首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 213 毫秒
1.
Primary cell walls from plants are composites of cellulose tethered by cross-linking glycans and embedded in a matrix of pectins. Cell wall composition varies between plant species, reflecting in some instances the evolutionary distance between them. In this work the monosaccharide compositions of isolated primary cell walls of nine fern species and one lycophyte were characterized and compared with those from Equisetum and an angiosperm dicot. The relatively high abundance of mannose in these plants suggests that mannans may constitute the major cross-linking glycan in the primary walls of pteridophytes and lycophytes. Pectin-related polysaccharides contained mostly rhamnose and uronic acids, indicating the presence of rhamnogalacturonan I highly substituted with galactose and arabinose. Structural and fine-structural analyses of the hemicellulose fraction of leaves of Adiantum raddianum confirmed this hypothesis. Linkage analysis showed that the mannan contains mostly 4-Man with very little 4,6-Man, indicating a low percentage of branching with galactose. Treatment of the mannan-rich fractions with endo-β-mannanase produced characteristic mannan oligosaccharides. Minor amounts of xyloglucan and xylans were also detected. These data and those of others suggest that all vascular plants contain xyloglucans, arabinoxylans, and (gluco)mannans, but in different proportions that define cell wall types. Whereas xyloglucan and pectin-rich walls define Type I walls of dicots and many monocots, arabinoxylans and lower proportion of pectin define the Type II walls of commelinoid monocots. The mannan-rich primary walls with low pectins of many ferns and a lycopod indicate a fundamentally different wall type among land plants, the Type III wall.  相似文献   

2.
Two active fractions of soluble oligosaccharides were isolated from pea (Pisum sativum L.) stem tissues. Both fractions are capable of affecting different phases of root development on buckwheat thin cell-layer explants (TCLs) and of inhibiting auxin-promoted growth of etiolated pea stem segments. The existence of non-wall bioactive oligosaccharides which may have a role in cell development in vivo is proposed.  相似文献   

3.
The occurrence and chemical nature of the cross-links between cellulose microfibrils in outer epidermal cell walls in Pisum sativum cv. Alaska was investigated by rapid-freezing and deep-etching techniques coupled with chemical and enzymatic treatments. The cell wall in the elongating region of epidermal cells was characterized by the absence of the cross-links, while in the elongated region, the cell wall was characterized by the presence of cross-links. The cross-links remained in the cell wall of the elongated region after treatment with SDS electrophoresis sample buffer and treatment with 4% potassium hydroxide. After treatment with endo-1,4-beta-glucanase, which fragments xyloglucan, the cross-links were remarkably reduced from the cell wall of the elongated region. The endoglucanase treatment also reduced immunogold labeling of xyloglucan in the cell wall. The endoglucanase hydrolysate from the cell wall fraction of the elongated region gave spots of oligosaccharides in thin layer chromatography, which were identical to the spots of xyloglucan oligosaccharides produced by xyloglucanase from both the cell wall fraction and tamarind xyloglucan. These results indicate that the cross-links are made of xyloglucan. We discussed the possibility of cross-links involved in the control of mechanical properties of the cell wall.  相似文献   

4.
The action on tamarind seed xyloglucan of the pure, xyloglucan-specific endo-(1→4)-β-D-glucanase from nasturtium (Tropaeolum majus L.) cotyledons has been compared with that of a pure endo-(1→4)-β-D-glucanase (‘cellulase’) of fungal origin. The fungal enzyme hydrolysed the polysaccharide almost completely to a mixture of the four xyloglucan oligosaccharides: Exhaustive digestion with the nasturtium enzyme gave the same four oligosaccharides plus large amounts of higher oligosaccharides and higher-polymeric material. Five of the product oligosaccharides (D,E,F,G,H) were purified and shown to be dimers of oligosaccharides A to C. D (glc8xyl6) had the structure A→A, H (glc8xyl6gal4) was C→C, whereas E (glc8xyl6gal), F (glc8xyl6gal2) and G (glc8xyl6gal3) were mixtures of structural isomers with the appropriate composition. For example, F contained B2→B2 (30%), A→C (30%), C→A (20%), B2B1 (15%) and others (about 5%). At moderate concentration (about 3 mM) oligosaccharides D to H were not further hydrolysed by the nasturtium enzyme, but underwent transglycosylation to give oligosaccharides from the group A, B, C, plus higher oligomeric structures. At lower substrate concentrations, hydrolysis was observed. Similarly, tamarind seed xyloglucan was hydrolysed to a greater extent at lower concentrations. It is concluded that the xyloglucan-specific nasturtium-seed endo-(1→4)-β-D-glucanase has a powerful xyloglucan-xyloglucan endo-transglycosylase activity in addition to its known xyloglucan-specific hydrolytic action. It would be more appropriately classified as a xyloglucan endo-transglycosylase. The action and specificity of the nasturtium enzyme are discussed in the context of xyloglucan metabolism in the cell walls of seeds and in other plant tissues.  相似文献   

