首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The response of the marine Vibrio sp. strain S14 to starvation for carbon, nitrogen, or phosphorus and to simultaneous depletion of all these nutrients (multiple-nutrient starvation) was examined with respect to survival, stress resistance, quantitative and qualitative alterations in protein and RNA synthesis, and the induction of the stringent control. Of the conditions tested, carbon starvation and multiple-nutrient starvation both promoted long-term starvation resistance and a rapid induction of the stringent control, as deduced from the kinetics of RNA synthesis. Carbon- and multiple-nutrient-starved cells were also found to become increasingly resistant to heat, UV, near-UV, and CdCl2 stress. Nitrogen- and phosphorus-starved cells demonstrated a poor ability to survive in the presence of carbon and did not develop a marked resistance to the stresses examined. The carbon, nitrogen, and phosphorus starvation stimulons consisted of about 20 proteins each, while simultaneous starvation for all the nutrients elicited an increased synthesis of 42 polypeptides. Nine common proteins were found to be induced regardless of the starvation condition used and were tentatively termed general starvation proteins. It was also demonstrated that the total number of proteins induced in response to multiple-nutrient starvation was not a predictable sum of the different individual starvation stimulons. Multiple-nutrient starvation induced 14 proteins which were not detected at increased levels of expression in response to individual starvation conditions. Furthermore, four out of five phosphorus starvation-specific polypeptides were not induced during simultaneous starvation for phosphorus, nitrogen, and carbon. The results are discussed in light of the physiological alterations previously described for Vibrio sp. strain S14 cells starved for carbon, nitrogen, and phosphorus simultaneously.  相似文献   

2.
The response of marine Vibrio sp. strain S14 (CCUG 15956) to long-term (48-h) multiple-nutrient starvation (i.e., starvation for glucose, amino acids, ammonium, and phosphate simultaneously) can be described as a three-phase process. The first phase, defined as the stringent control phase, encompasses an accumulation of guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and decreases in RNA and protein synthesis during the first 40 min. In the second phase, there is a temporary increase in the rates of RNA and protein synthesis between 1 and 3 h paralleling a decrease in the ppGpp pool. The third phase includes gradual decline in macromolecular synthesis after 3 h. Using two-dimensional gel electrophoresis of pulse-labeled proteins, a total of 66 proteins were identified as starvation inducible (Sti), temporally expressed throughout the three phases of starvation. The inhibition of protein synthesis during the first phase of starvation partly disrupted the subsequent temporally ordered synthesis of starvation proteins and prevented the expression of some late starvation proteins. It was also found that the early temporal class of starvation proteins, which included the majority of the Sti proteins, was the most essential for long-term survival. Vibrio sp. strain S14 cultures prestarved (1 h) for glucose, amino acids, ammonium, or phosphate as well as cultures exposed (1 h) to CdCl2 exhibited enhanced survival during the subsequent multiple-nutrient starvation in the presence of chloramphenicol or rifampin, while heat or the addition of cyclic AMP or nalidixic acid prior to starvation had no effect. It was demonstrated that amino acid starvation and CdCl2 exposure, which induced the stringent response, were the most effective in conferring enhanced survival. A few Sti proteins were common to all starvation conditions. In addition, the total number of proteins induced by multiple-nutrient starvation significantly exceeded the sum of those induced by starvation for each of the individual nutrients.  相似文献   

3.
Abstract Starvation for different individual nutrients revealed various morphotypes of Vibrio sp. strain S14. Carbon or multiple-nutrient starved cells formed ultramicrocells with low respiratory activity and high culturability. In contrast, cells starved for nitrogen or phosphorus formed filaments or swollen rods with large inclusion bodies of PHB. These cells exhibited a 3–4 log decrease in culturability, nevertheless many were actively respiring and direct viable counts equalled at least 80% of the original number of cells. After 2–3 days of prolonged incubation, microcolonies appeared at approximately the same number of cells as at the onset of starvation. A nutrient-induced increase in respiratory activity, after 120 h of starvation, was instantaneous for cells starved for carbon or multiple-nutrients, but cells depleted of nitrogen or phosphorus exhibited a lag period of at least 3 h.  相似文献   

