首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
During the mouse ENU mutagenesis screen, mice were tested for the occurrence of dominant cataracts. One particular mutant was discovered as a progressive opacity (Po). Heterozygotes show opacification of a superficial layer of the fetal nucleus, which progresses and finally forms a nuclear opacity. Since the homozygotes have already developed the total cataract at eye opening, the mode of inheritance is semidominant. Linkage analysis was performed using a set of genome-wide microsatellite markers. The mutation was mapped to chromosome 11 distal of the marker D11Mit242 (9.3 +/- 4.4 cM) and proximal to D11Mit36 (2.3 +/- 2.3 cM). This position makes the betaA3/A1-crystallin encoding gene Cryba1 an excellent candidate gene. Mouse Cryba1 was amplified from lens mRNA. Sequence analysis revealed a mutation of a T to an A at the second base of exon 6, leading to an exchange of Trp by Arg. Computer analysis predicts that the fourth Greek key motif of the affected betaA3/A1-crystallin will not be formed. Moreover, the mutation leads also to an additional splicing signal, to the skipping of the first 3 bp of exon 6, and finally to the deletion of the Trp residue. Both types of mRNA are present in the homozygous mutant lenses. The mutation will be referred to as Cryba1(po1). This particular mouse mutation provides an excellent animal model for a human congenital zonular cataract with suture opacities, which is caused by a mutation in the homologous gene.  相似文献   

2.
OBJECTIVE: To localize the chromosomal position of a novel cataract mutation (juvenile recessive cataract; jrc) in mice. METHODS: A mapping population was developed by crossing cataract males (albino MH) to wild-type females (black C57BL/6J). F1 females were backcrossed to albino MH males with cataracts. RESULTS: The results were consistent with a model of a single autosomal recessive gene [153 cataract, 169 wild-type; chi2 = 0.8, 1 degree of freedom (d.f.), p > 0.35]. Linkage with the albino (tyrosinase; Tyr) locus was evident (chi2 = 61.5, 1 d.f., p < 0.0001), implicating chromosome 7 as the location of jrc. Recombination percentages (+/- SE) between jrc and D7Mit340 (1.2 cM location), D7Mit227 (16.0 cM) and D7Mit270 (18.0 cM) were 17.1 +/- 2.1, 3.7 +/- 1.1 and 6.2 +/- 1.3%, respectively. Multi-point mapping determined that the most likely order of these loci is D7Mit340 - jrc - D7Mit227 - D7Mit270 - Tyr. Although animals with the mutant phenotype appeared to have little or no sense of sight, their growth was not different (p >0.20) from that of normal mice. CONCLUSION: The jrc mutation model may be useful in the study of the genetics of cataracts in other animal species, including humans.  相似文献   

3.
4.
5.
The total body fat mass and serum concentration of total cholesterol, HDL cholesterol, and triglyceride (TG) differ between standard diet-fed female inbred mouse strains MRL/MpJ (MRL) and SJL/J (SJL) by 38-120% (P < 0.01). To investigate genetic regulation of obesity and serum lipid levels, we performed a genome-wide linkage analysis in 621 MRLx SJL F2 female mice. Fat mass was affected by two significant loci, D11Mit36 [43.7 cM, logarithm of the odds ratio (LOD) 11.2] and D16Mit51 (50.3 cM, LOD 3.9), and one suggestive locus at D7Mit44 (50 cM, LOD 2.4). TG levels were affected by two novel loci at D1Mit43 (76 cM, LOD 3.8) and D12Mit201 (26 cM, LOD 4.1), and two suggestive loci on chromosomes 5 and 17. HDL and cholesterol concentrations were influenced by significant loci on chromosomes 1, 3, 5, 7, and 17 that were in the regions identified earlier for other strains of mice, except for a suggestive locus on chromosome 14 that was specific to the MRL x SJL cross. In summary, linkage analysis in MRL x SJL F2 mice disclosed novel loci affecting TG, HDL, and fat mass, a measure of obesity. Knowledge of the genes in these quantitative trait loci will enhance our understanding of obesity and lipid metabolism.  相似文献   

