首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A selective and sensitive high-performance liquid chromatographic method with chemiluminescence detection for the determination of 5-hydroxyindoles is described, based on the reaction of 5-hydroxyindoles with 4-dimethylaminobenzylamine. Serotonin, 5-hydroxyindole-3-acetic acid, 5-hydroxytryptophol, 5-hydroxyindole-3-acetamide and N-acetyl-5-hydroxytryptamine were used as model compounds to optimize the derivatization and chemiluminescent reaction. The reagent reacts with 5-hydroxyindoles in slightly alkaline media in the presence of potassium hexacyanoferrate(III) to give the corresponding derivatives, which can be separated on a reversed-phase column, Wakosil-II 5C18RS, with aqueous acetonitrile as an eluent. The derivatives were detected by peroxyoxalate chemiluminescence detection. The detection limits are in the range of 0.5–1.2 fmol per 100-μl injection. The method was applied to the simultaneous determination of serotonin and 5-hydroxyindole-3-acetic acid in human platelet-poor plasma.  相似文献   

2.
A sensitive and specific liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) method has been developed and validated for the identification and quantification of salidroside, a major active constituent from Rhodiola rosea L., in rat plasma using helicid as an internal standard. The method involves a simple single-step liquid-liquid extraction with n-butanol. The analytes were separated by isocratic gradient elution on a Shim-pack ODS (4.6 microm, 250 mmx2.0 mm i.d.) column and analyzed in selected ion monitoring (SIM) mode with a negative electrospray ionization (ESI) interface using the respective [M+Cl]- ions, m/z 335 for salidroside, m/z 319 for internal standard. The method was validated over the concentration range of 5-2000 ng/mL for salidroside. Within- and between-batch precision (R.S.D.%) were all within 6% and accuracy ranged from 96 to 112%. The lower limits of quantification was 5 ng/mL. The extraction recovery was on average 86.6% for salidroside. The validated method was used to study the pharmacokinetic profile of salidroside in rat plasma after intravenous and oral administration of salidroside. The bioavailability of salidroside in rats is 32.1%.  相似文献   

3.
A selective and sensitive high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (ESI-MS/MS) method for simultaneous determination of metformin and rosiglitazone in human plasma using phenformin as internal standard (IS) has been first developed and validated. Plasma samples were precipitated by acetonitrile and the analytes were separated on a prepacked Phenomenex Luna 5u CN 100A (150 mm x 2.0 mm I.D.) column using a mobile phase comprised of methanol:30 mM ammonium acetate pH 5.0 (80:20, v/v) delivered at 0.2 ml/min. Detection was performed on a Finnigan TSQ triple-quadrupole tandem mass spectrometer in positive ion selected reaction monitoring (SRM) mode using electrospray ionization. The ion transitions monitored were m/z 130.27-->71.11 for metformin, m/z 358.14-->135.07 for rosiglitazone and m/z 206.20-->105.19 for the IS. The standard curves were linear (r(2)>0.99) over the concentration range of 5-3000 ng/ml for metformin and 1.5-500 ng/ml for rosiglitazone with acceptable accuracy and precision, respectively. The within- and between-batch precisions were less than 15% of the relative standard deviation. The limit of detection (LOD) of both metformin and rosiglitazone was 1 ng/ml. The method described is precise and sensitive and has been successfully applied to the study of pharmacokinetics of compound metformin and rosiglitazone capsules in 12 healthy Chinese volunteers.  相似文献   