4.
The stringent control response, which involves a rapid accumulation of ppGpp, is triggered if the marine Vibrio sp. strain S14 is subjected to carbon and energy starvation. By means of high-resolution two-dimensional gel electrophoresis analysis, we addressed the role of the major ppGpp-synthesizing enzyme (RelA) in the regulation of the carbon starvation response of Vibrio sp. strain S14. The finding that a large number of the carbon starvation-induced proteins were underexpressed in the Vibrio sp. S14 relA mutant strain after the onset of glucose starvation suggests that a rapid accumulation of ppGpp is required for induction of many of the carbon starvation-induced proteins. However, it was also found that a majority of the carbon starvation-induced proteins were significantly less induced if the stringent control response was provoked by amino acid starvation. We therefore also addressed the notion that a carbon starvation-specific signal transduction pathway, complementary to the stringent control, may exist in Vibrio sp. strain S14. It was found that a majority of the proteins that were underexpressed in the relA mutant strain were also underexpressed in the Vibrio sp. S14 spoT mutant strain (csrS1). Interestingly, a large proportion of these underexpressed proteins were found to belong to a group of proteins that are not, or significantly less, induced by starvation conditions that do not promote starvation survival. On the basis of these observations and the finding that the csrS1 strain survives poorly but accumulates ppGpp in a fashion similar to the wild type during carbon and energy source starvation, the gene product of the csrS gene is suggested to be responsible for the mediation of a signal which is complementary to ppGpp and essential for the successful development of the starvation- and stress-resistant cell. This conclusion was also supported by experiments in which changes in phenotypic characteristics known to be induced during carbon starvation were studied. The starvation induction of the high-affinity glucose uptake system was found to be dependent on the csrS gene but not relA, and the synthesis of carbon starvation-specific periplasmic space proteins was dependent, at different times of starvation, on both the relA and the csrS gene products.  相似文献   

5.
The nitrogen-fixing bacterium Rhizobium leguminosarum bv. phaseoli often has to survive long periods of starvation in the soil, when not in a useful symbiotic relationship with leguminous plants. We report that it can survive carbon, nitrogen, and phosphorus starvation for at least 2 months with little loss of viability. Upon carbon starvation, R. leguminosarum cells were found to undergo reductive cell division. During this period, they acquired the potential for long-term starvation-survival, levels of protein, DNA, and RNA synthesis were decreased to base levels, and pool mRNA was stabilized. The starved cells are ready to rapidly restart growth when nutrients become available. Upon addition of fresh nutrients, there is an immediate increase in the levels of macromolecular synthesis, pool mRNA destabilizes, and the cultures enter exponential growth within 5 to 8 h. The starved cells were cross-protected against pH, heat, osmotic, and oxidative shock. These results provide evidence for a general starvation response in R. leguminosarum similar to that previously found in other bacteria such as Escherichia coli and Vibrio sp.  相似文献   

6.
Abstract The induction of DnaK and GroEL homologous proteins by heat-shock and long-term carbon starvation was studied in Vibrio vulnificus, Vibrio sp. strain S14, and Vibrio sp. strain DW1. In each Vibrio strain one protein (60 kDa) reacted with antibodies against Escherichia coli -GroEL and two proteins, DnaK (69 kDa) and Sis1 (62-60 kDa), reacted with antibodies against E. coli -Dnak. The carbon starvation elicited induction of the stress proteins was strain-specific, suggesting that the induction of stress proteins like DnaK and GroEL in marine Vibrios might not be a uniform starvation response. It appears as of these proteins, only DnaK in Vibrio sp. strain S14 remains induced after long-term carbon starvation in the three marine bacterial strains that were tested.  相似文献   

7.
The responses of the trichloroethylene-degrading bacterium Methylocystis sp. M to six different water-pollutants, carbon starvation, and temperature-shock (heat and cold) were examined using 2-dimensional gel electrophoresis. Twenty-eight polypeptides were induced, and these stress-induced proteins were classified into three groups. Some of the chemically induced proteins were the same as those induced by carbon starvation and temperature-shock. Two of the polypeptides were induced by trichloroethylene. Trichloroethylene-stress protein synthesis required 1-2 h at a concentration of trichloroethylene that had no effect on growth. Furthermore, 25 stress-enhanced polypeptides were observed, and one of these was enhanced by trichloroethylene. Based on these results, we discuss applications of chemical-stress induction of proteins to establish effective bioremediation and bioassay by methanotrophs.  相似文献   