6.
Kang M  Cho JW  Kim JK  Kim E  Kim JY  Cho KH  Song CW  Yoon SK 《BMB reports》2008,41(9):651-656
A mouse with cataract, Kec, was generated from N-ethyl-N-nitrosourea (ENU) mutagenesis. Cataract in the Kec mouse was observable at about 5 weeks after birth and this gradually progressed to become completely opaque by 12 weeks. Dissection microscopy revealed that vacuoles with a radial or irregular shape were located primarily in the cortex of the posterior and equatorial regions of the lens. At the late stage, the lens structure was distorted, but not ruptured. This cataract phenotype was inherited in an autosomal recessive manner. We performed a genetic linkage analysis using 133 mutant and 67 normal mice produced by mating Kec mutant (BALB/c) and F1 (C57BL/6 x Kec) mice. The Kec locus was mapped to the 3 cM region encompassed by D14Mit34 and D14Mit69. In addition we excluded coding sequences of 9 genes including Rcbtb2, P2ry5, Itm2b, Med4, Nudt15, Esd, Lcp1, Slc25a30, and 2810032E02Rik as the candidate gene that causes cataract in the Kec mouse.  相似文献   

7.
Three mutant mice with pigmentation phenotypes were recovered from a genomewide random mouse chemical mutagenesis study. White toes (Whto; MGI:1861986), Belly spot and white toes (Bswt; MGI:2152776) and Dark footpads 2 (Dfp2; MGI:1861991) were identified following visual inspection of progeny from a male exposed to the point mutagen ethylnitrosourea (ENU). In order to rapidly localize the causative mutations, genome-wide linkage scans were performed on pooled DNA samples from backcross animals for each mutant line. Whto was mapped to proximal mouse chromosome (Mmu) 7 between Cen (the centromere) and D7Mit112 (8.0 cM from the centromere), Bswt was mapped to centric Mmul between D1Mit214 (32.1 cM) and D1Mit480 (32.8 cM) and Dfp2 was mapped to proximalMmu4 between Cen and D4Mit18 (5.2 cM). Whto, Bswt and Dfp2 may provide novel starting points in furthering the elucidation of genetic and biochemical pathways relevant to pigmentation and associated biological processes.  相似文献   

8.
We discovered a mutant mouse, RCT (Rinshoken cataract), with a new congenital cataract in strain SJL/J. The opacity of the lens associated with microphthalmia could be observed visually at 3 to 3.5 months of age. Marked degeneration of the lens, including loss of the fine structure of the lens fibers and swelling of epithelial cells with vacuoles of various sizes in the cortex, but no other defects except photoreceptor degeneration in the retina, was detected. Histological change in the lens was first observed at 2 days after birth. No sex-related differences were detected, and normal phenotypes in the F1 progeny of RCT and normal mice indicated that the cataract was recessive. The chromosomal location of the causative gene was determined by interval mapping by using intersubspecific backcross progeny of RCT and MSM/Ms, an inbred strain from the Japanese wild mouse Mus musculus molossinus. Backcross progeny were divided into three groups according to phenotype: mice (1) with an early-onset cataract, which can be detected visually as in RCT mice, (2) with a late-onset cataract, which can be detected histologically but not visually, and (3) with a normal lens. Three phenotypes were found to be expressed by allele combinations of two recessive genes, rct and mrct (a modifier of rct). The rct locus essential for the onset of the cataract was tightly linked to D4Mit278 on Chromosome (Chr) 4 with no recombination. The mrct locus was closely linked to D5Mit2392= 66.3, P << 0.00001) on Chr 5. Received: 5 September 2000 / Accepted: 4 December 2000  相似文献   

9.
Thedeafwaddler(dfw) mutation, displaying motor ataxia and profound deafness, arose spontaneously in a C3H/HeJ colony and was mapped previously to distal mouse Chr 6. In this study, a high-resolution genetic map was generated by positioning 10 microsatellite markers and 5 known genes on a 968-meioses intersubspecific backcross segregating fordfw[(CAST/Ei–+/+ × C3HeB/FeJ–dfw/dfw) × C3HeB/FeJ–dfw/dfw], giving the following marker order and sex-averaged distances:D6Mit64–(0.10 + 0.10 cM)–Pang–(1.24 + 0.36 cM)–Itpr1–(0.62 + 0.25 cM)–D6Mit108–(0.52 + 0.23 cM)–D6Mit54–(0.21 + 0.15 cM)–D6Mit23, D6Mit107, D6Mit328–(0.72 + 0.27 cM)–D6Mit11–(0.21 + 0.15 cM)–dfw–(0.93 + 0.31 cM)–Gat4, D6Mit55–(0.10 + 0.10 cM)–D6Mit63–(0.31 + 0.18 cM)–Syn2–(0.62 + 0.25 cM)–D6Mit44(Rho). Female and male genetic maps are similar immediately surrounding thedfwlocus, but show marked differences in other areas. A yeast artificial chromosome-based physical map suggests that the closest markers flanking thedfwlocus,D6Mit11(proximal) andGat4, D6Mit55(distal), are contained within 650–950 kb. The human homologues of the flanking lociItpr1(proximal) andSyn2(distal) map to chromosome 3p25–p26, suggesting that the human homologue of thedfwgene is located within this same region.  相似文献   

