首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Incubation of human erythroleukaemia K562 cells with Al-transferrin inhibited iron uptake from 59Fe-transferrin by about 80%. The inhibition was greater than that produced by a similar quantity of Fe-transferrin. Preincubation of cells for 6 h with either Al-transferrin or Fe-transferrin diminished the number of surface transferrin receptors by about 40% compared with cells preincubated with apo-transferrin. Al-transferrin did not compete significantly with Fe-transferrin for transferrin receptors and, when cells were preincubated for 15 min instead of 6 h, the inhibitory effect of Al-transferrin on receptor expression was lost. Both forms of transferrin also decreased the level of transferrin receptor mRNA by about 50%, suggesting a common regulatory mechanism. Aluminium citrate had no effect on iron uptake or transferrin-receptor expression. AlCl3 also had no effect on transferrin-receptor expression, but at high concentration it caused an increase in iron uptake by an unknown, possibly non-specific, mechanism. Neither Al-transferrin nor AlCl3 caused a significant change in cell proliferation. It is proposed that aluminium, when bound to transferrin, inhibits iron uptake partly by down-regulating transferrin-receptor expression and partly by interfering with intracellular release of iron from transferrin.  相似文献   

2.
Aluminium cycling in the soil-plant-animal-human continuum   总被引:3,自引:0,他引:3  
Z. Rengel 《Biometals》2004,17(6):669-689
A critical review of the literature on Al toxicity in plants, animals and humans reveals a similar mode of Al action in all living organisms, namely interference with the secondary messenger system (phosphoinositide and cytosolic Ca2+ signalling pathways) and enhanced production of reactive oxygen species resulting in oxidative stress. Aluminium uptake by plants is relatively quick (across the intact plasma membrane in < 30 min and across the tonoplast in < 1 h), despite huge proportion of Al being bound in the cell wall. Aluminium absorption in the animal/human digestive system is low (only about 0.1% of daily Al intake stays in the human body), except when Al is complexed with organic ligands (eg. citrate, tartarate, glutamate). Aluminium accumulates in bones and brain, with Al-citrate and Al-transferrin complexes crossing the blood-brain barrier and accumulating in brain cells. Tea plant and other Al-accumulator plant species contain large amounts of Al in the form of non-toxic organic complexes.  相似文献   

3.
13CNMR and 1HNMR studies revealed that aluminum citrate (Al-citrate) was metabolized intracellularly and that oxalic acid was an important product in the Al-stressed cells. This dicarboxylic acid was produced via the oxidation of glyoxylate, a precursor generated through the cleavage of isocitrate. In the control cells, citrate was biotransformed essentially with the aid of regular tricarboxylic cycle (TCA) enzymes. However, these control cells were able neither to uptake nor to metabolize Al-citrate. Al-stressed cells obtained at 38–40 h of growth showed maximal Al-citrate uptake and biotransforming activities. At least a fourfold increase in the activity of the enzyme isocitrate lyase (ICL, E. C. 4.1.3.1) has been observed in the Al-stressed cells compared with the control cells. The transport of Al-citrate was sensitive to p-dinitrophenol and sodium azide, but not to dicyclohexylcarbodiimide. Experiments with the dye 9-aminoacridine revealed that the translocation of Al-citrate led to an increase in intracellular pH. Thus, it appears that after the uptake of Al-citrate, this complex is metabolized intracellularly. Received: 13 August 2002 / Accepted: 4 September 2002  相似文献   

4.
(13)CNMR and (1)HNMR studies revealed that aluminum citrate (Al-citrate) was metabolized intracellularly and that oxalic acid was an important product in the Al-stressed cells. This dicarboxylic acid was produced via the oxidation of glyoxylate, a precursor generated through the cleavage of isocitrate. In the control cells, citrate was biotransformed essentially with the aid of regular tricarboxylic cycle (TCA) enzymes. However, these control cells were able neither to uptake nor to metabolize Al-citrate. Al-stressed cells obtained at 38-40 h of growth showed maximal Al-citrate uptake and biotransforming activities. At least a fourfold increase in the activity of the enzyme isocitrate lyase (ICL, E. C. 4.1.3.1) has been observed in the Al-stressed cells compared with the control cells. The transport of Al-citrate was sensitive to p-dinitrophenol and sodium azide, but not to dicyclohexylcarbodiimide. Experiments with the dye 9-aminoacridine revealed that the translocation of Al-citrate led to an increase in intracellular pH. Thus, it appears that after the uptake of Al-citrate, this complex is metabolized intracellularly.  相似文献   