5.
Bacillus sp. 3B6, bacterium isolated from cloud water, was incubated on sucrose for exopolysaccharide production. Dialysis of the obtained mixture (MWCO 500) afforded dialyzate (DIM) and retentate (RIM). Both were separated by size exclusion chromatography. RIM afforded eight fractions: levan exopolysaccharide (EPS), fructooligosaccharides (FOSs) of levan and inulin types with different degrees of polymerization (dp 2–7) and monosaccharides fructose:glucose = 9:1. Levan was composed of two components with molecular mass ∼3500 and ∼100 kDa in the ratio 2.3:1. Disaccharide fraction contained difructose anhydride DFA IV. 1-Kestose, 6-kestose, and neokestose were identified as trisaccharides in the ratio 2:1:3. Fractions with dp 4–7 were mixtures of FOSs of levan (2,6-βFruf) and inulin (1,2-βFruf) type. DIM separation afforded two dominant fractions: monosaccharides with fructose: glucose ratio 1:3; disaccharide fraction contained sucrose only. DIM trisaccharide fraction contained 1-kestose, 6-kestose, and neokestose in the ratio1.5:1:2, penta and hexasaccharide fractions contained FOSs of levan type (2,6-βFruf) containing α-glucose. In the pentasaccharide fraction also the presence of a homopentasaccharide composed of 2,6-linked βFruf units only was identified. Nystose, inulin (1,2-βFruf) type, was identified as DIM tetrasaccharide. Identification of levan 2,6-βFruf and inulin 1,2-βFruf type oligosaccharides in the incubation medium suggests both levansucrase and inulosucrase enzymes activity in Bacillus sp. 3B6.  相似文献   

6.
Galactoglucomannan oligosaccharides (GGMOs) activity in K. humboldtiana root culture has been determined. GGMOs inhibited adventitious root growth and lateral root induction in contrast to IAA, IBA, and NAA stimulating effect in these processes. Similarly, the combination of GGMOs with natural auxins (IAA, IBA) evoked an inhibition of adventitious root growth and lateral root induction that depended on the oligosaccharides concentration and the type of auxin. The growth stimulating effect of the synthetic auxin, NAA, in adventitious roots was negatively affected by GGMOs, but they were without influence on lateral root induction. The presence of oligosaccharides triggered lateral root position on adventitious roots and the anatomy of adventitious roots (diameter, proportion of primary cortex to the central cylinder, number and size of primary cortical cells, intercellular spaces, and the number of starch grains in cells of primary cortex) in dependence on their coactions with auxin.  相似文献   

7.
Molecular interactions between wall polysaccharides, which include cellulose and a range of noncellulosic polysaccharides such as xyloglucans and (1,3;1,4)-beta-D-glucans, are fundamental to cell wall properties. These interactions have been assumed to be noncovalent in nature in most cases. Here we show that a highly purified barley xyloglucan xyloglucosyl transferase HvXET5 (EC 2.4.1.207), a member of the GH16 group of glycoside hydrolases, catalyzes the in vitro formation of covalent linkages between xyloglucans and cellulosic substrates and between xyloglucans and (1,3;1,4)-beta-D-glucans. The rate of covalent bond formation catalyzed by HvXET5 with hydroxyethylcellulose (HEC) is comparable with that on tamarind xyloglucan, whereas that with (1,3; 1,4)-beta-D-glucan is significant but slower. Matrix-assisted laser desorption ionization time-of-flight mass spectrometric analyses showed that oligosaccharides released from the fluorescent HEC:xyloglucan conjugate by a specific (1,4)-beta-D-glucan endohydrolase consisted of xyloglucan substrate with one, two, or three glucosyl residues attached. Ancillary peaks contained hydroxyethyl substituents (m/z 45) and confirmed that the parent material consisted of HEC covalently linked with xyloglucan. Similarly, partial hydrolysis of the (1,3;1,4)-beta-D-glucan:xyloglucan conjugate by a specific (1,3;1,4)-beta-D-glucan endohydrolase revealed the presence of a series of fluorescent oligosaccharides that consisted of the fluorescent xyloglucan acceptor substrate linked covalently with 2-6 glucosyl residues. These findings raise the possibility that xyloglucan endo-transglucosylases could link different polysaccharides in vivo and hence influence cell wall strength, flexibility, and porosity.  相似文献   