4.
A novel chiral derivatization reagent, the N‐[1‐oxo‐5‐(triphenylphosphonium)pentyl]‐ (R)‐1,3‐thiazolidinyl‐4‐N‐hydroxysuccinimide ester bromide salt (OTPTHE), was developed for the separation and selective detection of chiral DL‐amino acids by RP‐HPLC analysis. The OTPTHE reacted with DL‐amino acids at 60°C maintained for 30 minutes in the presence of 100 mM borate buffer (pH 9.5). The separability of the diastereomeric derivatives was evaluated in terms of the resolution value (Rs) using 13 kinds of DL‐amino acids, which were completely separated by reversed‐phase chromatography using C18 column at 254 nm. The Rs of the DL‐amino acids varied from 1.62 to 2.51. As for the application of the DL‐amino acids, the determination of DL‐Ser in the human plasma of healthy volunteers was performed based on our developed method. It was shown that linear calibrations were available with high coefficients of correlation (r2 > 0.9997). The limit of detection (S/N = 3) of the DL‐Ser enantiomers was 5.0 pmol; the relative standard deviations of the intraday and interday variations were below 4.56%; the accuracy ranged between 95.40%‐110.06% and 95.45%‐109.80%, respectively; the mean recoveries (%) of the DL‐Ser spiked in the human plasma were 99.49%‐103.74%. The amounts of DL‐Ser in the human plasma of healthy volunteers were determined.  相似文献   

5.
A high throughput bioanalytical method based on solid phase extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS), has been developed for the estimation of perindopril and its metabolite perindoprilat, an angiotensin-converting enzyme inhibitor in human plasma. Ramipril was used as internal standard (IS). The extraction of perindopril, perindoprilat and ramipril from the plasma involved treatment with phosphoric acid followed by solid phase extraction (SPE) using hydrophilic lipophilic balance HLB cartridge. The SPE eluate without drying were analyzed by LC-MS/MS, equipped with turbo ion spray (TIS) source, operating in the negative ion and selective reaction monitoring (SRM) acquisition mode to quantify perindopril and perindoprilat in human plasma. The total chromatographic run time was 1.5 min with retention time for perindopril, perindoprilat and ramipril at 0.33, 0.35 and 0.30 min. The developed method was validated in human plasma matrix, with a sensitivity of 0.5 ng/ml (CV, 7.67%) for perindopril and 0.3 ng/ml (CV, 4.94%) for perindoprilat. This method was extensively validated for its accuracy, precision, recovery, stability studies and matrix effect especially because the pattern of elution of all the analytes appears as flow injection elution. Sample preparation by this method yielded extremely clean extracts with very good and consistent mean recoveries; 78.29% for perindopril, 76.32% for perindoprilat and 77.72% for IS. The response of the LC-MS/MS method for perindopril and perindoprilat was linear over the range 0.5-350.0 ng/ml for perindopril and 0.3-40 ng/ml for perindoprilat with correlation coefficient, r>/=0.9998 and 0.9996, respectively. The method was successfully applied for bioequivalence studies in human subjects samples with 4 mg immediate release (IR) formulations.  相似文献   

6.
A novel derivatization method employing 1,2-dimethylimidazole-4-sulfonyl chloride (DMISC) to improve the mass spectrometric response for phenolic compounds in liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) and tandem mass spectrometry (LC-ESI-MS/MS) is described. Several environmentally relevant compounds, including chloro-, aryl- and alkylphenols, steroidal estrogens, and hydroxy-polycyclic aromatic hydrocarbons (OHPAHs), were selected to evaluate this technique. A facile derivatization procedure employing DMISC results in dimethylimidazolesulfonyl (DMIS) derivatives that are stable in aqueous solution. These DMIS derivatives produced intense [M+H](+) ions in positive-ion LC-ESI-MS. The product ion spectra of the [M+H](+) ions of simple phenols were dominated by ions representing the DMIS and dimethylimidazole moieties, whereas product ion spectra of the DMIS derivatives of OHPAHs with three or more fused aromatic rings showed prominent ArO(+) ions, the relative intensity of which increased with the number of rings. The DMIS derivatives of the selected phenolic compounds showed excellent chromatographic properties. To substantiate the utility of derivatization with DMISC, an analytical method employing enzyme hydrolysis, solid phase extraction, derivatization with DMISC, and analysis by LC-ESI-MS/MS with multiple reaction monitoring for determination in human urine of 1-hydroxypyrene, a widely used biomarker for the assessment of human exposure to PAHs, was developed and validated.  相似文献   