5.
For a microdialytic trapping method we systematically investigated changes in concentrations of 2,5-dihydroxy-benzoic acid (2,5-DHBA) and 2,3-dihydroxy-benzoic acid (2,3-DHBA) in freshly prepared solutions of salicylic acid (SA). The solvent was 0.9% saline exposed to different atmospheric concentrations of oxygen (0, 21, and 100%). The solutions were treated by freezing-thawing and an ultrasonic bath in presence and absence of aluminium foil. Without aluminium the concentrations of 2,5-DHBA and 2,3-DHBA kept constant over an observed period of 160 min on different levels from below 20 ng/ml to about 100 ng/ml. In presence of aluminium the concentrations increased to maximum 307 ng/ml after 160 min. Ultrasonic irradiation amplified this effect to maximum 341 ng/ml. HPLC/ECD processing and quantitative analysis of dihydroxy-benzoic acids (DHBAs) in microdialysis may be artificially influenced by varying oxygen environment and metal catalysis.  相似文献   

6.
As aluminium (Al) severely inhibits magnesium (Mg) uptake by many plant species, Mg uptake and Mg-Al interactions in maize (Zea mays L.) were studied in a series of short and long-term experiments. A relationship between Mg uptake and the degree of Mg saturation of exchange or binding sites of the root apoplast (root-CEC) was studied by growing plants in solutions containing: (i) different concentrations of Al, calcium (Ca) and hydrogen (H) ions; and (ii) a number of organic complexes of Al. In short-term experiments, Ca had little effect on the Mg nutrition of maize plants. However, with increasing concentrations of Al and H ions in nutrient solution, there was a decrease in both the degree of Mg saturation of root-CEC and Mg uptake. Effects of pH on cation (H, Al, Mg, Ca) binding at the root apoplasm were pronounced and complicated because of a simultaneous change of H ion concentration, effective root-CEC and Al speciation. The behaviour of Al as organic Al complexes differed from that supplied as aluminium chloride (AlCl3). In the presence of organo-Al complexes, less Mg was replaced from apoplastic binding sites and Mg uptake was inhibited less severely than with AlCl3. In a long-term experiment, Al-citrate, in contrast with AlCl3, was not phytotoxic to maize, expressed by the lack of any inhibition of shoot biomass production.  相似文献   

7.
Fibroblasts isolated from guinea pig mammary glands were cultured in 96 well culture plates in the presence of various concentrations of insulin, growth hormone and prolactin. Insulin (30 micrograms/ml increased uptake of tritiated thymidine by 30%. Higher concentrations of insulin did not result in any further increase in thymidine uptake. Growth hormone alone did not alter thymidine uptake in concentrations of 0 to 250 ng/ml. 300 ng/ml gave thymidine uptake of 136% of controls. In the presence of 20 g/ml insulin, growth hormone (250 ng/ml) increased thymidine uptake to approximately double that of controls. Prolactin alone (300 ng/ml decreased thymidine uptake by 19%. Insulin increased thymidine uptake, but the negative effect of prolactin was still evident above 150 ng/ml.  相似文献   

