首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed and validated a PCR-based method for identifying Cryptosporidium species and/or genotypes present on oocyst-positive microscope slides. The method involves removing coverslips and oocysts from previously examined slides followed by DNA extraction. We tested four loci, the 18S rRNA gene (N18SDIAG and N18SXIAO), the Cryptosporidium oocyst wall protein (COWP) gene (STN-COWP), and the dihydrofolate reductase (dhfr) gene (by multiplex allele-specific PCR), for amplifying DNA from low densities of Cryptosporidium parvum oocysts experimentally seeded onto microscope slides. The N18SDIAG locus performed consistently better than the other three tested. Purified oocysts from humans infected with C. felis, C. hominis, and C. parvum and commercially purchased C. muris were used to determine the sensitivities of three loci (N18SDIAG, STN-COWP, and N18SXIAO) to detect low oocyst densities. The N18SDIAG primers provided the greatest number of positive results, followed by the N18SXIAO primers and then the STN-COWP primers. Some oocyst-positive slides failed to generate a PCR product at any of the loci tested, but the limit of sensitivity is not entirely based on oocyst number. Sixteen of 33 environmental water monitoring Cryptosporidium slides tested (oocyst numbers ranging from 1 to 130) contained mixed Cryptosporidium species. The species/genotypes most commonly found were C. muris or C. andersoni, C. hominis or C. parvum, and C. meleagridis or Cryptosporidium sp. cervine, ferret, and mouse genotypes. Oocysts on one slide contained Cryptosporidium muskrat genotype II DNA.  相似文献   

2.
We have characterized the nucleotide sequences of the 70-kDa heat shock protein (HSP70) genes of Cryptosporidium baileyi, C. felis, C. meleagridis, C. muris, C. serpentis, C. wrairi, and C. parvum from various animals. Results of the phylogenetic analysis revealed the presence of several genetically distinct species in the genus Cryptosporidium and eight distinct genotypes within the species C. parvum. Some of the latter may represent cryptic species. The phylogenetic tree constructed from these sequences is in agreement with our previous results based on the small-subunit rRNA genes of Cryptosporidium parasites. The Cryptosporidium species formed two major clades: isolates of C. muris and C. serpentis formed the first major group, while isolates of C. felis, C. meleagridis, C. wrairi, and eight genotypes of C. parvum formed the second major group. Sequence variations were also observed between C. muris isolates from ruminants and rodents. The HSP70 gene provides another useful locus for phylogenetic analysis of the genus Cryptosporidium.  相似文献   

3.
To assess the genetic diversity in Cryptosporidium parvum, we have sequenced the small subunit (SSU) rRNA gene of seven Cryptosporidium spp., various isolates of C. parvum from eight hosts, and a Cryptosporidium isolate from a desert monitor. Phylogenetic analysis of the SSU rRNA sequences confirmed the multispecies nature of the genus Cryptosporidium, with at least four distinct species (C. parvum, C. baileyi, C. muris, and C. serpentis). Other species previously defined by biologic characteristics, including C. wrairi, C. meleagridis, and C. felis, and the desert monitor isolate, clustered together or within C. parvum. Extensive genetic diversities were present among C. parvum isolates from humans, calves, pigs, dogs, mice, ferrets, marsupials, and a monkey. In general, specific genotypes were associated with specific host species. A PCR-restriction fragment length polymorphism technique previously developed by us could differentiate most Cryptosporidium spp. and C. parvum genotypes, but sequence analysis of the PCR product was needed to differentiate C. wrairi and C. meleagridis from some of the C. parvum genotypes. These results indicate a need for revision in the taxonomy and assessment of the zoonotic potential of some animal C. parvum isolates.  相似文献   

4.
Isolates of Cryptosporidium spp. from human and animal hosts in Iran were characterized on the basis of both the 18S rRNA gene and the Laxer locus. Three Cryptosporidium species, C. hominis, C. parvum, and C. meleagridis, were recognized, and zoonotically transmitted C. parvum was the predominant species found in humans.  相似文献   