7.
A novel optically active thiol compound, N-(tert-butylthiocarbamoyl)-L-cysteine ethyl ester (BTCC), is synthesized as a chiral derivatization reagent. This compound and o-phthalaldehyde react with amino acid enantiomers to produce fluorescent diastereomers that are readily separable on a reverse-phase column by HPLC. Enantioseparation of acidic amino acids in particular is markedly improved using BTCC. In this study, the HPLC method for enantioseparation with the novel compound is applied to the aspartate (Asp) racemase assay. Derivatized D-Asp is eluted before the L-Asp derivative. Consequently, a small amount of D-Asp produced by the activity of racemase on a large quantity of L-Asp substrate may be quantified accurately, even at very low activity. Since the derivatization reaction proceeds rapidly at room temperature, a fully automated system is established for derivatization and sample injection. The automated method is practical and successfully applied to the archaeal Asp racemase assay. We presume that the procedure is additionally applicable to the enantioseparation of other amino acids, amino alcohols, and catecholamines.  相似文献   

8.
A simple method using a one-step liquid-liquid extraction (LLE) with methyl-t-butyl ether (MTBE) followed by high-performance liquid chromatography (HPLC) with negative-ion electrospray ionization tandem mass spectrometric (ESI-MS/MS) detection was developed for the determination of cilnidipine in human plasma using benidipine as an internal standard (IS). Acquisition was performed in multiple reaction monitoring (MRM) mode, by monitoring the transitions: m/z 491.1>121.8 for cilnidipine and m/z 504.2>122.1 for IS, respectively. Analytes were chromatographed on a CN column by isocratic elution using 10mM ammonium acetate buffer-methanol (30:70, v/v; adjusted with acetic acid to pH 5.0). Results were linear (r2=0.99998) over the studied range (0.1-20ng/ml) with a total LC-MS/MS analysis time per run of 3min. The developed method was validated and successfully applied to a cilnidipine bioequivalence study in 24 healthy male volunteers.  相似文献   

9.
A sensitive and specific method using a one-step liquid-liquid extraction (LLE) with ethyl acetate followed by high-performance liquid chromatography (HPLC) coupled with positive ion electrospray ionization tandem mass spectrometry (ESI-MS/MS) detection was developed and validated for the determination of roxatidine in human plasma using famotidine as an internal standard (IS). Data acquisition was carried out in multiple reaction monitoring (MRM) mode, by monitoring the transitions m/z 307.3-->107.1 for roxatidine and m/z 338.4-->189.1 for famotidine. Chromatographic separation was performed on a reverse phase Hydrosphere C(18) column at 0.2 mL min(-1) using a mixture of methanol-ammonium formate buffer as mobile phase (20:80, v/v; adjusted to pH 3.9 with formic acid). The achieved lower limit of quantification (LLOQ) was 1.0 ng mL(-1) and the standard calibration curve for roxatidine was linear (r(2)=0.998) over the studied range (1-1000 ng mL(-1)) with acceptable accuracy and precision. Roxatidine was found to be stable in human plasma samples under short-, long-term storage and processing conditions. The developed method was validated and successfully applied to the bioequivalence study of roxatidine administrated as a single oral dose (75 mg as roxatidine acetate hydrochloride) to healthy female Korean volunteers.  相似文献   

10.
A sensitive and selective liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) method was developed for the identification and quantification of helicid in rat plasma. The method was based on simple liquid-liquid extraction (LLE). A Kromasil C18 column (150mmx2.00mm, 3.5microm) was used as the analytical column, while a mixture of acetonitrile and 500microM ammonium chloride was used as the mobile phase. MS detection was performed using a single quadrupole mass spectrometer in a negative selected ion monitoring (SIM) mode. The deprotonated molecules [M+Cl](-) at m/z 319.00 and 363.05 were used to quantify helicid and bergeninum (internal standard, I.S.), respectively. The lower limit of quantification of helicid was 1ng/ml. The method was linear in the concentration range of 1-1000ng/ml. The intra-day and inter-day precisions (R.S.D.%) were within 10.0% for the analyte. Helicid proved to be stable during all sample storage, preparation and analytical periods. The method was successfully applied to a pharmacokinetic study in rats after intragastric administration of helicid with a dose of 50mg/kg. Only 50microl of rat plasma at each sampling time was needed for analysis. The proposed method enables unambiguous identification and quantification for the preliminary pharmacokinetic studies of helicid.  相似文献   

