首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 543 毫秒
1.
2.
We report sequences for nuclear lamins from the teleost fish Danio and six invertebrates. These include two cnidarians (Hydra and Tealia), one priapulid, two echinoderms, and the cephalochordate Branchiostoma. Combining these results with earlier data on Drosophila, Caenorhabditis elegans, and various vertebrates, the following conclusions on lamin evolution can be drawn. First, all invertebrate lamins resemble in size the vertebrate B-type lamin. Second, all lamins described previously for amphibia, birds and mammals as well as the first lamin of a fish, characterized here, show a cluster of 7 to 12 acidic residues in the tail domain. Since this acidic cluster is absent from all invertebrate lamins including that of the cephalochordate Branchiostoma, it was acquired with the vertebrate lineage. The larger A-type lamin of differentiated cells must have arisen subsequently by gene duplication and insertion of an extra exon. This extra exon of the vertebrate A-lamins is the only major change in domain organization in metazoan lamin evolution. Third, the three introns of the Hydra and Priapulus genes correspond in position to the last three introns of vertebrate B-type lamin genes. Thus the entirely different gene organization of the C. elegans and Drosophila Dmo genes seems to reflect evolutionary drift, which probably also accounts for the fact that C. elegans has the most diverse lamin sequence. Finally we discuss the possibility that two lamin types, a constitutively expressed one and a developmentally regulated one, arose independently on the arthropod and vertebrate lineages. Received: 4 February 1999 / Accepted: 1 April 1999  相似文献   

3.
The evolutionary relationship of muscle and nonmuscle actin isoforms in deuterostomia was studied by the isolation and characterization of two actin genes from the cephalochordate Branchiostoma lanceolatum and two from the hemichordate Saccoglossus kowalevskii The Branchiostoma genes specify a muscle and a nonmuscle actin type, respectively. Together with earlier results on muscle actins from vertebrates and urochordates, a N-terminal sequence signature is defined for chordate muscle actins. These diagnostic amino acid residues separate the chordates from the echinoderms and other metazoa. Although the two Saccoglossus actins characterized so far lack the diagnostic residues, in line with the presumptive phylogenetic position of hemichordates outside the chordates, a definitive conclusion can only be expected once the full complement of actin genes of Saccoglossus is established. Comparison of the intron patterns of the various deuterostomic actin genes shows that intron 330-3, which is present in all vertebrate genes, is conspicuously absent from nonvertebrate genes. The possible origin of this intron is discussed. Received: 4 July 1997 / Accepted: 29 August 1997  相似文献   

4.
Previously we suggested that four proteins including aldolase and triose phosphate isomerase (TPI) evolved with approximately constant rates over long periods covering the whole animal phyla. The constant rates of aldolase and TPI evolution were reexamined based on three different models for estimating evolutionary distances. It was shown that the evolutionary rates remain essentially unchanged in comparisons not only between different classes of vertebrates but also between vertebrates and arthropods and even between animals and plants, irrespective of the models used. Thus these enzymes might be useful molecular clocks for inferring divergence times of animal phyla. To know the divergence time of Parazoa and Eumetazoa and that of Cephalochordata and Vertebrata, the aldolase cDNAs from Ephydatia fluviatilis, a freshwater sponge, and the TPI cDNAs from Ephydatia fluviatilis and Branchiostoma belcheri, an amphioxus, have been cloned and sequenced. Comparisons of the deduced amino acid sequences of aldolase and TPI from the freshwater sponge with known sequences revealed that the Parazoa–Eumetazoa split occurred about 940 million years ago (Ma) as determined by the average of two proteins and three models. Similarly, the aldolase and TPI clocks suggest that vertebrates and amphioxus last shared a common ancestor around 700 Ma and they possibly diverged shortly after the divergence of deuterostomes and protostomes.  相似文献   

5.
Animals evolved a variety of gene families involved in cell–cell communication and developmental control by gene duplication and domain shuffling. Each family is made up of several subtypes or subfamilies with distinct structures and functions, which diverged by gene duplications and domain shufflings before the divergence of parazoans and eumetazoans. Since the separation from protostomes, vertebrates expanded the multiplicity of members (isoforms) in the same subfamily by further gene duplications in their early evolution before the fish–tetrapod split. To know the dates of isoform duplications more closely, we have conducted isolation and sequencing cDNAs encoding the fibroblast growth factor receptor, Eph, src, and platelet-derived growth factor receptor subtypes belonging to the protein tyrosine kinase family from Branchiostoma belcheri, an amphioxus, Eptatretus burgeri, a hagfish, and Lampetra reissneri, a lamprey. From a phylogenetic tree of each subfamily inferred from a maximum likelihood (ML) method, together with a bootstrap analysis based on the ML method, we have shown that the isoform duplications frequently occurred in the early evolution of vertebrates around or just before the divergence of cyclostomes and gnathostomes by gene duplications and possibly chromosomal duplications. Received: 28 April 1998 / Accepted: 30 June 1999  相似文献   

