首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The ADGE technique is a method designed to magnify the ratios of gene expression before detection. It improves the detection sensitivity to small change of gene expression and requires small amount of starting material. However, the throughput of ADGE is low. We integrated ADGE with DNA microarray (ADGE microarray) and compared it with regular microarray.  相似文献   

2.
3.
DNA microarrays used as 'genomic sensors' have great potential in clinical diagnostics. Biases inherent in random PCR-amplification, cross-hybridization effects, and inadequate microarray analysis, however, limit detection sensitivity and specificity. Here, we have studied the relationships between viral amplification efficiency, hybridization signal, and target-probe annealing specificity using a customized microarray platform. Novel features of this platform include the development of a robust algorithm that accurately predicts PCR bias during DNA amplification and can be used to improve PCR primer design, as well as a powerful statistical concept for inferring pathogen identity from probe recognition signatures. Compared to real-time PCR, the microarray platform identified pathogens with 94% accuracy (76% sensitivity and 100% specificity) in a panel of 36 patient specimens. Our findings show that microarrays can be used for the robust and accurate diagnosis of pathogens, and further substantiate the use of microarray technology in clinical diagnostics.  相似文献   

4.
Visual DNA microarrays, based on gold label silver stain (GLSS) and coupled with multiplex asymmetrical PCR, were developed for simultaneous, sensitive and specific detection of Ureaplasma urealyticum and Chlamydia trachomatis. 5'-end-amino-modified oligonucleotides, which were immobilized on glass surface, acted as capturing probes that were designed to bind complementary biotinylated targets DNA. The gold-conjugated streptavidins were introduced to the microarray for specific binding to biotin. The black image of microarray spots, resulting from the precipitation of silver onto nanogold particles bound to streptavidins, were used to detect biotinylated targets DNA visually or with a visible light scanner. Multiplex asymmetrical PCR of U. urealyticum, C. trachomatis and Bacillus subtilis (used as positive control) was performed to prepare abundant biotinylated single-stranded targets DNA, which affected detection efficiency and sensitivity of hybridization on microarray. Plenty of clinical samples of U. urealyticum and C. trachomatis from infected patients were tested using home-made DNA microarrays. For its high sensitivity, good specificity, simplicity, cheapness and speed, the present visual gene-detecting technique has potential applications in clinical fields.  相似文献   

5.
A small-oligonucleotide microarray prototype was designed with probes specific for the universal 16S rRNA and cpn60 genes of several pathogens that are usually encountered in wastewaters. In addition to these two targets, wecE-specific oligonucleotide probes were included in the microarray to enhance its discriminating power within the Enterobacteriaceae family. Universal PCR primers were used to amplify variable regions of 16S rRNA, cpn60, and wecE genes directly in Escherichia coli and Salmonella enterica serovar Typhimurium genomic DNA mixtures (binary); E. coli, S. enterica serovar Typhimurium, and Yersinia enterocolitica genomic DNA mixtures (ternary); or wastewater total DNA. Amplified products were fluorescently labeled and hybridized on the prototype chip. The detection sensitivity for S. enterica serovar Typhimurium was estimated to be on the order of 0.1% (10(4) S. enterica genomes) of the total DNA for the combination of PCR followed by microarray hybridization. The sensitivity of the prototype could be increased by hybridizing amplicons generated by PCR targeting genes specific for a bacterial subgroup, such as wecE genes, instead of universal taxonomic amplicons. However, there was evidence of PCR bias affecting the detection limits of a given pathogen as increasing amounts of a different pathogen were spiked into the test samples. These results demonstrate the feasibility of using DNA microarrays in the detection of waterborne pathogens within mixed populations but also raise the problem of PCR bias in such experiments.  相似文献   

6.

Purpose

Beta thalassemia is one of the most important hematic diseases all around the world and solving the problems caused by this abnormality is strongly dependent on precise detection and reliable screening of high-risk couples. The aim of our study was the investigation of sensitivity, specificity and accuracy of Tetra primer ARMS PCR method comparing with conventional ARMS PCR, based on sequencing technique outcomes for genotyping of IVS-II-I mutation in beta thalassemia patients.

Methods

Fifty seven samples including two homozygote, 49 heterozygote and 6 normal specimens were analyzed by Tetra primer ARMS PCR and conventional ARMS PCR methods. DNA was extracted by the standard method of salting out for leukocyte genomic DNA extraction of blood specimens and a high pure PCR template preparation kit was used for DNA purification of CVS samples. The results obtained by Tetra primer ARMS PCR and conventional ARMS PCR methods were compared with gold standard technique, i.e. sequencing.