5.
Biological data support the hypothesis that there are multiple species in the genus Cryptosporidium, but a recent analysis of the available genetic data suggested that there is insufficient evidence for species differentiation. In order to resolve the controversy in the taxonomy of this parasite genus, we characterized the small-subunit rRNA genes of Cryptosporidium parvum, Cryptosporidium baileyi, Cryptosporidium muris, and Cryptosporidium serpentis and performed a phylogenetic analysis of the genus Cryptosporidium. Our study revealed that the genus Cryptosporidium contains the phylogenetically distinct species C. parvum, C. muris, C. baileyi, and C. serpentis, which is consistent with the biological characteristics and host specificity data. The Cryptosporidium species formed two clades, with C. parvum and C. baileyi belonging to one clade and C. muris and C. serpentis belonging to the other clade. Within C. parvum, human genotype isolates and guinea pig isolates (known as Cryptosporidium wrairi) each differed from bovine genotype isolates by the nucleotide sequence in four regions. A C. muris isolate from cattle was also different from parasites isolated from a rock hyrax and a Bactrian camel. Minor differences were also detected between C. serpentis isolates from snakes and lizards. Based on the genetic information, a species- and strain-specific PCR-restriction fragment length polymorphism diagnostic tool was developed.  相似文献   

6.
We analyzed 1,042 Cryptosporidium oocyst-positive slides (456 from raw waters and 586 from drinking waters) of which 55.7% contained 1 or 2 oocysts, to determine species/genotypes present in Scottish waters. Two nested PCR-restriction fragment length polymorphism (RFLP) assays targeting different loci (1 and 2) of the hypervariable region of the 18S rRNA gene were used for species identification, and 62.4% of samples were amplified with at least one of the PCR assays. More samples (577 slides; 48.7% from raw water and 51.3% from drinking water) were amplified at locus 1 than at locus 2 (419 slides; 50.1% from raw water and 49.9% from drinking water). PCR at loci 1 and 2 amplified 45.4% and 31.7% of samples containing 1 or 2 oocysts, respectively. We detected both human-infectious and non-human-infectious species/genotype oocysts in Scottish raw and drinking waters. Cryptosporidium andersoni, Cryptosporidium parvum, and the Cryptosporidium cervine genotype (now Cryptosporidium ubiquitum) were most commonly detected in both raw and drinking waters, with C. ubiquitum being most common in drinking waters (12.5%) followed by C. parvum (4.2%) and C. andersoni (4.0%). Numerous samples (16.6% total; 18.9% from drinking water) contained mixtures of two or more species/genotypes, and we describe strategies for unraveling their identity. Repetitive analysis for discriminating mixtures proved useful, but both template concentration and PCR assay influenced outcomes. Five novel Cryptosporidium spp. (SW1 to SW5) were identified by RFLP/sequencing, and Cryptosporidium sp. SW1 was the fourth most common contaminant of Scottish drinking water (3%).The protozoan parasite Cryptosporidium has been implicated in numerous waterborne and food-borne outbreaks of cryptosporidiosis (3, 6, 16, 17, 18). Currently, there are 22 valid Cryptosporidium species: Cryptosporidium hominis, infecting mainly humans; C. parvum, in humans and numerous other mammals, including cattle; C. andersoni, C. bovis (previously bovine genotype B), and C. ryanae (previously deer-like genotype) in cattle; C. xiaoi (previously bovis-like genotype) in sheep; C. muris in mice; C. felis in cats; C. suis (previously pig genotype I) in pigs; C. wrairi in guinea pigs; C. canis in dogs; C. meleagridis and C. baileyi in birds; C. galli in finches and chickens; C. fayeri (previously marsupial genotype I) and C. macropodum (previously marsupial genotype II) in various species of marsupials; C. fragile in toads; C. varanii (previously C. saurophilum) in lizards and snakes; C. serpentis in snakes; C. scophthalmi and C. molnari in fish (20); and C. ubiquitum (previously Cryptosporidium cervine genotype) in a wide variety of host species, including white-tailed deer, sheep, cattle, goat, mouse, various species of rodents, and humans (4). In addition, there are over 60 Cryptosporidium genotypes, which differ significantly in their molecular sequences but, as yet, have not been ascribed species status (13, 29).Genetic analyses reveal that at least eight species (C. hominis, C. parvum, C. meleagridis, C. felis, C. canis, C. suis, C. muris, and C. ubiquitum) and seven Cryptosporidium genotypes (C. hominis monkey, C. andersoni-like, and Cryptosporidium chipmunk I, skunk, horse, rabbit, and pig genotype II) are associated with human disease (1, 9, 22), but C. parvum and C. hominis remain the most common species infecting humans. Environmental contamination with oocysts of Cryptosporidium species that are not infectious to susceptible human hosts contributes to the difficulties in assessing the risk to public health from waterborne oocysts.Oocysts occur at low densities in water (16, 17, 21), and molecular methods which can genotype small numbers of organisms reliably and reproducibly from water concentrates are required to determine which species occur, and with what frequency, in water. We used our standardized, maximized freezing and thawing method for DNA extraction (10) and our procedure for retrieving oocysts from Cryptosporidium water monitoring slides to maximize DNA extraction for PCR-restriction fragment length polymorphism (RFLP) analysis (11, 12, 19) in this study.We undertook a 1-year survey to identify the species and genotypes of Cryptosporidium oocysts detected in the Scottish Water (SW) Routine Cryptosporidium Monitoring Programme to gain information on the occurrence and diversity of Cryptosporidium oocysts in drinking water sources and drinking waters in order to determine predominant types in water catchment areas and monitor variations in oocyst population distribution over a 1-year period with a view to adding value to current assessments of risk to human health.  相似文献   