6.
Calmodulin is a calcium-binding EF-hand protein that is an activator of many enzymes as well as ion pumps and channels. Due to its multiple targets and its central role in the cell, understanding the evolutionary history of calmodulin genes should provide insights into the origin of genetic complexity in eukaryotes. We have previously isolated and characterized a calmodulin gene from the early-diverging chordate Branchiostoma lanceolatum (CaM1). In this paper, we report the existence of a second calmodulin gene (CaM2) as well as two CaM-like genomic fragments (CaML-2, CaML-3) in B. lanceolatum and a CaM2 and three CaM-like genes (CaML-1, CaML-2, CaML-3) in B. floridae. The CaM-like genes were isolated using low-stringency PCR. Surprisingly, the nucleotide sequences of the B. lanceolatum CaM1 and CaM2 cDNAs differ by 19.3%. Moreover, the CaM2 protein differs at two positions from the amino acid sequence of CaM1; the latter is identical to calmodulins in Drosophila melanogaster, the mollusc Aplysia californica, and the tunicate Halocynthia roretzi. The two B. lanceolatum CaM-like genes are more closely related to the CaM2 than to the CaM1 gene. This relationship is supported by the phylogenetic analyses and the identical exon/intron organization of these three genes, a relationship unique among animal CaM sequences. These data demonstrate the existence of a CaM multigene family in the cephalochordate Branchiostoma, which may have evolved independently from the multigene family in vertebrates. Received: 2 November 1999 / Accepted: 25 April 2000  相似文献   

7.
We report the cloning and structural characterization of two Adh loci of the olive fruit fly, Bactrocera oleae. Each of the two genes, named Adh1 and Adh2, consists of three exons and two introns for a total length of 1981 and 988 nucleotides, respectively. Their deduced amino acid sequences of 257 and 258 residues exhibit a 77% identity and display the characteristics of the insect ADH enzymes, which belong to the short-chain dehydrogenases/reductases family. The Adh genes of B. oleae are compared to the two genes of the Mediterranean fly, Ceratitis capitata, the only other species of the Tephritidae family in which the Adh genes have been studied. On the basis of amino acid divergence the four genes form two clusters each containing one gene from each species, as expected if there was one duplication event before speciation. On the basis of nucleotide sequence the four sequences form two clusters each containing the two sequences from the same species, as expected if there was a separate duplication event in each species. To help decide between the two alternatives, we compared at both the amino acid and DNA level the Adh genes of five Drosophila species that are known to carry two such genes and observed that, with only one exception at the amino acid level, conspecific loci cluster together. We conclude that the information we have at present does not allow a firm choice between the hypothesis of a single duplication event that occurred before the split of Bactrocera and Ceratitis from their common ancestor and the hypothesis of two independent duplication events, one in each of the two genera. Received: 30 May 2000 / Accepted: 17 August 2000  相似文献   

8.
We report the cDNA sequences for the DMA and DMB family of Mhc genes of the gray short-tailed opossum. Until now DM sequences were available only in eutherian mammals. The marsupial sequences indicate that both members of the family are old and probably diverged from other classical class II families about the time of the radiation of jawed vertebrates some 450 million years ago. We examine the evolutionary rates of equivalent sets of classical and nonclassical genes to check for rate heterogeneity. We find the α-1 domain of the DR genes to be untypically conservative in its evolutionary mode. The DM genes appear to evolve at rates typical of other class II genes, indicating that their placement at the root of class II gene evolutionary trees may be justified. Received: 2 March 1998 / Accepted: 2 June 1998  相似文献   