8.
We have evaluated the transformation efficiency of two lettuce (Lactuca sativa L.) cultivars, LE126 and Seagreen, using Agrobacterium tumefaciens-mediated gene transfer. Six-day-old cotyledons were co-cultivated with Agrobacterium cultures carrying binary vectors with two different genetic constructs. The first construct contained the β-glucuronidase gene (GUS) under the control of the cauliflower mosaic virus 35S promoter (CaMV 35S), while the second construct contained the ethylene mutant receptor etr1-1, which confers ethylene insensitivity, under the control of a leaf senescence-specific promoter (sag12). Tissues co-cultivated with the GUS construct showed strong regeneration potential with over 90% of explants developing callus masses and 85% of the calli developing shoots. Histochemical GUS assays showed that 85.7% of the plants recovered were transgenic. Very different results were observed when cotyledon explants were co-cultivated with Agrobacteria carrying the etr1-1 gene. There was a dramatic effect on the regeneration properties of the cultured explants with root formation taking place directly from the cotyledon tissue in 34% of the explants and no callus or shoots observed initially. Eventually callus formed in 10% of cotyledons and some organogenic shoots were obtained (2.86%). These results indicate that the ethylene insensitivity conferred by the etr1-1 gene alters the normal pattern of regeneration in lettuce cotyledons, inhibiting the formation of shoots and stimulating root formation during regeneration.  相似文献   

9.
S. C. Fry 《Planta》1986,169(3):443-453
The in-vivo formation of a specific nonasaccharide of xyloglucan was investigated. This nonasaccharide has been reported to have biological activity, inhibiting auxin-induced growth in pea stem segments. Cell-suspension cultures of spinach were grown in the presence of [3H]arabinose and [3H]fucose, and the culture-filtrates were examined for oligosaccharides by gelpermeation chromatography and by paper chromatography. Sixteen [3H]pentose-containing oligosaccharides were found, including twelve that contained the sequence [3H]xylosyl-(16)-glucose, which is diagnostic of xyloglucan. In addition, [3H]fucose-containing oligosaccharides of at least three sizes were found. Radiochemical evidence is presented that one of these oligosaccharides was labelled with both [3H]fucose and with [3H]pentose, and was identical with the major xyloglucan-derived nonasaccharide associated with anti-auxin activity. It was largely present in the form of acylated (possibly acetylated) derivatives. It accumulated extracellularly to a steady-state concentration of about 4.3·10-7M. This is the first report of the production of a biologically-active oligosaccharide by living plant cells.Abbreviations BAB butanone/acetic acid/H3BO3-saturated water (9:1:1) - BAW butan-1-ol/acetic acid/water (12:3:5) - BPW butan-1-ol/pyridine/water/(4:3:4) - DP degree of polymerisation - FAW ethyl acetate/acetic acid/water (10:5:6) - EPW ethyl acetate/pyridine/water (8:2:1) - k av elution volume relative to Blue Dextran (k av.=0.0) and glucose (k av.=1.0) - XG7 XG9 minus the fucose and galactose residues - XG9 the particular xyloglucan nonasaccharide illustrated in Fig. 1 - W water-saturated phenol  相似文献   

10.
Changes in the composition of cell walls and extracellular polysaccharides (ECP) were studied during the growth of suspension-cultured Populus alba cells. Three growth phases, namely the cell division phase, cell elongation phase and stationary phase, were distinguished. The active deposition of polysaccharides in cell wall fractions (50 m M Na2CO3-, 1 M KOH-, 4 M KOH-soluble and 4 M KOH-insoluble) was observed during the elongation phase. A 50 m M Na2CO3-soluble pectic fraction mainly composed of 1,4-linked galactan and arabinan except acidic sugars. The 1,4-linked galactan decreased markedly during elongation. In 1 and 4 M KOH-soluble hemicellulosic fractions, non-cellulosic 1,4-glucan and xyloglucan were observed as major components, respectively. These polysaccharides also decreased during elongation. A large amount of polysaccharides was secreted into the medium as ECP. Neutral sugars were detected predominantly by sugar composition analysis. Acidic sugars, such as galacturonic acid, were less than 12% of total. In this study, active metabolism of pectic polysaccharides in addition to hemicellulosic polysaccharides, especially neutral side chains of pectin, during cell growth, was clarified.  相似文献   