Results

All three parameters including specificity, sensitivity and accuracy were 100% for Tetra primer ARMS PCR method, while they were 100%, 92.45% and 92.7% for conventional ARMS PCR technique respectively. Comparing with Tetra primer ARMS PCR which represented 100% agreement with sequencing method, conventional ARMS PCR technique only showed 47.1% agreement, because of 4 discordant results.

Conclusion

Tetra primer ARMS PCR method is an almost reliable, sensitive and accurate technique and it is suggested that it can be used as a complementary method for diagnostic cases instead of conventional ARMS PCR method. This suggestion originated with perfect rate of agreement between outcomes of sequencing method, as a gold standard method of detecting the mutations, and Tetra primer ARMS PCR technique comparing with conventional ARMS PCR method.  相似文献   

7.
We developed a DNA microarray suitable for simultaneous detection and discrimination between multiple bacterial species based on 16S ribosomal DNA (rDNA) polymorphisms using glass slides. Microarray probes (22- to 31-mer oligonucleotides) were spotted onto Teflon-masked, epoxy-silane-derivatized glass slides using a robotic arrayer. PCR products (ca. 199 bp) were generated using biotinylated, universal primer sequences, and these products were hybridized overnight (55 degrees C) to the microarray. Targets that annealed to microarray probes were detected using a combination of Tyramide Signal Amplification and Alexa Fluor 546. This methodology permitted 100% specificity for detection of 18 microbes, 15 of which were fish pathogens. With universal 16S rDNA PCR (limited to 28 cycles), detection sensitivity for purified control DNA was equivalent to <150 genomes (675 fg), and this sensitivity was not adversely impacted either by the presence of competing bacterial DNA (1.1 x 10(6) genomes; 5 ng) or by the addition of up to 500 ng of fish DNA. Consequently, coupling 16S rDNA PCR with a microarray detector appears suitable for diagnostic detection and surveillance for commercially important fish pathogens.  相似文献   

8.
Mycoplasmas are the most important contaminants of cell cultures throughout the world. They are considered as a major problem in biological studies and biopharmaceutical economic issues. In this study, our aim was to find the best standard technique as a rapid method with high sensitivity, specificity and accuracy for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran. Thirty cell lines suspected to mycoplasma contamination were evaluated by five different techniques including microbial culture, indirect DNA DAPI staining, enzymatic mycoalert® assay, conventional PCR and real-time PCR. Five mycoplasma-contaminated cell lines were assigned as positive controls and five mycoplasma-free cell lines as negative controls. The enzymatic method was performed using the mycoalert® mycoplasma detection kit. Real-time PCR technique was conducted by PromoKine diagnostic kits. In the conventional PCR method, mycoplasma genus-specific primers were designed to analyze the sequences based on a fixed and common region on 16S ribosomal RNA with PCR product size of 425 bp. Mycoplasma contamination was observed in 60, 56.66, 53.33, 46.66 and 33.33 % of 30 different cell cultures by real-time PCR, PCR, enzymatic mycoalert®, indirect DNA DAPI staining and microbial culture methods, respectively. The analysis of the results of the different methods showed that the real-time PCR assay was superior the other methods with the sensitivity, specificity, accuracy, predictive value of positive and negative results of 100 %. These values were 94.44, 100, 96.77, 100 and 92.85 % for the conventional PCR method, respectively. Therefore, this study showed that real-time PCR and PCR assays based on the common sequences in the 16S ribosomal RNA are reliable methods with high sensitivity, specificity and accuracy for detection of mycoplasma contamination in cell cultures and other biological products.  相似文献   

9.
Optical inteference (OI) coated slides with unique optical properties were utilized in microarray analyses, demonstrating their enhanced detection sensitivity over traditional microarray substrates. The OI coating is comprised of a proprietary multilayered, dielectric, thin-film interference coating located beneath the functional coating (aminosilane or epoxysilane). It is designed to enhance the fluorescence in the Cy3 and Cy5 channel by increasing the light absorption of the dyes by about 6-fold and by redirecting emitted fluorescence into the detector during scanning, resulting in a theoretical limit of about 12-fold signal amplification. Two-color DNA microarray experiments conducted on the OI slides showed over 8-fold signal amplification, conservation of gene expression ratios, and increased signal-to-noise ratio when compared to control slides, indicating enhanced detection sensitivity. Protein microarray assays also exhibited over 8-fold signal amplification at three different target concentrations, demonstrating the versatility of the OI slides for different microarray applications. Further, the DNA and protein assays performed on the OI slides exhibited excellent detection sensitivity even at the low target amounts essential for diagnostic applications. The OI slides are compatible with commonly used protocols, printers, scanners and other microarray equipment. Therefore, the OI slides offer an attractive alternative to traditional microarray substrates, where enhanced detection sensitivity is desired.  相似文献   