10.
Day 3 thymectomy (D3Tx) leads to a paucity of CD4(+)CD25(+) suppressor T cells, a loss of peripheral tolerance, and the development of organ-specific autoimmune disease in adult mice. Importantly, D3Tx does not lead to autoimmune disease in all mouse strains, indicating that this process is genetically controlled. Previously, we reported linkage of D3Tx-induced autoimmune ovarian dysgenesis (AOD) and its intermediate phenotypes, antiovarian autoantibody responsiveness, oophoritis, and atrophy, to five quantitative trait loci (QTL), designated Aod1 through Aod5. We also showed interaction between these QTL and H2 as well as Gasa2, a QTL controlling susceptibility to D3Tx-induced autoimmune gastritis. To physically map Aod1, interval-specific bidirectional recombinant congenic strains of mice were generated and studied for susceptibility to D3Tx-induced AOD. Congenic mapping studies revealed that Aod1 controls susceptibility to oophoritis and comprises two linked QTL with opposing allelic effects. Aod1a resides between D16Mit211 (23.3 cM) and D16Mit51 (66.75 cM) on chromosome 16. Aod1b maps proximal of Aod1a between D16Mit89 (20.9 cM) and D16Mit211 (23.3 cM) and includes the candidate genes stefin A1, A2, and A3 (Stfa1-Stfa3), inhibitors of cathepsin S, a cysteine protease required for autoantigen presentation, and the development of autoimmune disease of the salivary and lacrimal glands following D3Tx. cDNA sequencing revealed the existence of structural polymorphisms for both Stfa1 and Stfa2. Given the roles of cathepsins in Ag processing and presentation, Stfa1 and Stfa2 alleles have the potential to control susceptibility to autoimmune disease at the level of both CD4(+)CD25(+) suppressor and CD4(+)CD25(-) effector T cells.  相似文献   

11.
Extensive evidence indicates that genetic predisposition is a central element in susceptibility to systemic lupus erythematosus both in humans and animals. We have previously shown that a congenic line carrying a 129-derived chromosome 1 interval on the C57BL/6 background developed humoral autoimmunity. To further dissect the contribution to autoimmunity of this 129 interval, we have created six subcongenic strains carrying fractions of the original 129 region and analyzed their serological and cellular phenotypes. At 1 year of age the congenic strain carrying a 129 interval between the microsatellites D1Mit15 (87.9 cM) and D1Mit115 (99.7 cM) (B6.129chr1b) had high levels of autoantibodies, while all the other congenic lines were not significantly different from the C57BL/6 controls. The B6.129chr1b strain displayed only mild proliferative glomerulonephritis despite high levels of IgG and C3 deposited in the kidneys. FACS analysis of the spleens revealed that the B6.129chr1b mice had a marked increase in the percentage of activated T cells associated with a significant reduction in the proportion of CD4(+)CD25(high) regulatory T cells. Moreover, this analysis showed a significantly reduced percentage of marginal zone B cells that preceded autoantibody production. Interestingly the 129chr1b-expressing bone marrow-derived macrophages displayed an impaired uptake of apoptotic cells in vitro. Collectively, our data indicate that the 129chr1b segment when recombined on the C57BL/6 genomic background is sufficient to induce loss of tolerance to nuclear Ags. These findings have important implication for the interpretation of the autoimmune phenotype associated with gene-targeted models.  相似文献   

12.
Looptail (Lp) is a mutation that profoundly affects neurulation in mouse and is characterized by craniorachischisis, an open neural tube extending from the midbrain to the tail in embryos homozygous for the mutation. Lp maps to the distal portion of mouse chromosome 1, and as part of a positional cloning approach, we have generated a high-resolution linkage map of the Lp chromosomal region. For this, we have carried out extensive segregation analysis in a total of 706 backcross mice informative for Lp and derived from two crosses, (Lp/ + X SJL/J)F1 X SJL/J and (Lp/ + X SWR/J)F1 X SWR/J. In addition, 269 mice from a (Mus spretus X C57BL/6J)F1 X C57BL/6J interspecific backcross were also used to order marker loci and calculate intergene distances for this region. With these mice, a total of 28 DNA markers corresponding to either cloned genes or anonymous markers of the SSLP or SSCP-types were mapped within a 5-cM interval overlapping the Lp region, with the following locus order and interlocus distances (in cM): centromere-D1Mit110 / Atp1β1 / Cd3ζ / Cd3η / D1Mit145 — D1Hun14 / D1Mit15 — D1Mit111 / D1Mit112 — D1Mit114 — D1Mit148 / D1Mit205/ D1Mit36 / D1Mit146 / D1Mit147 / D1Mit270 / D1Hun13 — Fcgr2 — Mpp — Apoa2/Fcer1γ - Lp - D1Mit149 / Spna1/Fcer1α-Eph1-Hlx1/D1Mit62. These studies have allowed the delineation of a maximum genetic interval for Lp of 0.5 cM, a size amenable to physical mapping techniques.  相似文献   