8.
High-density lipoprotein (HDL) cholesteryl esters are taken up by fibroblasts via HDL particle uptake and via selective uptake, i.e., cholesteryl ester uptake independent of HDL particle uptake. In the present study we investigated HDL selective uptake and HDL particle uptake by J774 macrophages. HDL3 (d = 1.125-1.21 g/ml) was labeled with intracellularly trapped tracers: 125I-labeled N-methyltyramine-cellobiose-apo A-I (125I-NMTC-apo A-I) to trace apolipoprotein A-I (apo A-I) and [3H]cholesteryl oleyl ether to trace cholesteryl esters. J774 macrophages, incubated at 37 degrees C in medium containing doubly labeled HDL3, took up 125I-NMTC-apo A-I, indicating HDL3 particle uptake (102.7 ng HDL3 protein/mg cell protein per 4 h at 20 micrograms/ml HDL3 protein). Apparent HDL3 uptake according to the uptake of [3H]cholesteryl oleyl ether (470.4 ng HDL3 protein/mg cell protein per 4 h at 20 micrograms/ml HDL3 protein) was in significant excess on 125I-NMTC-apo A-I uptake, i.e., J774 macrophages demonstrated selective uptake of HDL3 cholesteryl esters. To investigate regulation of HDL3 uptake, cell cholesterol was modified by preincubation with low-density lipoprotein (LDL) or acetylated LDL (acetyl-LDL). Afterwards, uptake of doubly labeled HDL3, LDL (apo B,E) receptor activity or cholesterol mass were determined. Preincubation with LDL or acetyl-LDL increased cell cholesterol up to approx. 3.5-fold over basal levels. Increased cell cholesterol had no effect on HDL3 particle uptake. In contrast, LDL- and acetyl-LDL-loading decreased selective uptake (apparent uptake 606 vs. 366 ng HDL3 protein/mg cell protein per 4 h in unloaded versus acetyl-LDL-loaded cells at 20 micrograms HDL3 protein/ml). In parallel with decreased selective uptake, specific 125I-LDL degradation was down-regulated. Using heparin as well as excess unlabeled LDL, it was shown that HDL3 uptake is independent of LDL (apo B,E) receptors. In summary, J774 macrophages take up HDL3 particles. In addition, J774 cells also selectively take up HDL3-associated cholesteryl esters. HDL3 selective uptake, but not HDL3 particle uptake, can be regulated.  相似文献   

9.
Ma JF  Hiradate S 《Planta》2000,211(3):355-360
 The forms of Al for uptake by the roots and translocation from the root to the shoot were investigated in a buckwheat (Fagopyrum esculentum Moench, cv. Jianxi) that accumulates Al in its leaves. The Al concentration in the xylem sap was 15-fold higher in the plants exposed to AlCl3 than in those exposed to an Al-oxalate (1:3) complex, suggesting that the roots take up Al in the ionic form. The Al concentration in the xylem sap was 4-fold higher than that in the external solution after a 1-h exposure to AlCl3 solution and 10-fold higher after a 2-h exposure. The Al concentration in the xylem sap increased with increasing Al concentration in the external solution. The Al uptake was not affected by a respiratory inhibitor, hydroxylamine, but significantly inhibited by the addition of La. These results suggest that Al uptake by the root is a passive process, and La3+ competes for the binding sites for Al3+ on the plasma membrane. The form of Al in the xylem sap was identified by 27Al-nuclear magnetic resonance analysis. The chemical shift of 27Al in the xylem sap was around 10.9 ppm, which is consistent with that of the Al-citrate complex. Furthermore, the dominant organic acid in the xylem sap was citric acid, indicating that Al was translocated in the form of Al-citrate complex. Because Al is present as Al-oxalate (1:3) in the root, the present data show that ligand exchange from oxalate to citrate occurs before Al is released to xylem. Received: 10 December 1999 / Accepted: 3 February 2000  相似文献   

10.
Form of Al changes with Al concentration in leaves of buckwheat   总被引:19,自引:0,他引:19  
Buckwheat (Fagopyrum esculentum Moench. cv. Jianxi) is known as an Al-accumulating plant. The process leading to the accumulation of Al in the leaves was investigated, focusing on the chemical form of Al using 27Al-nuclear magnetic resonance. Leaves with different Al concentrations were prepared by growing buckwheat on a very acidic soil (Andosol) amended with or without CaCO3 (1 or 3 g x kg-1 soil). When the Al concentration of the leaves was lower, only one major signal was observed at a chemical shift of 16.1 ppm, which was assigned to an Al-oxalate complex at a 1:3 ratio. However, when the Al concentration of the leaves increased to a high level (e.g. 12 g Al kg-1), an additional signal at a chemical shift of 11.2 ppm was observed. This signal was assigned to an Al-citrate complex at a 1:1 ratio. In the leaf with a high Al concentration, both Al-oxalate (1:3) and Al-citrate (1:1) were detected in marginal and middle parts, while only Al-oxalate was detected in the basal part. The oxalate concentration did not differ very much between leaves with low and high Al concentrations at the same position, while citrate concentration significantly increased with increasing Al concentration when the oxalate/Al ratio became lower than 3.0. As the Al-citrate complex has been demonstrated to be the form of transport in the xylem, the results suggest that when internal oxalate is enough to form a complex with Al at a 3:1 ratio in the leaves with a low Al concentration, Al-citrate converts to Al-oxalate. However, this conversion does not occur in the leaves with a very high Al concentration, resulting in the coexistence of both Al-oxalate and Al-citrate complexes.  相似文献   

