首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, we show that miR‐515‐5p inhibits cancer cell migration and metastasis. RNA‐seq analyses of both oestrogen receptor receptor‐positive and receptor‐negative breast cancer cells overexpressing miR‐515‐5p reveal down‐regulation of NRAS, FZD4, CDC42BPA, PIK3C2B and MARK4 mRNAs. We demonstrate that miR‐515‐5p inhibits MARK4 directly 3′ UTR interaction and that MARK4 knock‐down mimics the effect of miR‐515‐5p on breast and lung cancer cell migration. MARK4 overexpression rescues the inhibitory effects of miR‐515‐5p, suggesting miR‐515‐5p mediates this process through MARK4 down‐regulation. Furthermore, miR‐515‐5p expression is reduced in metastases compared to primary tumours derived from both in vivo xenografts and samples from patients with breast cancer. Conversely, miR‐515‐5p overexpression prevents tumour cell dissemination in a mouse metastatic model. Moreover, high miR‐515‐5p and low MARK4 expression correlate with increased breast and lung cancer patients' survival, respectively. Taken together, these data demonstrate the importance of miR‐515‐5p/MARK4 regulation in cell migration and metastasis across two common cancers.  相似文献   

2.
This study was implemented to figure out whether lncRNA HOTAIR/miR‐17‐5p/PTEN axis played a role that was opposite to Shenqifuzheng (SQFZ) injection in regulating the chemosensitivity of gastric cancer cells. The gastric cancer tissues were gathered and four gastric cancer cell lines were prepared, including BGC‐823, MGC‐803, SGC‐7901, and MKN28. Moreover, cisplatin, adriamycin, mitomycin, and 5‐fluoroura were managed as the chemo‐therapeutics, and SQFZ was prepared as a Chinese medicine. Striking distinctions of HOTAIR, miR‐17‐5p, and PTEN expressions were observed between gastric cancer tissues and para‐carcinoma normal tissues (< 0.05). MKN28 was associated with the highest resistance to cisplatin, adriamycin, mitomycin, and 5‐fluoroura among all the cell types, and SQFZ significantly improved the MKN28 cells’ sensitivity to the drugs (< 0.05). The over‐expressed HOTAIR and miR‐17‐5p, as well as under‐expressed PTEN tended to significantly facilitate the viability, EMT process and proliferation of MKN28 cells that were subject to treatment of chemo‐therapies (< 0.05). SQFZ could amplify the effects of si‐HOTAIR, miR‐17‐5p inhibitor, and pcDNA‐PTEN on boosting the chemosensitivity of gastric cancer cells (< 0.05). In addition, HOTAIR was also found to directly target miR‐17‐5p, and PTEN appeared to be subject to the modification of HOTAIR and miR‐17‐5p in its acting on the viability, proliferation, EMT process, and apoptosis of gastric cancer cells. The HOTAIR/miR‐17‐5p/PTEN axis could be regarded as the potential treatment targets for gastric cancer, and adjuvant therapy of SQFZ injection could assist in further improving the treatment efficacy of chemo‐therapies for gastric cancer.  相似文献   

3.
This study purposed to explore the correlation between miR‐129‐5p and TGIF2 and their impacts on glioma cell progression. Differentially expressed miRNA was screened through microarray analysis. MiR‐129‐5p expression levels in glioma tissues and cells were measured by qRT‐PCR. CCK‐8 assay, flow cytometer, transwell assay and wound‐healing assay were employed to detect cell proliferation, apoptosis and cycle, invasiveness and migration, respectively. Dual‐luciferase reporting assay was performed to confirm the targeted relationship between miR‐129‐5p and TGIF2. The effects of TGIF2 expression on cell biological functions were also investigated using the indicated methods. Tumour xenograft was applied to explore the impact of miR‐129‐5p on tumorigenesis in vivo. MiR‐129‐5p expression was down‐regulated in both glioma tissues and glioma cells, while TGIF2 expression was aberrantly higher than normal level. Dual‐luciferase reporter assay validated the targeting relation between miR‐129‐5p and TGIF2. Overexpression of miR‐129‐5p or down‐regulation of TGIF2 inhibited the proliferation, invasion and migration capacity of glioma cells U87 and U251, and meanwhile blocked the cell cycle as well as induced cell apoptosis. MiR‐129‐5p overexpression repressed the tumour development in vivo. MiR‐129‐5p and TGIF2 had opposite biological functions in glioma cells. MiR‐129‐5p could inhibit glioma cell progression by targeting TGIF2, shining light for the development of target treatment for glioma.  相似文献   