8.
In order to evaluate the role of the stringent response in starvation adaptations of the marine Vibrio sp. strain S14, we have cloned the relA gene and generated relaxed mutants of this organism. The Vibrio relA gene was selected from a chromosomal DNA library by complementation of an Escherichia coli delta relA strain. The nucleotide sequence contains a 743-codon open reading frame that encodes a polypeptide that is identical in length and highly homologous to the E. coli RelA protein. The amino acid sequences are 64% identical, and they share some completely conserved regions. A delta relA::kan allele was generated by replacing 53% of the open reading frame with a kanamycin resistance gene. The Vibrio relA mutants displayed a relaxed control of RNA synthesis and failed to accumulate ppGpp during amino acid limitation. During carbon and energy starvation, a relA-dependent burst of ppGpp synthesis concomitant with carbon source depletion and growth arrest was observed. Also, in the absence of the relA gene, there was an accumulation of ppGpp during carbon starvation, but this was slower and smaller than that which occurred in the stringent strains, and it was preceded by a marked decrease in the [ATP]/[ADP] ratio. In both the wild-type and the relaxed strains, carbon source depletion caused an immediate decrease in the size of the GTP pool and a block of net RNA accumulation. The relA mutation did not affect long-term survival or the development of resistance against heat, ethanol, and oxidative stress during carbon starvation of Vibrio sp. strain S14.  相似文献   

9.
Because of the highly conserved pattern of expression of the eucaryotic heat shock genes hsp70 and hsp84 or their cognates during sporulation in Saccharomyces cerevisiae and development in higher organisms, the role of the Escherichia coli homologs dnaK and htpG was examined during the response to starvation. The htpG deletion mutant was found to be similar to its wild-type parent in its ability to survive starvation for essential nutrients and to induce proteins specific to starvation conditions. The dnaK103 mutant, however, was highly susceptible to killing by starvation for carbon and, to a lesser extent, for nitrogen and phosphate. Analysis of proteins induced under starvation conditions on two-dimensional gels showed that the dnaK103 mutant was defective for the synthesis of some proteins induced in wild-type cells by carbon starvation and of some proteins induced under all starvation conditions, including the stationary phase in wild-type cells. In addition, unique proteins were synthesized in the dnaK103 mutant in response to starvation. Although the synthesis of some proteins under glucose starvation control was drastically affected by the dnaK103 mutation, the synthesis of proteins specifically induced by nitrogen starvation was essentially unaffected. Similarly, the dnaK103 mutant was able to grow, utilizing glutamine or arginine as a source of nitrogen, at a rate approximate to that of the wild-type parent, but it inefficiently utilized glycerol or maltose as carbon sources. Several differences between the protein synthetic pattern of the dnaK103 mutant and the wild type were observed after phosphate starvation, but these did not result in a decreased ability to survive phosphate starvation, compared with nitrogen starvation.  相似文献   

10.
Starvation proteins synthesized by Escherichia coli at the onset of carbon starvation (R. G. Groat and A. Matin, J. Indust. Microbiol. 1:69-73, 1986) exhibited four temporal classes of synthesis in response to glucose or succinate starvation, indicating sequential expression of carbon starvation response (cst) genes. A cst mutant of E. coli showed greatly impaired carbon starvation survival. Thus, it appears that E. coli undergoes a significant molecular realignment in response to starvation, which increases its resistance to this stress. New polypeptides were also synthesized by E. coli in response to phosphate or nitrogen starvation. Some of these polypeptides were unique to a given starvation regimen, but at least 13 appeared to be synthesized regardless of the nutrient deprivation causing the starvation.  相似文献   