13.
Capping protein (CP), a heterodimer of α and β subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filamentsin vitroand controls actin assembly and cell motilityin vivo.Vertebrates have three α isoforms (α1, α2, α3) produced from different genes, whereas lower organisms have only one gene and one isoform. We isolated genomic clones corresponding to the α subunits of mouse CP and found three α1 genes, two of which are pseudogenes, and a single gene for both α2 and α3. Their chromosomal locations were identified by interspecies backcross mapping. The α1 gene (Cappa1) mapped to Chromosome 3 betweenD3Mit11andD3Mit13.The α1 pseudogenes (Cappa1-ps1andCappa1-ps2) mapped to Chromosomes 1 and 9, respectively. The α2 gene (Cappa2) mapped to Chromosome 6 nearPtn.The α3 gene (Cappa3) also mapped to Chromosome 6, approximately 68 cM distal fromCappa2nearKras2.One mouse mutation,de,maps in the vicinity of the α1 gene. No known mouse mutations map to regions near the α2 or α3 genes.  相似文献   

14.
A substrain of mice originating from the CF#1 strain (an outbred colony) reared at Osaka Prefecture University (CF#1/lr mice) develops cataracts beginning at 4 weeks of age. Affected mice were fully viable and fertile and developed cataracts by 14 weeks of age. Histologically, CF#1/lr mice showed vacuolation of the lens cortex, swollen lens fibers, lens rupture and nuclear extrusion. To elucidate the mode of inheritance, we analyzed heterozygous mutant hybrids generated from CF#1/lr mice and wild-type BALB/c mice. None of the heterozygous mutants were affected, and the ratio of affected to unaffected mice was 1:3 among the offspring of the heterozygous mutants. For the initial genome-wide screening and further mapping, we used affected progeny of CF#1/lr × (CF#1/lr × BALB/c) mice. We concluded that the cataracts in CF#1/lr mice are inherited through an autosomal recessive mutation and that the mutant gene is located on mouse chromosome 3 between D3Mit79 and D3Mit216. In this region, we identified 8 genes associated with ocular disease. All 8 genes were sequenced and a novel point mutation (1 bp insertion of cytosine) in exon 7 of the Bcar3 gene was identified. This mutation produced a premature stop codon and a truncated protein. In conclusion, we have identified the first spontaneous mutation in the Bcar3 gene associated with lens extrusion cataracts. This novel cataract model may provide further knowledge of the molecular biology of cataractogenesis and the function of the BCAR3 protein.  相似文献   

15.
The B10.M mouse strain represents a model for male subfertility as it produces a significantly low number of offspring. The only known male reproductive phenotype of this strain is its high frequency of sperm-head morphological abnormalities (44.7 ± 2.4 %). We previously reported that this phenotype was the product of two recessive loci. In this study we mapped the loci causing the high frequency of sperm-head morphological abnormalities in this strain using F2 animals produced by crossing B10.M and C3H mice. Quantitative trait loci (QTL) analysis (n = 178) identified two recessive genes, one on Chromosome (Chr) 1 (LOD score = 30.585) and one on Chr 4 (LOD score = 4.532). Further analysis (n = 854) mapped the locus on Chr 1 between Ercc5 (23.55 cM) and D1Mit528 (25.95 cM) and the locus on Chr 4 between D4Mit148 (69.48 cM) and D4Mit170 (70.47 cM). It was also found that the effects of these two loci were not independent. The major locus on Chr 1 determines the expression of sperm-head abnormalities, while the locus on Chr 4 enhances the frequency of abnormalities only when the genotype of the Chr 1 locus is homozygous for the B10.M allele. The major locus on Chr 1 was named sperm-head morphology 1 (Shm1), while the modifier locus on Chr 4 was named sperm-head morphology 2 (Shm2).  相似文献   