7.
Little is known about the epidemiology of Cryptosporidium in Jordan and no genotyping studies have been conducted on Cryptosporidium isolates from humans or animals from Jordan. Genotyping of 44 Cryptosporidium isolates from Jordanian children at the 18S rRNA locus and a unique diagnostic locus identified four Cryptosporidium species; C. parvum (22), C. hominis (20), C. meleagridis (1) and C. canis (1). Sub-genotype analysis of 29 isolates at the 60-kDa glycoprotein (GP60) locus identified three C. parvum, two C. hominis subtype families and one C. meleagridis subtype. Several rare and novel subtypes were identified indicating unique endemicity and transmission of Cryptosporidium in Jordan.  相似文献   

8.
Little is known about the genetic characteristics, distribution, and transmission cycles of Cryptosporidium species that cause human disease in New Zealand. To address these questions, 423 fecal specimens containing Cryptosporidium oocysts and obtained from different regions were examined by the PCR-restriction fragment length polymorphism technique. Indeterminant results were resolved by DNA sequence analysis. Two regions supplied the majority of isolates: one rural and one urban. Overall, Cryptosporidium hominis accounted for 47% of the isolates, with the remaining 53% being the C. parvum bovine genotype. A difference, however, was observed between the Cryptosporidium species from rural and urban isolates, with C. hominis dominant in the urban region, whereas the C. parvum bovine genotype was prevalent in rural New Zealand. A shift in transmission cycles was detected between seasons, with an anthroponotic cycle in autumn and a zoonotic cycle in spring. A novel Cryptosporidium sp., which on DNA sequence analysis showed a close relationship with C. canis, was detected in two unrelated children from different regions, illustrating the genetic diversity within this genus.  相似文献   

9.
Nucleotide sequences of the Cryptosporidium oocyst wall protein (COWP) gene were obtained from various Cryptosporidium spp. (C. wrairi, C. felis, C. meleagridis, C. baileyi, C. andersoni, C. muris, and C. serpentis) and C. parvum genotypes (human, bovine, monkey, marsupial, ferret, mouse, pig, and dog). Significant diversity was observed among species and genotypes in the primer and target regions of a popular diagnostic PCR. These results provide useful information for COWP-based molecular differentiation of Cryptosporidium spp. and genotypes.  相似文献   

10.
Genomic DNAs from human Cryptosporidium isolates previously typed by analysis of the 18S ribosomal DNA locus (Cryptosporidium parvum bovine genotype, C. parvum human genotype, Cryptosporidium meleagridis, and Cryptosporidium felis) were used to amplify the diagnostic fragment described by Laxer et al. (M. A. Laxer, B. K. Timblin, and R. J. Patel, Am. J. Trop. Med. Hyg., 45:688-694, 1991). The obtained 452-bp amplified fragments were sequenced and aligned with the homologous Cryptosporidium wrairi sequence. Polymorphism was exploited to develop a restriction fragment length polymorphism method able to discriminate Cryptosporidium species and C. parvum genotypes.  相似文献   