11.
A rapid, sensitive and accurate high-performance liquid chromatographic method with UV detection was developed and validated for the quantification of gabapentin in human plasma. Gabapentin was quantified using pre-column derivatization with 1-fluoro-2,4-dinitrobenzene following protein precipitation of plasma with acetonitrile. Amlodipine was used as internal standard. The chromatographic separation was carried out on a Nova-Pak C(18) column using a mixture of 50 mM NaH(2)PO(4) (pH=2.5)-acetonitrile (30:70, v/v) as mobile phase with UV detection at 360 nm. The flow rate was set at 1.5 ml/min. The method was linear over the range of 0.05-5 microg/ml of gabapentin in plasma (r(2)>0.999). The within-day and between-day precision values were in the range of 2-5%. The limit of quantification of the method was 0.05 microg/ml. The method was successfully used to study the pharmacokinetics of gabapentin in healthy volunteers.  相似文献   

12.
A reagent, 1-(4-isopropyl) phenyl-3-methyl-5-pyrazolone (PPMP) has been synthesized and used for high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) determination of pre-column labeled carbohydrates. Monosaccharides have been quantitatively converted into mono-PPMP-labeled derivatives with 28% aqueous ammonia as a catalyst at 80 °C during 70 min. Mono-PPMP derivatives have been demonstrated to exhibit better chemical stability than bis-PMP ones. PPMP-labeled mixture of twelve monosaccharides (galactosamine, glucosamine, galacturonic acid, glucuronic acid, galactose, glucose/N-acetylgalactosamine, N-acetylglucosamine, xylose, arabinose, mannose, fucose, and rhamnose) has been well separated by a reverse-phase HPLC and detected by on-line ESI-MS method under optimized conditions. The data on characteristic fragment ions of the 13 PPMP-labeled monosaccharides with MS2 data have been collected. The suggested method exhibits good linearity (correlation coefficients > 0.9975) between the peak areas and the concentration of monosaccharides in a broad concentration range and good reproducibility (RSD < 3.19%). The developed method has been successfully applied to analyze the monosaccharide composition of natural Spirulina polysaccharide SPPB-1.  相似文献   

13.
For the highly sensitive and selective determination of NE-100, a novel sigma ligand, at levels of low picogram per milliliter of human plasma, a method with excellent reliability employing liquid chromatography (LC)–electrospray ionization (ESI) tandem mass spectrometry (MS–MS) combined with a column-switching technique has been developed. The method involves the use of a stable isotope labeled compound as the internal standard (I.S.), liquid–solid extraction of a plasma specimen with a C8 cartridge, automated on-line clean-up on a short trapping column, subsequent separation on a micro-bore C18 column and detection with ESI-MS–MS using m/z 356 ([M+H]+) as a precursor ion and m/z 105 as a product ion in a selected reaction monitoring mode. The detection and the quantification limits of NE-100 in plasma were 0.5 pg/ml with a signal-to-noise ratio (S/N) of 3 and 2.3 pg/ml, respectively, with an S/N of 21. The good linearity of the calibration graph was obtained in the range of 2.3∼907.0 pg/ml with excellent reliability. The developed method was applied to the determination of NE-100 in plasma obtained from the clinical trail.  相似文献   