9.
10.
The Drosophila fat body protein 2 gene (Fbp2) is an ancient duplication of the alcohol dehydrogenase gene (Adh) which encodes a protein that differs substantially from ADH in its methionine content. In D. melanogaster, there is one methionine in ADH, while there are 51 (20% of all amino acids) in FBP2. Methionine is involved in 46% of amino acid replacements when Fbp2 DNA sequences are compared between D. melanogaster and D. pseudoobscura. Methionine accumulation does not affect conserved residues of the ADH-ADHr-FBP2 multigene family. The multigene family has evolved by replacement of mildly hydrophobic amino acids by methionine with no apparent reversion. Its short-term evolution was compared between two Drosophila species, while its long-term evolution was compared between two genera belonging respectively to acalyptrate and calyptrate Diptera, Drosophila and Sarcophaga. The pattern of nucleotide substitution was consistent with an independent accumulation of methionines at the Fbp2 locus in each lineage. Under a steady-state model, the rate of methionine accumulation was constant in the lineage leading to Drosophila, and was twice as fast as that in the calyptrate lineage. Substitution rates were consistent with a slight positive selective advantage for each methionine change in about one-half of amino acid sites in Drosophila. This shows that selection can potentially account for a large proportion of amino acid replacements in the molecular evolution of proteins. Received: 12 December 1994 / Accepted: 15 April 1996  相似文献   

11.
The MAP-kinase pathways are intracellular signaling modules that are likely to exist in all eukaryotes. We provide an evolutionary model for these signaling pathways by focusing on the gene duplications that have occurred since the divergence of animals from yeast. Construction of evolutionary trees with confidence assessed by bootstrap clearly shows that the mammalian JNK and p38 pathways arose from an ancestral hyperosmolarity pathway after the split from yeast and before the split from C. elegans. These coduplications of interacting proteins at the MAPK and MEK levels have since evolved toward substrate specificity, thus giving distinct pathways. Mammalian duplications since the split from C. elegans are often associated with divergent tissue distribution but do not appear to confer detectable substrate specificity. The yeast kinase cascades have undergone similar fundamental functional changes since the split from mammals, with duplications giving rise to central signaling components of the filamentous and hypoosmolarity pathways. Experimentally defined cross-talk between yeast pheromone and hyperosmolarity pathways is mirrored with corresponding cross-talk in mammalian pathways, suggesting the existence of ancient orthologous cross-talk; our analysis of gene duplications at all levels of the cascade is consistent with this model but does not always provide significant bootstrap support. Our data also provide insights at different levels of the cascade where conflicting experimental evidence exists. Received: 2 December 1998 / Accepted: 9 June 1999  相似文献   

12.
Little is known about the evolutionary relationship between vertebrate adrenergic receptors and invertebrate octopamine and tyramine receptors. The complexity of the adrenergic signalling system is believed to be an innovation of the vertebrate lineage but the presence of noradrenaline has been reported in some invertebrate species. The cephalochordate, amphioxus (Branchiostoma floridae), is an ideal model organism for studying the evolution of vertebrate GPCRs, given its unique position at the base of the chordate lineage. Here, we describe the pharmacological characterisation and second messenger coupling abilities of AmphiAmR4, which clusters with α2-adrenergic receptors in a phylogenetic tree but also shares a high sequence similarity to invertebrate octopamine/tyramine receptors in both BLAST and Hidden Markov Model analyses. Thus, it was of particular interest to determine if AmphiAmR4 displayed similar functional properties to the vertebrate α2-adrenergic receptors or to invertebrate octopamine or tyramine receptors. When stably expressed in Chinese hamster ovary (CHO) cells, noradrenaline couples the receptor to both the activation of adenylyl cyclase and to the activation of the MAPKinase pathway. Pharmacological studies with a wide range of agonists and antagonists suggest that AmphiAmR4 functions as an α2-adrenergic-like receptor when expressed in CHO cells.  相似文献   

13.
Previous evidence has demonstrated the absence of exons 34 and 35 within the 3′ end of the human tropoelastin (ELN) gene. These exons encode conserved polypeptide domains within tropoelastin and are found in the ELN gene in vertebrate species ranging from chickens to rats to cows. We have analyzed the ELN gene in a variety of primate species to determine whether the absence of exons 34 and 35 in humans either is due to allelic variation within the human population or is a general characteristic of the Primates order. An analysis of the 3′ end of the ELN gene in several nonhuman primates and in 546 chromosomes from humans of varying ethnic background demonstrated a sequential loss of exons 34 and 35 during primate evolution. The loss of exon 35 occurred at least 35–45 million years ago, when Catarrhines diverged from Platyrrhines (New World monkeys). Exon 34 loss, in contrast, occurred only about 6–8 million years ago, when Homo separated from the common ancestor shared with chimpanzees and gorillas. Loss of both exons was probably facilitated by Alu-mediated recombination events and possibly conferred a functional evolutionary advantage in elastic tissue. Received: 6 July 1998 / Accepted: 18 February 1999  相似文献   