16.
Radiation hybrid (RH) mapping of the mouse genome provides a useful tool in the integration of existing genetic and physical maps, as well as in the ongoing effort to generate a dense map of expressed sequence tags. To facilitate functional analysis of mouse Chromosome 5, we have constructed a high-resolution RH map spanning 75 cM of the chromosome. During the course of these studies, we have developed RHBase, an RH data management program that provides data storage and an interface to several RH mapping programs and databases. We have typed 95 markers on the T31 RH panel and generated an integrated map, pooling data from several sources. The integrated RH map ranges from the most proximal marker, D5Mit331 (Chromosome Committee offset, 3 cM), to D5Mit326, 74.5 cM distal on our genetic map (Chromosome Committee offset, 80 cM), and consists of 138 markers, including 89 simple sequence length polymorphic markers, 11 sequence-tagged sites generated from BAC end sequence, and 38 gene loci, and represents average coverage of approximately one locus per 0.5 cM with some regions more densely mapped. In addition to the RH mapping of markers and genes previously localized on mouse Chromosome 5, this RH map places the alpha-4 GABA(A) receptor subunit gene (Gabra4) in the central portion of the chromosome, in the vicinity of the cluster of three other GABA(A) receptor subunit genes (Gabrg1-Gabra2-Gabrb1). Our mapping effort has also defined a new cluster of four genes in the semaphorin gene family (Sema3a, Sema3c, Sema3d, and Sema3e) and the Wolfram syndrome gene (Wfs1) in this region of the chromosome.  相似文献   

17.
A chlorambucil (CHL)-induced mutation of thejcpk(juvenile congenital polycystic kidney disease) gene causes a severe early onset polycystic kidney disease. In an intercross involvingMus musculus castaneus, jcpkwas precisely mapped 0.2 cM distal toD10Mit115and 0.8 cM proximal toD10Mit173.In addition, five genes,Cdc2a, Col6a1, Col6a2, Bcr,andAnk3were mapped in both thisjcpkintercross and a (BALB/c × CAST/Ei)F1× BALB/c backcross. All five genes were eliminated as possible candidates forjcpkbased on the mapping data. Thejcpkintercross allowed the orientation of theAnk3gene relative to the centromere to be determined.D10Mit115, D10Mit173, D10Mit199,andD10Mit200were separated genetically in this cross. The order and genetic distances of all markers and gene loci mapped in thejcpkintercross were consistent with those derived from the BALB/c backcross, indicating that the CHL-induced lesion has not generated any gross chromosomal abnormalities detectable in these studies.  相似文献   

18.
19.
A single recessive gene, ter (teratoma), causes germ cell deficiency and a high incidence of congenital testicular teratomas in the 129/Sv-ter strain of the mouse. Linkage analyses between the ter gene and 36 marker genes of 19 chromosomes were performed with matings between the C57BL/6J-ter congenic strain and four inbred strains. Results showed that the ter gene was linked to D18Mit9, D18Mit14, and D18Mit17 on Chromosome (Chr) 18. Gene order estimated on the basis of recombination distance (in centimorgans) was [centromere-D18Mit14-5.1 (cM)-ter-0 (cM)-D18Mit17-23.8 (cM)-D18Mit9]. D18Mit17 is the microsatellite DNA of the Grl-1 (glucocorticoid receptor-1) locus. We conclude that the ter gene is closely linked to Grl-1 on Chr 18 and is a new mutation involving the developmental modification of primordial germ cells in mice.Deceased  相似文献   

20.
Hindshaker (hsh), a spontaneous, autosomal recessive mouse mutation, displays a developmentally dependent tremor of the hindquarters due to hypomyelination in the CNS. This myelin deficit is followed by progressive, but incomplete, recovery by postnatal day 42. Herein we describe the construction of a genomic contig spanning the interval between the markers D3Mit187 (42.4 cM) and D3Mit232 (45.2 cM) on mouse chromosome 3, which we have previously shown to contain the hsh mutation. A physical map, covering approximately 3.5 Mb, was constructed from a series of overlapping yeast and bacterial artificial chromosomes. A 1.2- to 1.4-Mb segment central to the contig was compared extensively with the syntenic regions in human (chromosome 1q21-q23) and rat (chromosome 2). We present new data on 10 genes erroneously assigned to this area and on another 6 genes previously assigned elsewhere. For absent genes, our work suggests that they are telomeric to the region encompassed in our map. Accordingly, our findings both map the area surrounding the hsh mutation and present important corrections to the current maps in an area rich in genes related to the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号