14.
A sensitive and selective liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method was developed for the determination of cefdinir in human plasma. After a simple protein precipitation using trichloracetic acid, the post-treatment samples were applied to a prepacked RP18 Waters SymmetryShield column interfaced with a triple quadrupole tandem mass spectrometer. Positive electrospray ionization was employed as the ionization source. The mobile phase consisted of methanol-water-formic acid (25:75:0.075, v/v/v). The analyte and I.S. cefaclor were both detected by the use of selected reaction monitoring mode. The method was linear in the concentration range of 5-2,000 ng/ml. The lower limit of quantification was 5 ng/ml. The intra- and inter-day relative standard deviation across three validation runs over the entire concentration range was less than 4.3%. The accuracy determined at three concentrations (36, 360 and 1,800 ng/ml for cefdinir) ranged from 99.6 to 106.7% in terms of recovery. The chromatographic run time for each plasma sample was less than 3 min. The method herein described was successfully applied for the evaluation of pharmacokinetic profiles of cefdinir capsule in 12 healthy volunteers.  相似文献   

15.
A new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method operated in the positive/negative electrospray ionization (ESI) switching mode has been developed and validated for the simultaneous determination of asperosaponin VI and its active metabolite hederagenin in rat plasma. After addition of internal standards diazepam (for asperosaponin VI) and glycyrrhetic acid (for hederagenin), the plasma sample was deproteinized with acetonitrile, and separated on a reversed phase C18 column with a mobile phase of methanol (solvent A)-0.05% glacial acetic acid containing 10 mM ammonium acetate and 30 μM sodium acetate (solvent B) using gradient elution. The detection of target compounds was done in multiple reaction monitoring (MRM) mode using a tandem mass spectrometry equipped with positive/negative ion-switching ESI source. At the first segment, the MRM detection was operated in the positive ESI mode using the transitions of m/z 951.5 ([M+Na](+))→347.1 for asperosaponin VI and m/z 285.1 ([M+H](+))→193.1 for diazepam for 4 min, then switched to the negative ESI mode using the transitions of m/z 471.3 ([M-H](-))→471.3 for hederagenin and m/z 469.4 ([M-H](-))→425.4 for glycyrrhetic acid, respectively. The sodiated molecular ion [M+Na](+) at m/z 951.5 was selected as the precursor ion for asperosaponin VI, since it provided better sensitivity compared to the deprotonated and protonated molecular ions. Sodium acetate was added to the mobile phase to make sure that abundant amount of the sodiated molecular ion of asperosaponin VI could be produced, and more stable and intensive mass response of the product ion could be obtained. For the detection of hederagenin, since all of the mass responses of the fragment ions were very weak, the deprotonated molecular ion [M-H](-)m/z 471.3 was employed as both the precursor ion and the product ion. But the collision energy was still used for the MRM, in order to eliminate the influences induced by the interference substances from the rat plasma. The validated method was successfully applied to study the pharmacokinetics of asperosaponin VI and its active metabolite hederagenin in rat plasma after oral administration of asperosaponin VI at a dose of 90 mg/kg.  相似文献   

16.
A selective, rapid and sensitive ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the quantitative determination of azithromycin in human plasma and its application in a pharmacokinetic study. With roxithromycin as internal standard, sample pretreatment involved a one-step extraction with diethyl ether of 0.5 mL plasma. The analysis was carried out on an ACQUITY UPLC BEH C(18) column (50 mm x 2.1 mm, i.d., 1.7 microm) with gradient elution at flow rate of 0.35 mL/min. The mobile phase was 50 mM ammonium acetate and acetonitrile. The detection was performed on a triple-quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM) mode via electrospray ionization (ESI). Linear calibration curves were obtained in the concentration range of 1-1000 ng/mL, with a lower limit of quantification of 1 ng/mL. The intra- and inter-day precision (RSD) values were below 15% and accuracy (RE) was -1.3% to 5.7% at all QC levels. The method was applicable to clinical pharmacokinetic study of azithromycin in healthy volunteers following oral administration.  相似文献   