11.
In order to determine the specificities of PCR-based assays used for detecting Cryptosporidium parvum DNA, eight pairs of previously described PCR primers targeting six distinct regions of the Cryptosporidium genome were evaluated for the detection of C. parvum, the agent of human cryptosporidiosis, and C. muris, C. baileyi, and C. meleagridis, three Cryptosporidium species that infect birds or mammals but are not considered to be human pathogens. The four Cryptosporidium species were divided into two groups: C. parvum and C. meleagridis, which gave the same-sized fragments with all the reactions, and C. muris and C. baileyi, which gave positive results with primer pairs targeting the 18S rRNA gene only. In addition to being genetically similar at each of the eight loci analyzed by DNA amplification, C. parvum and C. meleagridis couldn’t be differentiated even after restriction enzyme digestion of the PCR products obtained from three of the target genes. This study indicates that caution should be exercised in the interpretation of data from water sample analysis performed by these methods, since a positive result does not necessarily reflect a contamination by the human pathogen C. parvum.  相似文献   

12.
Genetic Diversity of Cryptosporidium spp. in Captive Reptiles   总被引:3,自引:0,他引:3       下载免费PDF全文
The genetic diversity of Cryptosporidium in reptiles was analyzed by PCR-restriction fragment length polymorphism and sequence analysis of the small subunit rRNA gene. A total of 123 samples were analyzed, of which 48 snake samples, 24 lizard samples, and 3 tortoise samples were positive for Cryptosporidium. Nine different types of Cryptosporidium were found, including Cryptosporidium serpentis, Cryptosporidium desert monitor genotype, Cryptosporidium muris, Cryptosporidium parvum bovine and mouse genotypes, one C. serpentis-like parasite in a lizard, two new Cryptosporidium spp. in snakes, and one new Cryptosporidium sp. in tortoises. C. serpentis and the desert monitor genotype were the most common parasites and were found in both snakes and lizards, whereas the C. muris and C. parvum parasites detected were probably the result of ingestion of infected rodents. Sequence and biologic characterizations indicated that the desert monitor genotype was Cryptosporidium saurophilum. Two host-adapted C. serpentis genotypes were found in snakes and lizards.  相似文献   

13.
Evaluation of Cryptosporidium parvum Genotyping Techniques   总被引:1,自引:0,他引:1       下载免费PDF全文
We evaluated the specificity and sensitivity of 11 previously described species differentiation and genotyping PCR protocols for detection of Cryptosporidium parasites. Genomic DNA from three species of Cryptosporidium parasites (genotype 1 and genotype 2 of C. parvum, C. muris, and C. serpentis), two Eimeria species (E. neischulzi and E. papillata), and Giardia duodenalis were used to evaluate the specificity of primers. Furthermore, the sensitivity of the genotyping primers was tested by using genomic DNA isolated from known numbers of oocysts obtained from a genotype 2 C. parvum isolate. PCR amplification was repeated at least three times with all of the primer pairs. Of the 11 protocols studied, 10 amplified C. parvum genotypes 1 and 2, and the expected fragment sizes were obtained. Our results indicate that two species-differentiating protocols are not Cryptosporidium specific, as the primers used in these protocols also amplified the DNA of Eimeria species. The sensitivity studies revealed that two nested PCR-restriction fragment length polymorphism (RFLP) protocols based on the small-subunit rRNA and dihydrofolate reductase genes are more sensitive than single-round PCR or PCR-RFLP protocols.  相似文献   