10.
Rapid identification of enteropathogenic bacteria in stool samples is critical for clinical diagnosis and antimicrobial therapy. In this study, we describe the development of an approach that couples multiplex PCR with hybridization to a DNA microarray, to allow the simultaneous detection of the 10 pathogens. The microarray was synthesized with 20-mer oligonucleotide probes that were designed to be specific for virulence-factor genes of each strain. The detection limit for genomic DNA from a single strain was approximately 10 fg. In the presence of heterogeneous non-target DNA, the detection sensitivity of the array decreased to approximately 100 fg. We did not observe any non-specific hybridization. In addition, we successfully used this oligonucleotide-based DNA microarray to identify the causative agents in clinical stool samples from patients with food-borne enteritis.  相似文献   

11.
We developed a DNA microarray suitable for simultaneous detection and discrimination between multiple bacterial species based on 16S ribosomal DNA (rDNA) polymorphisms using glass slides. Microarray probes (22- to 31-mer oligonucleotides) were spotted onto Teflon-masked, epoxy-silane-derivatized glass slides using a robotic arrayer. PCR products (ca. 199 bp) were generated using biotinylated, universal primer sequences, and these products were hybridized overnight (55°C) to the microarray. Targets that annealed to microarray probes were detected using a combination of Tyramide Signal Amplification and Alexa Fluor 546. This methodology permitted 100% specificity for detection of 18 microbes, 15 of which were fish pathogens. With universal 16S rDNA PCR (limited to 28 cycles), detection sensitivity for purified control DNA was equivalent to <150 genomes (675 fg), and this sensitivity was not adversely impacted either by the presence of competing bacterial DNA (1.1 × 106 genomes; 5 ng) or by the addition of up to 500 ng of fish DNA. Consequently, coupling 16S rDNA PCR with a microarray detector appears suitable for diagnostic detection and surveillance for commercially important fish pathogens.  相似文献   

12.
A small-oligonucleotide microarray prototype was designed with probes specific for the universal 16S rRNA and cpn60 genes of several pathogens that are usually encountered in wastewaters. In addition to these two targets, wecE-specific oligonucleotide probes were included in the microarray to enhance its discriminating power within the Enterobacteriaceae family. Universal PCR primers were used to amplify variable regions of 16S rRNA, cpn60, and wecE genes directly in Escherichia coli and Salmonella enterica serovar Typhimurium genomic DNA mixtures (binary); E. coli, S. enterica serovar Typhimurium, and Yersinia enterocolitica genomic DNA mixtures (ternary); or wastewater total DNA. Amplified products were fluorescently labeled and hybridized on the prototype chip. The detection sensitivity for S. enterica serovar Typhimurium was estimated to be on the order of 0.1% (104 S. enterica genomes) of the total DNA for the combination of PCR followed by microarray hybridization. The sensitivity of the prototype could be increased by hybridizing amplicons generated by PCR targeting genes specific for a bacterial subgroup, such as wecE genes, instead of universal taxonomic amplicons. However, there was evidence of PCR bias affecting the detection limits of a given pathogen as increasing amounts of a different pathogen were spiked into the test samples. These results demonstrate the feasibility of using DNA microarrays in the detection of waterborne pathogens within mixed populations but also raise the problem of PCR bias in such experiments.  相似文献   

13.
基因芯片技术检测3种食源性致病微生物方法的建立   总被引:5,自引:0,他引:5  
建立一种运用多重PCR和基因芯片技术检测和鉴定志贺氏菌、沙门氏菌、大肠杆菌O157的方法, 为3种食源性致病菌的快速检测和鉴定提供了准确、快速、灵敏的方法。分别选取编码志贺氏菌侵袭性质粒抗原H基因(ipaH)、沙门氏菌肠毒素(stn)基因和致泻性大肠杆菌O157志贺样毒素(slt)基因设计引物和探针, 进行三重PCR扩增, 产物与含特异性探针的芯片杂交。对7种细菌共26株菌进行芯片检测, 仅3种菌得到阳性扩增结果, 证明此方法具有很高的特异性。3种致病菌基因组DNA和细菌纯培养物的检测灵敏度约为8 pg。对模拟食品样品进行直接检测, 结果与常规细菌学培养结果一致, 检测限为50 CFU/mL。结果表明:所建立的基因芯片检测方法特异性好, 灵敏度高, 为食源性致病菌的检测提供了理想手段, 有良好的应用前景。  相似文献   