4.
5.
MiR‐4732‐5p was previously found to be dysregulated in nipple discharge of breast cancer. However, the expression and function of miR‐4732‐5p in breast cancer remain largely unknown. Here, the expression of miR‐4732‐5p was detected using quantitative real‐time PCR in breast cancer tissues and cell lines. Cell proliferation, apoptosis, migration and invasion assays were performed to examine the effects of miR‐4732‐5p in breast cancer. In addition, mRNA sequencing, bioinformatics analysis, Western blot and luciferase assays were performed to identify the target of miR‐4732‐5p. Overall, miR‐4732‐5p was significantly down‐regulated in breast cancer tissues, especially in lymph node metastasis (LNM)‐negative tissues, compared with adjacent normal tissues. However, it was more highly expressed in LNM‐positive breast cancer tissues, compared with LNM‐negative ones. Expression of miR‐4732‐5p was positively correlated with lymph node metastasis, larger tumour size, advanced clinical stage, high Ki‐67 levels and poor prognosis. MiR‐4732‐5p promoted cell proliferation, migration and invasion in breast cancer. MiR‐4732‐5p directly targeted the 3′‐UTR of tetraspanin 13 (TSPAN13) and suppressed TSPAN13 expression at the mRNA and protein levels. These results suggested that miR‐4732‐5p may serve as a tumour suppressor in the initiation of breast cancer, but as a tumour promoter in breast cancer progression by targeting TSPAN13.  相似文献   

6.
Our present work was aimed to study on the regulatory role of MALAT1/miR‐145‐5p/AKAP12 axis on docetaxel (DTX) sensitivity of prostate cancer (PCa) cells. The microarray data (GSE33455) to identify differentially expressed lncRNAs and mRNAs in DTX‐resistant PCa cell lines (DU‐145‐DTX and PC‐3‐DTX) was retrieved from the Gene Expression Omnibus (GEO) database. QRT‐PCR analysis was performed to measure MALAT1 expression in DTX‐sensitive and DTX‐resistant tissues/cells. The human DTX‐resistant cell lines DU145‐PTX and PC3‐DTX were established as in vitro cell models, and the expression of MALAT1, miR‐145‐5p and AKAP12 was manipulated in DTX‐sensitive and DTX‐resistant cells. Cell viability was examined using MTT assay and colony formation methods. Cell apoptosis was assessed by TUNEL staining. Cell migration and invasion was determined by scratch test (wound healing) and Transwell assay, respectively. Dual‐luciferase assay was applied to analyse the target relationship between lncRNA MALAT1 and miR‐145‐5p, as well as between miR‐145‐5p and AKAP12. Tumour xenograft study was undertaken to confirm the correlation of MALAT1/miR‐145‐5p/AKAP12 axis and DTX sensitivity of PCa cells in vivo. In this study, we firstly notified that the MALAT1 expression levels were up‐regulated in clinical DTX‐resistant PCa samples. Overexpressed MALAT1 promoted cell proliferation, migration and invasion but decreased cell apoptosis rate of PCa cells in spite of DTX treatment. We identified miR‐145‐5p as a target of MALAT1. MiR‐145‐5p overexpression in PC3‐DTX led to inhibited cell proliferation, migration and invasion as well as reduced chemoresistance to DTX, which was attenuated by MALAT1. Moreover, we determined that AKAP12 was a target of miR‐145‐5p, which significantly induced chemoresistance of PCa cells to DTX. Besides, it was proved that MALAT1 promoted tumour cell proliferation and enhanced DTX‐chemoresistance in vivo. There was an lncRNA MALAT1/miR‐145‐5p/AKAP12 axis involved in DTX resistance of PCa cells and provided a new thought for PCa therapy.  相似文献   