14.
Drosophilidae is a large, widely distributed family of Diptera including 61 genera, of which Drosophila is the most representative. Drosophila feeding is part of the saprophytic trophic chain, because of its dependence upon decomposing organic matter. Many species have adapted to fermenting fruit feeding or to artificial (man-made) fermentation habitats, such as cellars and breweries. Actually, the efficient exploitation of niches with alcohols is considered one of the reasons for the worldwide success of this genus. Drosophila alcohol dehydrogenase (ADH), a member of the short-chain dehydrogenase/reductase family (SDR), is responsible for the oxidation of alcohols, but its direct involvement in fitness, including alcohol tolerance and utilization, gives rise to much controversy. Thus, it remains unclear whether ADH differentiation through evolution is somehow associated with natural adaptation to new feeding niches, and thus maybe to Drosophila speciation, or if it is a simple reflection of neutral divergence correlated with time separation between species. To build a hypothesis which could shed light on this dilemma, we analyzed the amino acid variability found in the 57 protein ADH sequences reported up to now, identified the taxon-specific residues, and localized them in a three-dimensional ADH model. Our results define three regions whose shaping has been crucial for ADH differentiation and would be compatible with a contribution of ADH to Drosophila speciation. Received: 11 August 1997 / Accepted: 30 December 1997  相似文献   

15.
Analysis of the 18S rDNA sequences of five species of the family Dugesiidae (phylum Platyhelminthes, suborder Tricladida, infraorder Paludicola) and eight species belonging to families Dendrocoelidae and Planaridae and to the infraorder Maricola showed that members of the family Dugesiidae have two types of 18S rDNA genes, while the rest of the species have only one. The duplication event also affected the ITS-1, 5.8S, ITS-2 region and probably the 28S gene. The mean divergence value between the type I and the type II sequences is 9% and type II 18S rDNA genes are evolving 2.3 times more rapidly than type I. The evolutionary rates of type I and type II genes were calibrated from biogeographical data, and an approximate date for the duplication event of 80–120 million years ago was calculated. The type II gene was shown, by RT-PCR, to be transcribed in adult individuals of Schmidtea polychroa, though at very low levels. This result, together with the fact that most of the functionally important positions for small-subunit rRNA in prokaryotes have been conserved, indicates that the type II gene is probably functional. Received: 24 March 1998 / Accepted: 17 March 1999  相似文献   

16.
The mammalian immune system has cytotoxic mechanisms, both cellular and humoral, that destroy the membrane integrity of target cells. The main effector molecules of these cytolytic mechanisms—perforin, used by killer lymphocytes, and the membrane attack complex (MAC) components of the complement system—share a unique module called the MAC/perforin module. Until now, both immunological cytotoxicity and the MAC/perforin module have been reported only in jawed vertebrates. Here, we report the identification of a protein containing the MAC/perforin module from the invertebrate cephalochordate, amphioxus (Branchiostoma belcheri), using expressed sequence tag (EST) analysis of the notochord. The deduced amino acid sequence of this molecule is most similar to the primary structure of human complement component C6 and is designated AmphiC6. AmphiC6 shares a unique modular structure, including the MAC/perforin module, with human C6 and other MAC components. Another EST clone predicts the presence of a thioester-containing protein with the closest structural similarity to vertebrate C3 (therefore designated AmphiC3). AmphiC3 retains most of the functionally important residues of vertebrate C3 and is shown by phylogenetic analysis to be derived directly from the common ancestor of vertebrate C3, C4, and C5. Only opsonic activity has been assigned to the invertebrate complement system until now. Therefore, this is the first molecular evidence for complement-mediated immunological cytotoxicity in invertebrates. Received: 24 August 2001 / Accepted: 12 November 2001  相似文献   

17.
Serotonin (5-hydroxytryptamine) is a biogenic amine distributed throughout the metazoans and has an old evolutionary history. It is involved as a developmental signal in the early morphogenesis of both invertebrates and vertebrates, whereas in adults it acts mainly as a neurotransmitter and gastrointestinal hormone. In vertebrates, serotonin regulates the morphogenesis of the central nervous system and the specification of serotonergic as well as dopaminergic neurons. The present study uses, as an experimental model, an invertebrate chordate, the lancelet Branchiostoma floridae, characterized by its remarkable homologies with vertebrates that allows the 'bauplan' of the probable ancestor of vertebrates to be outlined. In particular, the involvement of serotonin as a developmental signal in embryos and larvae, as well as a neurotransmitter and gastrointestinal hormone in adult specimens of Branchiostoma floridae, gives further support to a common origin of cephalocordates and vertebrates.  相似文献   