14.
应用限制性显示技术制备HCV cDNA诊断基因芯片的初步研究   总被引:4,自引:0,他引:4  
制备丙型肝炎病毒 (HCV)检测芯片并进行验证、初步检测质量评价。采用限制性显示 (Restrictiondisplay ,RD)技术制备芯片探针 ,从载体pCV_J4L6S中切出HCV全长cDNA ,Sau3AⅠ酶消化 ,所得的限制性片段进行RD_PCR扩增 ,经聚丙烯酰胺电泳 (PAGE)结合银染法进行分离。切胶回收后作 3次PCR ,得到较纯净的HCVcDNA限制性片段。扩增后的产物克隆至pMD18_T载体进行快速鉴定。将筛选出的限制性片段打印在氨基修饰的玻片上制备成检测芯片进行杂交验证分析 ,对芯片检测进行优化、初步的质量评估。运用RD技术 ,得到 2 4个 2 0 0~ 80 0bp、大小均一的基因片段 ,序列分析表明 ,均属于HCV特异基因 ,可以作为诊断芯片探针 ;杂交、测序结果显示 ,芯片检测的敏感性、特异性、准确度、重复性、线性等指标均佳。利用RD技术制备基因芯片探针是一种快速、简便的实用方法 ;制备的诊断芯片可以用于检测HCVRNA ,具有敏感、检测结果较为可靠的优点。  相似文献   

15.
Sun Z  Ma W  Wei M  Wang S  Zheng W 《Current microbiology》2007,55(3):211-216
A rapid and sensitive microarray assay for the detection of HCV-1b was developed in our laboratory and a cDNA fragment library for HCV-1b cDNA microarray probes was constructed. The full-length cDNAs of HCV-1b were digested with restriction endonuclease Sau3A I and the fragments were cloned with the pMD18-T vectors. Positive clones were isolated and identified by sequencing. The cDNA microarray was prepared by spotting the gene fragment on the surface of an amido-modified glass slide using the robotics system and samples were fluorescent labeled by the restriction display PCR (RD-PCR) technique, In the present study, modified protocols were used for probe selection and hybridization temperature. The detection of a microarray was validated by the hybridization and the sequence analysis. A total of 22 different specific gene fragments of HCV-1b ranging from 250 to 750 bp were isolated and sequenced, and these fragments were further used as probes in the microarray preparation. The diagnostic validity of the microarray method was evaluated after the washing and scanning process. The results of hybridization and sequence data analysis showed a significant specificity and sensitivity in the detection of HCV-1b RNA. The method of preparing microarray probes by construction of cDNA fragments library was effective, rapid, and simple; the optimized microarray was sensitive in the clinical detection of HCV-1b. The RD-PCR technique for the sample labeling was useful for significantly increasing the sensitivity of the assay. The cDNA microarray assay can be widely used in the clinical diagnosis of HCV-1b.  相似文献   

16.
Microarrays for the detection of HBV and HDV   总被引:6,自引:0,他引:6  
The increasing pace of development in molecular biology during the last decade has had a direct effect on mass testing and diagnostic applications, including blood screening. We report the model Microarray that has been developed for Hepatitis B virus (HBV) and Hepatitis D virus (HDV) detection. The specific primer pairs of PCR were designed using the Primer Premier 5.00 program according to the conserved regions of HBV and HDV. PCR fragments were purified and cloned into pMD18-T vectors. The recombinant plasmids were extracted from positive clones and the target gene fragments were sequenced. The DNA microarray was prepared by robotically spotting PCR products onto the surface of glass slides. Sequences were aligned, and the results obtained showed that the products of PCR amplification were the required specific gene fragments of HBV, and HDV. Samples were labeled by Restriction Display PCR (RD-PCR). Gene chip hybridizing signals showed that the specificity and sensitivity required for HBV and HDV detection were satisfied. Using PCR amplified products to construct gene chips for the simultaneous clinical diagnosis of HBV and HDV resulted in a quick, simple, and effective method. We conclude that the DNA microarray assay system might be useful as a diagnostic technique in the clinical laboratory. Further applications of RD-PCR for the sample labeling could speed up microarray multi-virus detection.  相似文献   