11.
Xyloglucan oligosaccharides from cotton cell walls and tamarind seeds were derivatized with 2-aminopyridine and subsequently separated by reversed-phase chromatography (r.p.c.) using an octadecylsilyl silica stationary phase and aqueous-organic eluents with 0.01% (v/v) trifluoroacetic acid. The chromatographic behavior of the 2-pyridylamino derivatives of xyloglucan oligosaccharides was examined under a wide range of elution conditions, including gradient steepness and shape, initial acetonitrile concentration in the eluent, and pore size of the r.p.c. packings. Relatively steep acetonitrile gradients resulted in poor resolution of the different xyloglucan fragments, which is believed to be the result of acetonitrile-induced conformational changes. Under these circumstances the elution order of the derivatized xyloglucan oligosaccharides was such that the smaller fragments eluted from the column before the larger ones. R.p.c. packing with a 70-A pore size necessitated relatively high acetonitrile concentration in the eluent when compared with 300-A stationary phase. The r.p.c. mapping of 2-pyridylamino derivatives of xyloglucan oligosaccharides was best achieved when both a wide-pore octadecyl-silyl silica stationary phase and a shallow gradient with consecutive linear segments of increasing acetonitrile concentration in the eluent were employed. This combination yielded rapid r.p.c. maps of the xyloglucan fragments from different sources with high separation efficiencies and concomitantly high resolution. The effects of the nature of the sugar residues in the xyloglucan oligomers and their degree of branching on r.p.c. retention and selectivity are also highlighted.  相似文献   

12.
Adult snails synthesize in their albumen glands a storage polysaccharide called galactan which is utilized by the developing embryos. With [6-3H]-uridine 5diphosphogalactose the incorporation of labelled d-galactose into the polysaccharide can be traeed in freshly removed glands maintained in a bathing buffer. After centrifugation of homogenized glands, galactosyltrasferase activity is only found in the insoluble fraction. Chaps extracts of this material retain almost all of their activity and can be used for comparison of the incorporation rates into different native galactans or in various oligosaccharides. A highly efficient -(16) galactosyltransferase was detected when methyl 3-O-(-d-galactopyranosyl)--d-galactopyranoside was offered as acceptor. The substitution at the penultimate residue resulted in a branched trisaccharide as demonstrated by 1H-NMR-spectroscopy and permethylation analysis of the reaction product. Comparable results were obtained with various oligosaccharides containing an internal galactose unit glycosidically linked 13. Attempts to separate and purify the various enzymes involved resulted in the isolation of a fraction which is able to transfer d-Gal exclusively to native galactan, but not to oligosaccharides. A further fraction was obtained from a different resin with activity for native galactan and 6-O-(-d-galactopyranosyl)-d-galactopyranose. but without any for methyl-3-O-(-d-galactopyranosyl)--d-galactopyranose. It is thus concluded that at least three different enzymes are involved in the biosynthesis of this snail galactan.Abbreviation Gal galactose - glc gas-liquid chromatography - Gro glycerol - tlc thin layer chromatography  相似文献   

13.
Isolated cell walls of Argania spinosa fruit pulp were fractionated into their polysaccharide constituents and the resulting fractions were analysed for monosaccharide composition and chemical structure. The data reveal the presence of homogalacturonan, rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II) in the pectic fraction. RG-I is abundant and contains high amounts of Ara and Gal, indicative of an important branching in this polysaccharide. RG-II is less abundant than RG-I and exists as a dimer. Structural characterisation of xyloglucan using enzymatic hydrolysis, gas chromatography, MALDI-TOF-MS and methylation analysis shows that XXGG, XXXG, XXLG and XLLG are the major subunit oligosaccharides in the ratio of 0.6:1:1.2:1.6. This finding demonstrates that the major neutral hemicellulosic polysaccharide is a galacto-xyloglucan. In addition, Argania fruit xyloglucan has no XUFG, a novel xyloglucan motif recently discovered in Argania leaf cell walls. Finally, the isolation and analysis of arabinogalactan-proteins showed that Argania fruit pulp is rich in these proteoglycans.  相似文献   