14.
The genotyping of numerous isolates of Cryptosporidium parasites has led to the definition of new species and a better understanding of the epidemiology of cryptosporidiosis. A single-locus genotyping method based on the partial sequence of a polymorphic sporozoite surface glycoprotein gene (GP60) has been favored by many for surveying Cryptosporidium parvum and C. hominis populations. Since genetically distinct Cryptosporidium parasites recombine in nature, it is unclear whether single-locus classifications can adequately represent intraspecies diversity. To address this question, we investigated whether multilocus genotypes of C. parvum and C. hominis cluster according to the GP60 genotype. C. hominis multilocus genotypes did not segregate according to this marker, indicating that for this species the GP60 sequence is not a valid surrogate for multilocus typing methods. In contrast, in C. parvum the previously described “anthroponotic” genotype was confirmed as a genetically distinct subspecies cluster characterized by a diagnostic GP60 allele. However, as in C. hominis, several C. parvum GP60 alleles did not correlate with distinct subpopulations. Given the rarity of some C. parvum GP60 alleles in our sample, the existence of additional C. parvum subgroups with unique GP60 alleles cannot be ruled out. We conclude that with the exception of genotypically distinct C. parvum subgroups, multilocus genotyping methods are needed to characterize C. parvum and C. hominis populations. Unless parasite virulence is controlled at the GP60 locus, attempts to find associations within species or subspecies between GP60 and phenotype are unlikely to be successful.The lack of variable morphological traits to identify oocysts from different Cryptosporidium species has driven the development of numerous genotyping methods to survey the diversity in this genus. Genetic markers such as single-nucleotide polymorphisms (24), restriction fragment length polymorphisms (7, 34), random amplification methods (17, 20), conformational polymorphisms (11), simple sequence repeats (3, 10), and DNA sequence polymorphisms (6, 36) have been used to type Cryptosporidium oocysts excreted by humans and animals and oocysts recovered from the environment. This effort has led to a deeper understanding of the taxonomy of the genus Cryptosporidium and the epidemiology of cryptosporidiosis in humans and livestock. As a result of this work, two species responsible for a majority of human infections, Cryptosporidium parvum and C. hominis, were identified (21) and our understanding of the taxonomy of the genus was refined (35).The application of genetic markers to define species, i.e., reproductively isolated populations, is straightforward. At this taxonomic level, all genotypes cosegregate and the choice of marker will have little impact on the outcome, provided that the marker, or combination thereof, is sufficiently polymorphic. The classical example is the variable region of the small-subunit rRNA gene which has been used, as in other taxa, to define many Cryptosporidium species. For studying intraspecies polymorphism, the choice of genotyping methods needs to take into consideration the potential for genetic recombination. This is clearly the case for species such as those belonging to the genus Cryptosporidium, which are known to undergo an obligatory sexual cycle during which genetically dissimilar haplotypes can recombine (28).Among the many markers that have been applied in epidemiological surveys of C. parvum and C. hominis, a variable fragment of the gene encoding a sporozoite surface glycoprotein (8, 26) has been particularly popular. As a result of the widespread adoption of this marker, variously named GP60, cpgp40/15, or gp40, numerous alleles have been identified and deposited in GenBank. The analysis of this continuously growing collection of GP60 sequences has led to the identification of groups of related sequences (18, 27, 32, 33). In an attempt to simplify the comparison of GP60 genotypes among different laboratories, a GP60 nomenclature distinguishing the main groups of alleles has been created (26) and later refined (27).The desire to streamline the genotyping of large numbers of Cryptosporidium isolates collected during surveys has led to the widespread adoption of the GP60 genotype as the only marker for defining intraspecies groups. Since this approach is not compatible with the reassortment of unlinked loci, the classification of isolates on the basis of the GP60 genotype, or any other single marker, needs to be evaluated. Within a recombining population, no single genetic marker can a priori be expected to serve as a surrogate for other loci or multilocus genotypes (MLGs), and any apparent clustering of isolates is dependent on the marker. To investigate the validity of the GP60 genotyping method as commonly applied to the classification of C. parvum and C. hominis isolates, the GP60 genotype was added to a previously described 9-locus genotype (29) and a diversified collection of 10-locus genotypes was examined for intraspecies clusters. We show that, with the exception of some GP60 alleles apparently restricted to human C. parvum, neither C. parvum nor C. hominis GP60 alleles define subspecies genotypes. These results are discussed in the context of ongoing research to better understand the population structure of these parasites and identify genotypes associated with virulence traits.  相似文献   