11.
The role of exogenous metabolites as putative signal molecules mediating and/or regulating the carbon starvation adaptation program in Vibrio sp. strain S14 was investigated. Addition of the stationary-phase supernatant extract (SSE) of Vibrio sp. strain S14 to logarithmic-phase cells resulted in a significant number of carbon starvation-induced proteins being up-regulated. Halogenated furanones, putative antagonists of acylated homoserine lactones (AHLs), inhibited the synthesis of proteins specifically induced upon carbon starvation. The effect of the furanone was the opposite of that caused by SSE with respect to the up- and down-regulation of protein expression, indicating that both the furanone and the putative signalling molecules were acting on the same regulatory pathway. Culturability was rapidly lost when Vibrio sp. strain S14 was starved in the presence of the furanone at a low concentration. The furanone also had a negative effect on the ability of carbon-starved cells to mount resistance against UV irradiation and hydrogen peroxide exposure. The SSE of Vibrio sp. strain S14 had the ability to provide cross-protection against the loss in viability caused by the furanone. We have further demonstrated that the SSE taken from low- as well as high-cell-density cultures of Vibrio sp. strain S14 induced luminescence in Vibrio harveyi. Taken together, the results in this report provide evidence that Vibrio sp. strain S14 produces extracellular signalling metabolites during carbon and energy starvation and that these molecules play an important role in the expression of proteins crucial to the development of starvation- and stress-resistant phenotypes.  相似文献   

12.
Carbon starvation induces the development of a starvation- and stress-resistant cell state in marine Vibrio sp. strain S14 (CCUG 15956). The starved cells remain highly responsive to nutrients during prolonged starvation and exhibit instantaneous severalfold increases in the rates of protein synthesis and RNA synthesis when substrate is added. In order to elucidate the physiological basis for the survival of cells that are starved for a long time, as well as the capacity of these cells for rapid and efficient recovery, we analyzed the ribosome content of carbon-starved Vibrio sp. strain S14 cells. By using direct chemical measurements of the amounts of ribosomal particles in carbon-starved cultures, we demonstrated that ribosomes were lost relatively slowly (half life, 79 h) and that they existed in large excess over the apparent demand for protein synthesis. After 24 h of starvation the total rate of protein synthesis was 2.3% of the rate during growth, and after 3 days this rate was 0.7% of the rate during growth; the relative amounts of ribosomal particles at these times were 81 and 52%, respectively. The ribosome population consisted of 90% 70S monoribosomes, and no polyribosomes were detected in the starved cells. The 70S monoribosomes were responsible for the bulk of the protein synthesis during carbon starvation; some activity was also detected in the polyribosome size region on sucrose density gradients. We suggest that nongrowing carbon-starved Vibrio sp. strain S14 cells possess an excess protein synthesis capacity, which may be essential for their ability to immediately initiate an upshift program when substrate is added.  相似文献   

13.
Changes in culturability and outer membrane protein profiles were investigated in Pseudomonas fluorescens DF57 and Pseudomonas putida DF14 during starvation for carbon, nitrogen, and phosphorus. P. fluorescens DF57 remained fully culturable for 4 days in all starvation regimes. The cell mass increased during starvation for nitrogen and phosphorus, indicating the accumulation of storage compounds, whereas it decreased slightly in carbon-starved cells. P. putida DF14 lost culturability during phosphorus starvation, and the mass of phosphate-starved cells did not increase. Analysis of additional P. fluorescens and P. putida strains, however, showed that the ability to preserve culturability during phosphorus starvation was not species but strain dependent. In DF57, an outer membrane protein of 55 kDa appeared during starvation for phosphorus, while another protein of 63 kDa was seen during all starvation conditions. DF14 induced two outer membrane proteins of 28 and 29 kDa during starvation for carbon and nitrogen, but no phosphorus-specific starvation protein could be detected. Therefore, starvation-induced outer membrane proteins do not seem to be conserved among the fluorescent pseudomonads and a unique starvation response might be found in individual strains.  相似文献   

14.
15.
The physiology of Pseudomonas putida KT2442 with respect to growth and carbon starvation was studied. During the transition from growth to nongrowth, the cell shape changes from cylindrical to spheric, a change which is accompanied by reductions in cell size, DNA and ribosome content, and the rate of total protein synthesis. In addition, a pattern of general cross-protection develops, which enables the cells to survive environmental stresses such as high and low temperatures, elevated osmolarity, solvents, and oxidative agents. Cultures are almost fully viable during 1 month of carbon, nitrogen, and multiple-nutrient starvation and are considered to be in an active nondormant state. In contrast, strain KT2442 does not survive well under conditions of sulfate and phosphate starvation.  相似文献   

16.
A carbon starvation-responding lac fusion of the marine Vibrio sp. strain S14 was used as a reporter strain in order to identify genes critical in the regulation of the carbon starvation response. Interestingly, sequence data together with an altered phenotype with respect to the accumulation of guanosine 3',5'-bispyrophosphate (ppGpp) imply that one of the genes (csrS) identified by this approach is an Escherichia coli spoT equivalent. Complementary data suggest that the function encoded by the csrS gene is essential for the successful development of starvation and stress resistance.  相似文献   