14.
Macrophages were obtained from the mouse peritoneal cavity and culturedin vitro. The cells were exposed to35S-sulphate for 20 h, and labelled proteoglycans were recovered from both medium and cell fractions by sodium dodecylsulphate solubilization. The cell fraction contained both proteoglycans and glycosaminoglycans, whereas only intact proteoglycans could be recovered from the medium fraction. 35S-Glycosaminoglycans isolated from cell and medium fractions by papain digestion were shown to contain approximately 25% heparan sulphate and 75% galactosaminoglycans comprising 55% chondroitin sulphate and 20% dermatan sulphate. The galactosaminoglycans were shown by paper chromatography to contain more than 95% 4-sulphated units. Pulse-chase experiments showed that approximately 80% of the cell-associated material was released within 6 h of incubation.35S-Proteoglycans released did not bind to the macrophages, but were recovered in a soluble form from the culture medium.Abbreviations CSPG chondroitin sulphate proteoglycan - HSPG heparan sulphate proteoglycan - SDS sodium dodecylsulphate - DME Dulbecco's Minimum Essential Medium - GAG glycosaminoglycan  相似文献   

15.
The micromolecular fibrinogen derivatives were fractionated by successive ultrafiltrations through the Araicon membranes UM10, UM2 and UM05 into three fractions which represented approx. 9%, 2% and 1.5% of the weight of fibrinogen. Assuming that the fragments behaved as spherical molecules, fraction 10-2 contained mainly fragments with mol. weights of 1,000–10,000; fraction 2–05 contained fragments with mol. weights of 500–1,000 and the 05 fraction contained fragments with mol. weights smaller than 500. Cation exchange chromatography on the aminex resin Spinco PA-35 at a high sensitivity range indicated that there were 19–21 fragments in the 10-2 fraction, 10–12 fragments in the 2–05 fraction and 20–22 fragments in the 05 fraction. Relative to fibrinogen, all three fractions were poor in amino acids absorbing light at 280 mu. The two larger fractions were able to prolong the thrombin, prothrombin and partial thromboplastin times of plasma and could also delay the generation of plasma thromboplastin.  相似文献   

16.
郑均宝  刘玉军 《植物研究》1993,13(3):268-275
选择易产生不定根的绿豆下胚轴做试验材料,研究乙烯在不定根形成中的作用。试验指出,乙烯利和乙烯气体在低浓度下(1—5mgL~(-1))促进或不抑制不定根的形成,随着浓度增加,抑制作用加强。IBA促进不定根形成的作用十分显著。IBA和乙烯相结合的试验说明,两者的作用似乎是独立的。可以设想,存在一个适于生根的低内源乙烯的界限,超过这个界限,抑制不定根形成。  相似文献   

17.
Cells of the unicellular cyanobacteriumGloeothece sp. PCC 6909 are surrounded by an inner (enclosing 1–2 cells) and an outer (enclosing cell groups) sheath. Using conventional Epon-embedding in combination with ruthenium-red staining, the inner and outer sheaths appeared similar and displayed multiple bands of electron-dense subunits. However, embedding in Nanoplast resin to avoid shrinkage led to the detection of two distinct zones (inner and outer zone) each with several distinct layers. The zone delimited by the electron-dense thick inner sheath layer, and the zone enclosed by the thin electron-dense outer sheath layer, are composed of a homogeneous material of little electron-contrast. Whereas the outer zone appears to be of even contrast, the inner zone is characterized by a distinct electron-transparent layer. Element distribution analysis revealed that the electron-transparent layer contained relatively large amounts of sulfur, carbon, and oxygen but only little nitrogen.Inner and outer sheath fractions were isolated by differential mechanical cell breakage and centrifugation. The outer sheath fraction was less hydrated than the inner one. The two fractions differed little in their contents of uronic acids, carbohydrate and protein, although the outer sheath fraction contained less sulfate. A soluble polysaccharide with a chemical composition similar to that of inner and outer sheath fractions was also obtained from the culture supernatant.  相似文献   