15.
There are approximately 20 known species of the genus Cryptosporidium, and among these, 8 infect immunocompetent or immunocompromised humans. C. hominis and C. parvum most commonly infect humans. Differentiating between them is important for evaluating potential sources of infection. We report here the development of a simple and accurate real-time PCR-based restriction fragment length polymorphism (RFLP) method to distinguish between C. parvum and C. hominis. Using the CP2 gene as the target, we found that both Cryptosporidium species yielded 224 bp products. In the subsequent RFLP method using TaqI, 2 bands (99 and 125 bp) specific to C. hominis were detected. Using this method, we detected C. hominis infection in 1 of 21 patients with diarrhea, suggesting that this method could facilitate the detection of C. hominis infections.  相似文献   

16.

Background

Cryptosporidiosis is an important cause for chronic diarrhea and death in HIV/AIDS patients. Among common Cryptosporidium species in humans, C. parvum is responsible for most zoonotic infections in industrialized nations. Nevertheless, the clinical significance of C. parvum and role of zoonotic transmission in cryptosporidiosis epidemiology in developing countries remain unclear.

Methodology/Principal Findings

In this cross-sectional study, 520 HIV/AIDS patients were examined for Cryptosporidium presence in stool samples using genotyping and subtyping techniques. Altogether, 140 (26.9%) patients were positive for Cryptosporidium spp. by PCR-RFLP analysis of the small subunit rRNA gene, belonging to C. parvum (92 patients), C. hominis (25 patients), C. viatorum (10 patients), C. felis (5 patients), C. meleagridis (3 patients), C. canis (2 patients), C. xiaoi (2 patients), and mixture of C. parvum and C. hominis (1 patient). Sequence analyses of the 60 kDa glycoprotein gene revealed a high genetic diversity within the 82 C. parvum and 19 C. hominis specimens subtyped, including C. parvum zoonotic subtype families IIa (71) and IId (5) and anthroponotic subtype families IIc (2), IIb (1), IIe (1) and If-like (2), and C. hominis subtype families Id (13), Ie (5), and Ib (1). Overall, Cryptosporidium infection was associated with the occurrence of diarrhea and vomiting. Diarrhea was attributable mostly to C. parvum subtype family IIa and C. hominis, whereas vomiting was largely attributable to C. hominis and rare Cryptosporidium species. Calf contact was identified as a significant risk factor for infection with Cryptosporidium spp., especially C. parvum subtype family IIa.

Conclusions/Significance

Results of the study indicate that C. parvum is a major cause of cryptosporidiosis in HIV-positive patients and zoonotic transmission is important in cryptosporidiosis epidemiology in Ethiopia. In addition, they confirm that different Cryptosporidium species and subtypes are linked to different clinical manifestations.  相似文献   

17.
The prevalence and distribution of Cryptosporidium spp. in the fecal droppings of the free-living waterfowl Canada geese were examined at 13 sites in Ohio and Illinois. On the basis of the analysis of the small-subunit rRNA gene by PCR, followed by restriction fragment length polymorphism analysis and DNA sequencing, 49 (23.4%) of 209 fecal specimens collected from 10 sites (76.9%) were positive for Cryptosporidium spp. The following five Cryptosporidium species and genotypes were identified: Cryptosporidium goose genotype I (in 36 specimens), Cryptosporidium goose genotype II (in 9 specimens), Cryptosporidium duck genotype (in 1 specimen), Cryptosporidium parvum (in 4 specimens), and C. hominis (in 2 specimens). Cryptosporidium goose genotype I was the most prevalent parasite and was found at all five Cryptosporidium-positive sites in Ohio and at four of five positive sites in Illinois, followed by Cryptosporidium goose genotype II, which was found at two of five positive sites in Ohio and at four of five positive sites in Illinois. Cryptosporidium goose genotype II was detected for the first time, and it is phylogenetically related to goose genotype I and the duck genotype. All three genotypes have not so far been reported in humans, and their pathogenicity in geese has not been determined. Only 10.2% of the Cryptosporidium-positive specimens had C. parvum and C. hominis. The results of this study indicate that Canada geese might only serve as accidental carriers of cryptosporidia infectious to humans and probably play a minor role in the animal-to-human transmission cycle of the pathogen.  相似文献   