11.
Miklya I  Knoll J 《Life sciences》2003,72(25):2915-2921
Endogenous and synthetic enhancer substances enhance in low concentration the impulse propagation mediated release of transmitters from the catecholaminergic and serotonergic neurons in the brain. The purpose of this study was to see whether uptake or MAO inhibition or agonists have similar enhancing prospectives as the enhancer substances. We measured the electrical stimulation induced release of [3H]-norepinephrine or [3H]-dopamine or [3H]-serotonin from the isolated brain stem of rats. (-)-1-Benzofuran-2-yl)-2-propylaminopentane HCl [(-)-BPAP] was used as a prototype of the enhancer compounds. 50 ng/ml (-)-BPAP was the most effective concentration in enhancing the nerve stimulation induced release of [3H]-norepinephrine and [3H]-dopamine, 10 ng/ml (-)-BPAP was highly effective in enhancing the release of [3H]-serotonin. In contrast, 250 ng/ml desmethylimipramine (DMI), a selective inhibitor of the uptake of norepinephrine, did not change significantly the nerve stimulation induced release of [3H]-norepinephrine and 50 ng/ml fluoxetine, a selective inhibitor of the uptake of serotonin, did not change the release of [3H]-serotonin. Neither 250 ng/ml clorgyline, a selective inhibitor of MAO-A, nor 250 ng/ml lazabemide, a selective inhibitor MAO-B, was capable to significantly increase the nerve stimulation induced release of either [3H]-serotonin or [3H]-norepinephrine. The potent dopamine receptor agonists, pergolide and bromocriptine did not change significantly the release of [3H]-dopamine in 50 ng/ml concentration, which is sufficient to stimulate the dopamine receptors. The results prove that stimulation of catecholaminergic and serotonergic neurons in the brain via the enhancing mechanism is clearly different from influencing uptake or MAO.  相似文献   

12.
We investigated the in vitro activation of rat liver macrophages to a tumor-cytotoxic state with muramyl dipeptide (MDP), rough LPS (Re-LPS) and lipid A in both a free and liposome-encapsulated form. The tumor cytotoxic state of the liver macrophages was determined with a [methyl-3H]thymidine release assay using C26 colon adenocarcinoma cells as target cells. As was shown previously, the encapsulation of MDP within multi-lamellar phospholipid vesicles greatly enhanced the activating potency of the drug; by contrast, encapsulation of Re-LPS or lipid A significantly reduced the activation of macrophages as compared to the free form of these agents. At a dose of 1 ng of free Re-LPS per ml a significant induction of tumor cell lysis was observed whereas a maximal level was obtained at a concentration of approximately 10 ng/ml. By encapsulation of Re-LPS in liposomes the activating potency diminished 20- to 100-fold. The minimal concentration required to induce detectable macrophage activation with free lipid A was 10 ng/ml, while liposome-encapsulated lipid A did not induce any detectable tumor cell lysis up to a concentration of 200 ng/ml. After a 1-h pre-incubation with a lysosomal fraction from rat liver at pH 4.8, the macrophage-activating potency of Re-LPS and lipid A was diminished by up to 95% whereas MDP remained fully active under these conditions. We conclude that, due to endocytic uptake of liposome-incorporated Re-LPS and lipid A and subsequent intralysosomal degradation, these immunomodulators are inactivated with respect to their potency to activate liver macrophages to tumor cytotoxicity.  相似文献   

13.
When nonsuppressible insulin-like protein (NSILP) isolated and purified from human serum was added at concentrations of 5 and 50 ug/ml to cultures of human dermal fibroblasts, both cell proliferation and DNA synthesis were enhanced. However, NSILP, 50 ug/ml, had no effect on glucose uptake. In contrast, insulin, 40 ng/ml (1.0 mU/ml), had no effect on cell proliferation or DNA synthesis, but stimulated glucose uptake. These observations suggest that human NSILP may play an important role in tissue repair or growth by enhancing fibroblast proliferation, but not a significant glucoregulatory role.  相似文献   

