  相似文献   

13.
Timing of protein synthesis which is a prerequisite to DNA synthesis induced in potato tuber tissue (Solanum tuberosum L.) by cut injury has been studied using cycloheximide. The induction of DNA synthesis which was measured by incorporation of 3H-thymidine was completely inhibited when the inhibitor was applied to the tuber discs immediately after slicing. When the application of cycloheximide was delayed for 6 hours or more after slicing, DNA synthesis was observed but its rate was reduced to 20% of control. The inhibitory effect of cycloheximide, however, rapidly decreased when the inhibitor was applied at 6 or less hours immediately prior to determination of DNA synthesis. The effect of cycloheximide on the incorporation of 14C-leucine suggests that the change in the effect of cycloheximide on the induction of DNA synthesis is not due to incomplete inhibition of protein synthesis. Cycloheximide did not have significant effects on either uptake or phosphorylation of 3H-thymidine in the discs. Inhibition of both protein and DNA synthesis by cycloheximide was reversed by washing and further incubation of the discs. Almost no qualitative difference was detected by buoyant density analysis between DNA formed under inhibition of protein synthesis of the later stage and DNA synthesized under normal conditions. These results suggest that DNA synthesis induced in potato tuber tissue by cut injury requires continuous synthesis of new protein molecules in a characteristically programmed sequence.  相似文献   

14.
A drastic and brief inhibition of protein synthesis (up to 95% for 3--6 hrs) by cycloheximide in the liver of rats starved for 24 hrs results in a recovery and subsequent marked stimulation of non-histone proteins, histone chromosomal proteins and DNA. The stimulation of non-histone protein synthesis was observed after 1 hr (inhibition) 12--24 hrs (recovery and stimulation of protein synthesis) and 48--60 hrs (stimulation of DNA synthesis) following the administration of cycloheximide. Two periods of histone biosynthesis were observed. The first one (24--36 hrs) was not coupled and the second one (48--60 hrs) was coupled with DNA replication. During the recovery and stimulation of protein synthesis acetylation of the histone and non-histone proteins proceeds at an increased rate. Possible applicability of the model in question for investigations of chromatin biogenesis is discussed.  相似文献   

15.
Requirements and optimal conditions have been studied for the activity of DNA polymerase from phytohemagglutinin-stimulated and non-stimulated human lymphocytes. Differences were found in thermal stability and inhibitory effect of KC1 and p-chloromercuribenzoate. The relationship was determined between DNA polymerase activity, cellular pools of dATP, dTTP and incorporation of deoxythymidine into DNA during transformation. The increase in polymerase activity was paralleled by a similar increase in the pools of dATP and dTTP. The enzyme activity and the pool sizes of both nucleotides reached a maximum simultaneously with the peak of deoxythymidine incorporation into DNA. Studies in which protein synthesis was limited by cycloheximide showed that both the DNA polymerase activity and the rise in the pool sizes of both nucleotides were abolished. This implies that the de novo synthesis is required for the enzymes involved.  相似文献   

16.
Summary The replication of the ColE1 plasmid was studied in extracts from E. coli dnaG mutants. It was found that the synthesis of the complementary strands of ColE1 DNA can be carried out in these extracts in two consecutive steps: (1) synthesis of the leading L strand independent of the dnaG function, and (2) synthesis of the lagging H strand depending upon addition of wild-type dnaG protein. In contrast to L strand synthesis, the latter reaction is insensitive to rifampicin and novobiocin. Both synthetic pathways are however blocked by antiserum directed against dnaB protein. This indicates an additional role of the dnaB protein in duplex DNA replication besides assisting the dnaG protein in the priming of lagging strand synthesis. The T7 gene-4 protein acting in conjunction with T7 DNA polymerase can substitute for both the function of the dnaB and dnaG protein. It is concluded that plasmid replication proceeds by a semi-discontinuous mechanism.  相似文献   

17.
Summary Two regions of programmed cell death that occur in the mesoderm of developing chick wing buds were studied in vitro. The opaque patch (OP) and posterior necrotic zone (PNZ) were examined for the presence of internucleosomal DNA degradation and for rescue by protein synthesis inhibition, two defining characteristics of apoptosis. Agarose gel electrophoresis showed that DNA from OP and PNZ tissue was cleaved into nucleosome size pieces and this cleavage was prevented by inhibition of protein synthesis with cycloheximide. Both regions showed rescue with cycloheximide as determined by the chromium release assay and examination of electron micrographs. Also, the permanence of basic fibroblast growth factor (FGF-2) rescue in the OP and PNZ was examined using the chromium release assay. While rescue in the OP was found to be permanent, rescue in the PNZ only delayed death while FGF-2 was present in the culture medium. This research shows that death in the OP and PNZ exhibits internucleosomal DNA fragmentation and is prevented by inhibition of protein synthesis with cycloheximide, biochemically characterizing this death as apoptosis. It also suggests that in vitro FGF-2 rescue is permanent in the OP but is merely a delay of cell death in the PNZ.  相似文献   

18.
19.
Penny P 《Plant physiology》1971,48(6):720-723
The role of protein synthesis in auxin-induced cell elongation in lupin hypocotyl segments was studied using cycloheximide. Cycloheximide inhibited protein synthesis by 9 minutes. Experiments adding cycloheximide at various times before and after indolyl-3-acetic acid are reported. Estimates of the relative amounts of growth-limiting protein(s), and a first order rate constant for the apparent turnover of the growth-limiting protein(s) were made. It was shown that there is a sizeable growth promotion by auxin after protein synthesis has essentially ceased. It is concluded that the initial phases of auxin action do not require protein synthesis but that its action depends on the existing pool of growth-limiting proteins which is rapidly depleted, and protein synthesis is then required for continued elongation.  相似文献   

20.
Addition of cycloheximide rapidly inhibited protein synthesis in Phycomyces blakesleeanus. In contrast, chitin biosynthesis decreased with biphasic kinetics displaying a slow and a rapid decay phases. Electron microscopic studies revealed a decrease in the number of apical vesicles and chitosomes after cycloheximide addition; and no change in wall thickness. It is proposed that the slow phase of decay in chitin biosynthesis represents the exhaustion of the pool of chitosomes which transport the chitin synthase necessary to maintain apical wall growth; whereas the second one corresponds to inactivation of the enzyme, which is short lived in vivo. Data also rule out a change in the polarization of wall synthesis induced by cycloheximide, as suggested in other systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号