18.
Both Cryptosporidium spp. and Giardia duodenalis are enteric protozoan parasites that infect a wide variety of domestic animals as well as humans worldwide, causing diarrheal diseases. Giardia duodenalis assemblages C and D are specific to canine hosts and zoonotic assemblages A and B are also found in dogs as a reservoir host. In dogs, Cryptosporidium canis is the host-specific species while humans are infected by C. hominis and C. parvum and at least another 16 zoonotic Cryptosporidium species have been reported causing human infections, with C. meleagridis, C. viatorum, and C. ubiquitum being the most frequent. The objective of this study was to determine the prevalence of Cryptosporidium spp. and G. duodenalis from stray dogs in areas of Bangkok and to identify the species and assemblages. Fecal samples (540) were collected from dogs residing in 95 monasteries in 48 districts in the Bangkok metropolitan area. Nested Polymerase Chain Reaction (PCR) was performed using the ssu-rRNA gene for both parasites. In total, 3.0% (16/540) samples were positive for G. duodenalis, with most being G. duodenalis assemblage D (7/16) followed by assemblage C (7/16) and zoonotic assemblage A (2/16). The prevalence of Cryptosporidium spp. was 0.7% (4/540) based on the PCR results and all were the dog genotype C. canis. These results indicated that dogs residing in Bangkok monasteries poses a limited role as source of human giardiosis and cryptosporidiosis.  相似文献   

19.
This study was undertaken in order to characterize Cryptosporidium meleagridis isolated from a turkey in Hungary and to compare the morphologies, host specificities, organ locations, and small-subunit RNA (SSU rRNA) gene sequences of this organism and other Cryptosporidium species. The phenotypic differences between C. meleagridis and Cryptosporidium parvum Hungarian calf isolate (zoonotic genotype) oocysts were small, although they were statistically significant. Oocysts of C. meleagridis were successfully passaged in turkeys and were transmitted from turkeys to immunosuppressed mice and from mice to chickens. The location of C. meleagridis was the small intestine, like the location of C. parvum. A comparison of sequence data for the variable region of the SSU rRNA gene of C. meleagridis isolated from turkeys with other Cryptosporidium sequence data in the GenBank database revealed that the Hungarian C. meleagridis sequence is identical to a C. meleagridis sequence recently described for a North Carolina isolate. Thus, C. meleagridis is a distinct species that occurs worldwide and has a broad host range, like the C. parvum zoonotic strain (also called the calf or bovine strain) and Cryptosporidium felis. Because birds are susceptible to C. meleagridis and to some zoonotic strains of C. parvum, these animals may play an active role in contamination of surface waters not only with Cryptosporidium baileyi but also with C. parvum-like parasites.  相似文献   

20.
In order to examine the prevalence of Cryptosporidium infection in wild rodents and insectivores of South Korea and to assess their potential role as a source of human cryptosporidiosis, a total of 199 wild rodents and insectivore specimens were collected from 10 regions of South Korea and screened for Cryptosporidium infection over a period of 2 years (2012-2013). A nested-PCR amplification of Cryptosporidium oocyst wall protein (COWP) gene fragment revealed an overall prevalence of 34.2% (68/199). The sequence analysis of 18S rRNA gene locus of Cryptosporidium was performed from the fecal and cecum samples that tested positive by COWP amplification PCR. As a result, we identified 4 species/genotypes; chipmunk genotype I, cervine genotype I, C. muris, and a new genotype which is closely related to the bear genotype. The new genotype isolated from 12 Apodemus agrarius and 2 Apodemus chejuensis was not previously identified as known species or genotype, and therefore, it is supposed to be a novel genotype. In addition, the host spectrum of Cryptosporidium was extended to A. agrarius and Crosidura lasiura, which had not been reported before. In this study, we found that the Korean wild rodents and insectivores were infected with various Cryptosporidium spp. with large intra-genotypic variationa, indicating that they may function as potential reservoirs transmitting zoonotic Cryptosporidium to livestock and humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号