14.
Quiescent cultured Nakano mouse lens cells incubated for 40 hours with sodium orthovanadate incorporated 3H-thymidine at an accelerated rate; the greatest response occurred at 20 microM vanadate, whereas by 2 microM an incorporation rate equivalent to unstimulated cells was noted. Microscopic examination of the cells revealed that those exposed to concentrations of vanadate greater than 100 microM had lysed by the end of the 40-hour incubation. Reduction in vanadate exposure time to 1 hour caused the cells to incorporate the greatest amount of 3H-thymidine at a vanadate concentration of 200 microM to 500 microM. Half-maximum incorporation of 3H-thymidine (after a 40-hour incubation) was induced by a 2-hour incubation with 20 microM vanadate. Studies with insulin showed that while 20 ng/ml insulin alone did not increase 3H-thymidine incorporation, 20 ng/ml insulin in combination with 20 microM vanadate resulted in a significant increase in 3H-thymidine uptake over cells exposed to only vanadate. Insulin alone will increase cell number and insulin with vanadate are synergistic in the stimulation of DNA synthesis, but the two together show no further increase in cell number over that produced by insulin alone. Thus, vanadate can increase progression from G1/G0 to S-phase, but cannot stimulate cells to divide. Studies designed to detect DNA damage and repair rather than S-phase DNA synthesis demonstrated that vanadate was not causing increased 3H-thymidine uptake by damaging DNA. Cell counts revealed that vanadate, while able to induce DNA synthesis, does not induce mitosis. Autoradiography and equilibrium sedimentation experiments demonstrated that gene amplification was not occurring. A known vanadate exchange inhibitor blocked the ability of vanadate to increase 3H-thymidine incorporation which is consistent with the idea that cellular internalization of vanadate is required for this effect to be seen. 86Rb+ uptake experiments demonstrate that the vanadate concentration inducing 50% inhibition of (Na+, K+)ATPase is nearly two orders of magnitude more concentrated that vanadate concentrations shown capable of inducing 3H-thymidine uptake. This strongly suggests that (Na+, K+)ATPase inhibition is not the central mechanism by which DNA synthesis is stimulated by vanadate.  相似文献   

15.
The accumulation of several amino acids in the acid-soluble fraction and their incorporation into protein in rat liver parenchymal cell suspensions, has been shown to depend on the concentration of cells in the incubation medium; the uptake, both in the acid-soluble and the acid-insoluble fractions, decreased as the cell concentration increased from 0.03 X 10(6) cells/ml upwards, reaching a plateau at high cell concentrations (3-5 X 10(6) cells/ml). The uptake values at high cell concentrations were the same as those obtained in liver slices in which a similar effect was not observed. Evidence is presented which suggests that this phenomenon is mediated by a material released from the cells in suspension, which is inhibitory to enhancement of the uptake of amino acids by these cells over and above the value obtained in normal, adult liver slices.  相似文献   

16.
Analysis of camptothecins in biologic media is hampered by chemical hydrolysis of the parent lactone (form I) to an inactive hydroxy acid (form II). A solid-phase extraction (SPE) method utilizing C2-bonded silica particles (100 mg, 1 ml) is presented for simultaneous determination of forms I and II of camptothecin (CPT) and SN-38 (active metabolite of clinically used CPT-11) in culture media and cell lysates. A new HPLC separation is described that efficiently resolves all four compounds employing gradient elution with 10 mM ammonium acetate, increasing methanol (20-80% over 15 min), and a 15-cm by 3-mm Symmetry Shield (RP8) column. Components were detected by fluorescence at an excitation wavelength of 380 nm and emission wavelength of 423 nm. Lactones were shown to be unstable at alkaline pH and hydroxy acids unstable at alkaline pH while the following conditions preserved the chemical equilibrium in specimens: samples kept on ice, final pH of eluates 7.4, autosampler temperature 4 degrees C, and analysis cycle <4 h. Quantitative recovery of lactones was achieved from RPMI culture medium over a wide concentration range (93.5-111.6% for 1-400 ng/ml) although greater variability was noted with the hydroxy acids (59.6-110.3%, 1-400 ng/ml). Limit of quantitation (precision and accuracy <20%) was 0.2 ng/ml for CPT lactone, 0.5 ng/ml for SN-38 lactone, and 2 ng/ml for the two hydroxy acids. The method was applied to quantitate the accumulation of SN-38 and CPT (form I and II) in HT29 and HCT116 human colon cancer cells.  相似文献   