17.
A sensitive method for the determination of an anti-cancer agent, DX-52-1 (7-cyanoquinocarcinol, I) and quinocarmycin (II) which is formed from I either by metabolism or degradation, in human plasma has been developed utilising liquid chromatography electrospray–ionization tandem mass spectrometry (LC–ESI-MS–MS). The procedure involves solid-phase extraction at pH 2 and low temperature (4–6°C) to prevent the decomposition of I to II, the separation by reversed-phase HPLC and the multiple reaction monitoring (MRM) by ESI-MS–MS. The mean precision and accuracy at the lower limit of quantitation (LLOQ) of I, 0.25 ng ml−1, were 8.7% and −10.8%, respectively. Since an interfering peak eluting slightly earlier than II was observed on the HPLC of blank plasma, the LLOQ of II was set at 5 ng ml−1 where the mean precision and accuracy were 15.6% and −9.8%. The results suggested that the method is useful for the simultaneous monitoring of Iand II in the clinical trials of I.  相似文献   

18.
A rapid and sensitive liquid chromatography–electrospray ionisation mass spectrometry (HPLC–ESI-MS) assay has been developed for the measurement of moclobemide and metabolites, Ro12-5637 and Ro12-8095, in human plasma. Sample preparation (0.5 ml plasma) involves solid-phase extraction using C18 cartridges. A Nova-Pak phenyl column (Waters, 4 μm, 150×2 mm I.D.) was employed for analyte separation with a mixture of 0.2 M ammonium formate buffer, pH 3.57 and acetonitrile as the mobile phase. The within- and between-day precisions of the assay were <18% and the limit of quantification for all analytes was 0.01 μg/ml. The total run-time was 6 min. The method described was used to measure moclobemide, Ro12-5637 and Ro12-8095 in human plasma following an oral 300 mg dose.  相似文献   

19.
A sensitive and accurate liquid chromatographic-electrospray mass spectrometric (LC-ES-MS) method for the determination of haloperidol (H) and reduced haloperidol (RH) in human plasma is presented, using chlorohaloperidol as the internal standard. A 2-ml volume of plasma subjected to basic (NaOH) extraction, acid (HCl) back-extraction, acid wash and basic (NaOH) re-extraction. The extraction solvent was hexane-isoamyl alcohol (99:1, v/v) for the whole procedure. A Nucleosil C18 column (150×1 mm) was used for high-performacne liquid chromatography, together with 2 mM HCOONH4-acetonitrile (55:45, v/v; pH 3.0) as the mobile phase. For each drug, four characteristic ions were monitored. Linearity was assessed in the ranges 0.1–50 and 0.25–50 ng/ml for H and RH, respectively. Recoveries were 58 and 70% and detection limits were 0.075 and 0.100 ng/ml for H and RH, respectively. Correlation coefficients were better than 0.999 for both compounds. R.S.D.s for repeatability and reproducibility at 0.25 ng/ml were 11.1 and 8.5% for H and 9.4 and 11.2% for RH, respectively. One of the main advantages of (LC-ES-MS) over other detection systems is the increase in selectivity obtained by monitoring three ions of confirmation for each of the drugs.  相似文献   

20.
A sensitive LC–MS quantitation method of cetrorelix, a novel gonadotropin releasing hormone (GnRH) antagonist, was developed. Plasma and urine samples to which brominated cetrorelix was added as an internal standard (I.S.) were purified by solid-phase extraction with C8 cartridges. The chromatographic separation was achieved on a C18 reversed-phase column using acetonitrile–water–trifluoroacetic acid (35:65:0.1, v/v/v) as mobile phase. The mass spectrometric analysis was performed by electrospray ionization mode with negative ion detection, and the adduct ions of cetrorelix and I.S. with trifluoroacetic acid were monitored in extremely high mass region of m/z 1543 and 1700, respectively. The lower limit of quantitation was 1.00 ng per 1 ml of plasma and 2.09 ng per 2 ml of urine, and the present method was applied to the analysis of pharmacokinetics of cetrorelix in human during phase 1 clinical trial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号