18.
Turnover of cell wall polysaccharides in elongating pea stem segments   总被引:24,自引:20,他引:4       下载免费PDF全文
Turnover of cell wall polysaccharides and effects of auxin thereon were examined after prelabeling polysaccharides by feeding pea (Pisum sativum var. Alaska) stem segments 14C-glucose, then keeping the tissue 7 hours in unlabeled glucose with or without indoleacetic acid. There followed an extraction, hydrolysis, and chromatography procedure by which labeled monosaccharides and uronic acids were released and separated with consistently high recovery. Most wall polymers, including galacturonan and cellulose, did not undergo appreciable turnover. About 20% turnover of starch, which normally contaminates cell wall preparations but which was removed by a preliminary step in this procedure, occurred in 7 hours. Quantitatively, the principal wall polymer turnover process observed was a 50% decrease in galactose in the pectinase-extractable fraction, including galactose attached to a pectinase-resistant rhamnogalacturonan. Other pectinase-resistant galactan(s) did not undergo turnover. No turnover was observed in arabinans, but a doubling of radioactivity in arabinose of the pectinase-resistant, hot-acid-degradable fraction occurred in 7 hours, possibly indicating conversion of galactan into arabinan. None of the above changes was affected by indoleacetic acid, but a quantitatively minor turnover of a pectinase-degradable xyloglucan was found to be consistently promoted by indole-acetic acid. This was accompanied by a reciprocal increase in water-soluble xyloglucan, suggesting that indoleacetic acid induces conversion of wall xyloglucan from insoluble to water-soluble form. The results indicate a highly selective pattern of wall turnover processes with an even more specific influence of auxin.  相似文献   

19.
The asparagine-linked sugar chains of human apolipoprotein B-100 were liberated from the polypeptide portion by hydrazinolysis followed by N-acetylation and NaB3H4 reduction. Their structures were elucidated by sequential exoglycosidase digestion in combination with methylation analysis after fractionation by paper electrophoresis and gel permeation chromatography. One neutral and two acidic fractions were obtained by paper electrophoresis in a molar ratio of 7:8:5. The neutral fraction contained high-mannose type oligosaccharides consisting of Man5GlcNAc2 to Man9GlcNAc2. The acidic fractions contained monosialylated and disialylated biantennary complex type oligosaccharides. As minor components in the monosialylated fraction, biantennary complex-type oligosaccharides which were absent one terminal galactose residue, monoantennary complex type, and hybrid type oligosaccharides were detected. Apolipoprotein B-100 was calculated to contain 5-6 mol of high-mannose type and 8-10 mol of complex type oligosaccharides per mole protein.  相似文献   

20.
Five forms of xyloglucan endotransglycosylase/hydrolase (XTH) differing in their isoelectric points (pI) were detected in crude extracts from germinating nasturtium seeds. Without further fractionation, all five forms behaved as typical endotransglycosylases since they exhibited only transglycosylating (XET) activity and no xyloglucan-hydrolysing (XEH) activity. They all were glycoproteins with identical molecular mass, and deglycosylation led to a decrease in molecular mass from approximately 29 to 26.5 kDa. The major enzyme form having pI 6.3, temporarily designated as TmXET(6.3), was isolated and characterized. Molecular and biochemical properties of TmXET(6.3) confirmed its distinction from the XTHs described previously from nasturtium. The enzyme exhibited broad substrate specificity by transferring xyloglucan or hydroxyethylcellulose fragments not only to oligoxyloglucosides and cello-oligosaccharides but also to oligosaccharides derived from β-(1,4)-d-glucuronoxylan, β-(1,6)-d-glucan, mixed-linkage β-(1,3; 1,4)-d-glucan and at a relatively low rate also to β-(1,3)-gluco-oligosaccharides. The transglycosylating activity with xyloglucan as donor and cello-oligosaccharides as acceptors represented 4.6%, with laminarioligosaccharides 0.23%, with mixed-linkage β-(1,3; 1,4)-d-gluco-oligosaccharides 2.06%, with β-(1,4)-d-glucuronoxylo-oligosaccharides 0.31% and with β-(1,6)-d-gluco-oligosaccharides 0.69% of that determined with xyloglucan oligosaccharides as acceptors. Based on the sequence homology of tryptic fragments with the sequences of known XTHs, the TmXET(6.3) was classified into group II of the XTH phylogeny of glycoside hydrolase family GH16.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号