17.
Cellular Al accumulation has been shown to alter iron metabolism and induce peroxidative injury. Therefore antioxidants could potentially reduce or prevent peroxidative injury in Al-loaded cells. To test this hypothesis we assessed the effect of the antioxidants N-acetyl cysteine (NAC), catalase, superoxide dismutase (SOD), and tetramethylpiperidine 1-oxyl (TEMPO) in abrogating Al-associated cell toxicity and melonyldialdehyde (MDA) accumulation in mouse hepatocytes. Mouse hepatocytes (MH) were grown in media containing the minimum toxic concentration of Al (100 microg/L as Al-transferrin). All antioxidants protected MH from injury as assessed by cell growth and enzyme leakage into media. The antioxidants did not affect Al uptake by MH, protect MH from lipid peroxidation or decrease the reactive iron content of MH. Although antioxidants protected Al loaded MH from injury the mechanisms of this effect are unknown.  相似文献   

18.
Human leukaemic T lymphoblasts made resistant to low levels (20-40 ng/ml) of vinblastine have altered respiratory capacity. Cellular oxygen uptake was greater in resistant cells compared with sensitive cells, and vinblastine (40 ng/ml) caused immediate inhibition of oxygen uptake in sensitive cells, but not in resistant cells. Isolated mitochondria reflected the changes observed in the intact cells. Rates of oxidation of cytochrome c, succinate and glutamine were higher in mitochondria from resistant cells and were little affected by challenge with vinblastine, whereas vinblastine at 40 ng/ml was completely inhibitory for sensitive cell mitochondria. Azide inhibited vinblastine efflux from sensitive and resistant cells in both the presence and absence of glucose. Levels of protein, total lipid, free cholesterol and cardiolipin were elevated in vinblastine-resistant lymphoblasts.  相似文献   

19.
A protein was isolated from plasma of partially (70%) hepatectomized rats that, injected in mice, increases the uptake of [3H]thymidine by liver DNA by 200-300% over that by injected control saline. The purification procedure consists essentially of three chromatography steps, employing Sephadex G-75, DEAE-cellulose and hydroxyapatite. The hepatic promoter (HP) preparation shows a single band in SDS/polyacrylamide (15%)-gel electrophoresis (silver stained), with an Mr of 64 000; its activity is suppressed by trypsin or pepsin and is unaffected by deoxyribonuclease or ribonuclease. On injection into mice (150 ng/mouse), it increases the mitotic index of the liver. It shows organ-specificity, acting on liver but not on spleen, kidney, lung or brain. In primary liver cultures, it produces an increase in uptake of [3H]thymidine into DNA in the range 1-10 ng/ml. In this system in vitro, it increases the uptake of 22Na+ immediately after addition.  相似文献   

20.
Fibronectin (FN) is a major component of the extracellular matrix which plays important roles in a variety of cellular processes including cell adhesion, and migration. The soluble cellular form of FN has a monomer molecular weight of approximately 250 kDa, and generally exists as a dimer of 500 kDa. We have isolated a different form of soluble FN from mouse breast cancer cell line SC115 conditioned medium (CM) and purified it to homogeneity as evidenced by both native polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate PAGE. It still exhibits a monomeric form of about 250 kDa while its form in the CM is stable and soluble with an apparent tetrameric molecular weight in the range of 800-1000 kDa. This form of FN is a potent cell adhesion factor (AF) that induces adhesion to polystyrene, elongation, spreading, alignment or “track” formation, and migration of mouse erythroleukemia cells. Column fractions homogeneous for AF protein were able to stimulate 10% cell adhesion at concentrations of 23 ng/ml and 1.9 ng/cm2. Purified AF induced 50% cell adhesion at 94 ng/ml and 7.5 ng/cm2. AF also increased the migration of human aortic smooth muscle and vascular endothelial cells. However, this form of FN differs from other forms as it does not bind tightly to either gelatin or heparin. Studies of this AF should shed light on adhesion of cells to extracellular matrix molecules and on cell migration, both of which are critical in several biological processes such as wound healing, metastasis, matrix formation and structure, and organ development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号