17.
18.
Sphingomonas sp. strain RB2256 is representative of the ultramicrobacteria that proliferate in oligotrophic marine waters. While this class of bacteria is well adapted for growth with low concentrations of nutrients, their ability to respond to complete nutrient deprivation has not previously been investigated. In this study, we examined two-dimensional protein profiles for logarithmic and stationary-phase cells and found that protein spot intensity was regulated by up to 70-fold. A total of 72 and 177 spots showed increased or decreased intensity, respectively, by at least twofold during starvation. The large number of protein spots (1,500) relative to the small genome size (ca. 1.5 Mb) indicates that gene expression may involve co- and posttranslational modifications of proteins. Rates of protein and RNA synthesis were examined throughout the growth phase and up to 7 days of starvation and revealed that synthesis was highly regulated. Rates of protein synthesis and cellular protein content were compared to ribosome content, demonstrating that ribosome synthesis was not directly linked to protein synthesis and that the function of ribosomes may not be limited to translation. By comparing the genetic capacity and physiological responses to starvation of RB2256 to those of the copiotrophic marine bacterium Vibrio angustum S14 (J. Ostling, L. Holmquist, and S. Kjelleberg, J. Bacteriol. 178:4901-4908, 1996), the characteristics of a distinct starvation response were defined for Sphingomonas strain RB2256. The capacity of this ultramicrobacterium to respond to starvation is discussed in terms of the ecological relevance of complete nutrient deprivation in an oligotrophic marine environment. These studies provide the first evidence that marine oligotrophic ultramicrobacteria may be expected to include a starvation response and the capacity for a high degree of gene regulation.  相似文献   

19.
KatF is required for the expression of some 32 carbon starvation proteins in Escherichia coli including 6 previously identified as Pex. Mutants with the katF gene survive carbon and nitrogen starvation poorly. Many of the KatF-regulated starvation proteins are common to those induced by other stresses, and the mutant failed to develop starvation-mediated cross protection to osmotic, oxidative, and heat stresses. Furthermore, thermal resistance was not induced in the mutant by heat preadaptation, and it exhibited an altered pattern of protein synthesis at elevated temperature. Thus, KatF is a major switch that controls the starvation-mediated resistant state in E. coli.  相似文献   

20.
Bacteria typically undergo intermittent periods of starvation and adaptation, emulated as diauxic growth in the laboratory. In association with growth arrest elicited by metabolic stress, the differentiating eubacterium Streptomyces coelicolor not only adapts its primary metabolism, but can also activate developmental programmes leading to morphogenesis and antibiotic biosynthesis. Here, we report combined proteomic and metabolomic data of S. coelicolor used to analyse global changes in gene expression during diauxic growth in a defined liquid medium. Cultures initially grew on glutamate, providing the nitrogen source and feeding carbon (as 2-oxoglutarate) into the TCA cycle, followed by a diauxic delay allowing reorientation of metabolism and a second round of growth supported by NH4+, formed during prediauxic phase, and maltose, a glycolytic substrate. Cultures finally entered stationary phase as a result of nitrogen starvation. These four physiological states had previously been defined statistically by their distinct patterns of protein synthesis and heat shock responses. Together, these data demonstrated that the rates of synthesis of heat shock proteins are determined not only by temperature increase but also by the patterns and rates of metabolic flux in certain pathways. Synthesis profiles for metabolic- and stress-induced proteins can now be interpreted by the identification of 204 spots (SWICZ database presented at http://proteom.biomed.cas.cz). Cluster analysis showed that the activity of central metabolic enzymes involved in glycolysis, the TCA cycle, starvation or proteolysis each displayed identifiable patterns of synthesis that logically underlie the metabolic state of the culture. Diauxic lag was accompanied by a structured regulatory programme involving the sequential activation of heat-, salt-, cold- and bacteriostatic antibiotic (pristinamycin I, PI)-induced stimulons. Although stress stimulons presumably provide protection during environmental- or starvation-induced stress, their identities did not reveal any coherent adaptive or developmental functions. These studies revealed interactive regulation of metabolic and stress response systems including some proteins known to support developmental programmes in S. coelicolor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号