17.
MOTIVATION: Many current studies of complex microbial communities rely on the isolation of community genomic DNA, amplification of 16S ribosomal RNA genes (rDNA) and subsequent examination of community structure through interrogation of the amplified 16S rDNA pool by high-throughput sequencing, phylogenetic microarrays or quantitative PCR. RESULTS: Here we describe the development of a mathematical model aimed to simulate multitemplate amplification of 16S ribosomal DNA sample and subsequent detection of these amplified 16S rDNA species by phylogenetic microarray. Using parameters estimated from the experimental results obtained in the analysis of intestinal microbial communities with Microbiota Array, we show that both species detection and the accuracy of species abundance estimates depended heavily on the number of PCR cycles used to amplify 16S rDNA. Both parameters initially improved with each additional PCR cycle and reached optimum between 15 and 20 cycles of amplification. The use of more than 20 cycles of PCR amplification and/or more than 50 ng of starting genomic DNA template was, however, detrimental to both the fraction of detected community members and the accuracy of abundance estimates. Overall, the outcomes of the model simulations matched well available experimental data. Our simulations also showed that species detection and the accuracy of abundance measurements correlated positively with the higher sample-wide PCR amplification rate, lower template-to-template PCR bias and lower number of species in the interrogated community. The developed model can be easily modified to simulate other multitemplate DNA mixtures as well as other microarray designs and PCR amplification protocols.  相似文献   

18.
Infections with human adenoviruses are common worldwide and cause a wide range of signs and symptoms. Nowadays in current diagnostics procedures older virological methods, such virus isolation in a cell cultures, are replaced with molecular biology tests. The aim of the study was development of real-time PCR assay for detection of human adenoviruses. DNA isolated from A549 cell line infected with five different HAdV strains was used for development of a qualitative real-time PCR assay for detection of all human adenoviruses using primers targeting a conserved region of the hexon gene and a specific TaqMan probe. The analytical sensitivity of real-time PCR assay was tested using serial dilutions of HAdV7 DNA in range between 10(0) and 10(-6). For comparison typical end-point detected PCR for adenovirus detection with the same DNA dilutions was made. The sensitivity of novel method; was about thousand-fold higher than older one. The conclusion is that real-time PCR is very advisable in diagnostics of diseases caused with adenoviruses. The high level of sensitivity, specificity, accuracy, and rapidity provided by this assay are favorable for the use in the detection of adenoviral DNA in clinical specimens, especially from neuroinfections or immunocompromised hosts.  相似文献   

19.
Numerous waterborne pathogens are difficult to detect and enumerate with accuracy due to methodological limitations and high costs of direct culturing. The purity of DNA extracted from wastewater samples is an important issue in the sensitivity and the usefulness of molecular methods such as polymerase chain reaction (PCR) and hybridizations on DNA microarrays. Ten different DNA extraction procedures, including physical and chemical extraction and purification steps, were examined to ascertain their relative effectiveness for extracting bacterial DNA from wastewater samples. The quality of the differentially extracted DNAs was subsequently assessed by PCR amplification and microarray hybridization. Our results showed that great differences existed among the ten procedures and only a few of the methods gave satisfactory results when applied to bacterial pathogens. This observation suggested that the extraction method needed to be carefully selected to produce significant and confident results in the detection of pathogens from environmental samples.  相似文献   

20.
For the sensitive detection of amplicons derived from diagnostic PCR, a novel electrical low-density microarray is applied and compared to state-of-the-art quantitative real-time PCR. The principle of the electrochemical method and the effective use for analysis are described. Interdigitated array gold electrodes (IDA-E) embedded into a silicon chip are the core technology of the fully automated compact biosensor system, basing on enzyme coupled electrochemical detection. The biointerface is built up with thiol-modified capture oligonucleotides on gold and mediates the specific recognition of hybridised target DNA amplified with uniplex or multiplex PCR. In here we show the potential of the designed electrical microarray to function as an advanced screening method for the parallel detection of a panel of the four pathogens Bacillus anthracis, Yersinia pestis, Francisella tularensis and ortho pox viruses (genus), which are among the most relevant biowarfare agents. PCR products, generated from 10 to 50 gene equivalents, have been detected reproducibly. The experiments with varying pathogen amounts showed the good reliability and the high sensitivity of the method, equivalent to optical real-time PCR detection systems. Without PCR the total assay time amounts to 27 min. The advantage of the combination of multiplex-PCR with electrical microarray detection avoiding intensive PCR probe labelling strategies is illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号