18.
The origin and evolutionary relationship of actin isoforms was investigated in chordates by isolating and characterizing two new ascidian cytoplasmic and muscle actin genes. The exon–intron organization and sequences of these genes were compared with those of other invertebrate and vertebrate actin genes. The gene HrCA1 encodes a cytoplasmic (nonmuscle)-type actin, whereas the MocuMA2 gene encodes an adult muscle-type actin. Our analysis of these genes showed that intron positions are conserved among the deuterostome actin genes. This suggests that actin gene families evolved from a single actin gene in the ancestral deuterostome. Sequence comparisons and molecular phylogenetic analyses also suggested a close relationship between the ascidian and vertebrate actin isoforms. It was also found that there are two distinct lineages of muscle actin isoforms in ascidians: the larval muscle and adult body-wall isoforms. The four muscle isoforms in vertebrates show a closer relationship to each other than to the ascidian muscle isoforms. Similarly, the two cytoplasmic isoforms in vertebrates show a closer relationship to each other than to the ascidian and echinoderm cytoplasmic isoforms. In contrast, the two types of ascidian muscle actin diverge from each other. The close relationship between the ascidian larval muscle actin and the vertebrate muscle isoforms was supported by both neighbor-joining and maximum parsimony analyses. These results suggest that the chordate ancestor had at least two muscle actin isoforms and that the vertebrate actin isoforms evolved after the separation of the vertebrates and urochordates. Received: 20 June 1996 / Accepted: 16 October 1996  相似文献   

19.
《Gene》1999,227(1):1-10
We previously described the cDNA cloning and expression patterns of actin genes from amphioxus Branchiostoma floridae (Kusakabe, R., Kusakabe, T., Satoh, N., Holland, N.D., Holland, L.Z., 1997. Differential gene expression and intracellular mRNA localization of amphioxus actin isoforms throughout development: implications for conserved mechanisms of chordate development. Dev. Genes Evol. 207, 203–215). In the present paper, we report the characterization of cDNA clones for actin genes from a closely related species, Branchiostoma belcheri, and the exon–intron organization of B. floridae actin genes. Each of these two amphioxus species has two types of actin genes, muscle and cytoplasmic. The coding and non-coding regions of each type are well-conserved between the two species. A comparison of nucleotide sequences of muscle actin genes between the two species suggests that a gene conversion may have occurred between two B. floridae muscle actin genes BfMA1 and BfMA2. From the conserved positions of introns between actin genes of amphioxus and those of other deuterostomes, the evolution of deuterostome actin genes can be inferred. Thus, the presence of an intron at codon 328/329 in vertebrate muscle and cytoplasmic actin genes but not in any known actin gene in other deuterostomes suggests that a gene conversion may have occurred between muscle and cytoplasmic actin genes during the early evolution of the vertebrates after separation from other deuterostomes. A Southern blot analysis of genomic DNA revealed that the amphioxus genome contains multiple muscle and cytoplasmic actin genes. Some of these actin genes seem to have arisen from recent duplication and gene conversion. Our findings suggest that the multiple genes encoding muscle and cytoplasmic actin isoforms arose independently in each of the three chordate lineages and that gene duplications and gene conversions established the extant actin multigene family during the evolution of chordates.  相似文献   

20.
Here we report DNA sequences from mitochondrial cytochrome b gene segments (1,005 base pairs per species) for the extinct woolly mammoth (Mammuthus primigenius) and Steller's sea cow (Hydrodamalis gigas) and the extant Asian elephant (Elephas maximus), the Western Indian manatee (Trichechus manatus), and the hyrax (Procavia capensis). These molecular data have allowed us to construct the phylogeny for the Tethytheria. Our molecular data resolve the trichotomy between the two species of living elephants and the mammoth and confirm that the mammoth was more closely related to the Asian elephant than to the African elephant. Our data also suggest that the sea cow–dugong divergence was likely as ancient as the dugong–manatee split, and it appears to have been much earlier (22 million years ago) than had been previously estimated (4–8 million years ago) by immunological comparison. Received: 8 August 1996 / Accepted: 30 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号