7.
In this study, we investigated how miR‐10b‐3p regulated the proliferation, migration, invasion in hepatocellular carcinoma (HCC) at both in vitro and in vivo levels. CMTM5 was among the differentially expressed genes (data from TCGA). The expression of miR‐10b‐3p and CMTM5 was detected by qRT‐PCR and Western blot (WB). TargetScan was used to acquire the binding sites. Dual‐luciferase reporter gene assay was used to verify the direct target relationship between miR‐10b‐3p and CMTM5. WB analysis proved that miR‐10b‐3p suppressed CMTM5 expression. Furthermore, proliferation, invasion and migration of HCC cells were measured by MTT assay, colony formation assay, transwell assay and wound‐healing assay, respectively. Kaplan‐Meier plotter valued the overall survival of CMTM5. Finally, xenograft assay was also conducted to verify the effects of miR‐10b‐3p/CMTM5 axis in vivo. Up‐regulation of miR‐10b‐3p and down‐regulation of CMTM5 were detected in HCC tissues and cell lines. CMTM5 was verified as a target gene of miR‐10b‐3p. The overexpression of CMTM5 contributed to the suppression of the proliferative, migratory and invasive abilities of HCC cells. Moreover, the up‐regulation of miR‐10b‐3p and down‐regulation of CMTM5 were observed to be associated with worse overall survival. Lastly, we have confirmed the carcinogenesis‐related roles of miR‐10b‐3p and CMTM5 in vivo. We concluded that the up‐regulation of miR‐10b‐3p promoted the progression of HCC cells via targeting CMTM5.  相似文献   

8.
This investigation was conducted to elucidate whether atractylenolide II could reverse the role of lncRNA XIST/miR‐30a‐5p/ROR1 axis in modulating chemosensitivity of colorectal cancer cells. We totally collected 294 pairs of colorectal cancer tissues and adjacent normal tissues and also purchased colorectal cancer cell lines and human embryonic kidney cell line. 5‐fluorouracil, cisplatin, mitomycin and adriamycin were designated as the chemotherapies for colorectal cell lines, and atractylenolides were arranged as the Chinese drug. The expressions of XIST, miR‐30a‐5p and ROR1 were quantified with aid of qRT‐PCR or Western blot, and luciferase reporter gene assay was implemented to determine the relationships among XIST, miR‐30a‐5p and ROR1. Our results demonstrated that XIST and ROR1 expressions were dramatically up‐regulated, yet miR‐30a‐5p expression was down‐regulated within colorectal cancer tissues (P < 0.05). The overexpressed XIST and ROR1, as well as under‐expressed miR‐30a‐5p, were inclined to promote viability and proliferation of colorectal cells under the influence of chemo drugs (P < 0.05). In addition, XIST could directly target miR‐30a‐5p, and ROR1 acted as the targeted molecule of miR‐30a‐5p. Interestingly, atractylenolides not only switched the expressions of XIST, miR‐30a‐5p and ROR1 within colorectal cancer cells but also significantly intensified the chemosensitivity of colorectal cancer cells (< 0.05). Finally, atractylenolide II was discovered to slow down the viability and proliferation of colorectal cancer cells (< 0.05). In conclusion, the XIST/miR‐30a‐5p/ROR1 axis could be deemed as pivotal markers underlying colorectal cancer, and administration of atractylenolide II might improve the chemotherapeutic efficacy for colorectal cancer.  相似文献   

9.

Objectives

Long non‐coding RNAs have identified to involve into the tumour cell proliferation, apoptosis and metastasis. We previously found that up‐regulated LncRNA‐SNHG7 (SNHG7) positively correlated to the Fas apoptosis inhibitory molecule 2 (FAIM2) in lung cancer cells with unclear mechanism.

Methods

Non‐small cell lung cancer (NSCLC) and relative normal tissues (n = 25) were collected. The SNHG7 expression and function in NSCLC was determined. The SNHG7‐miR 193b‐FAIM2 network was analysed in vitro and vivo.

Results

We reported that oncogene SNHG7 predicted a poor clinical outcome and functioned as competitive endogenous RNA (ceRNA) antagonized microRNA‐193b (miR‐193b) to up‐regulate the FAIM2 level in NSCLC. Bioinformatic analysis predicted that SNHG7 harboured miR‐193b‐binding sites, and we found decreased miR‐193b levels in NSCLC tissues when compared to relative normal tissues. Luciferase assays indicated that overexpression of miR‐193b inhibited the Ruc expression of plasmid with miR‐193b‐binding sites of SNHG7 in a dose‐dependent manner. Ectopically expressed SNHG7 also as a molecular sponge sequestered endogenous miR‐193b. Besides, FAIM2 was found to be directly targeted by miR‐193b. The restoration of miR‐193b levels in NSCLC cell lines A549 and H125 suppressed the expression of FAIM2 and related tumour proliferation, metastasis and induced apoptosis. However, forced expression of SNHG7 could down‐regulate miR‐193b to elevate the FAIM2 level of tumour cells, leading to impaired miR‐193b/FAIM2‐induced tumour progression. Knockdown of SNHG7 in vivo significantly delayed the tumour growth with decreased tumour volume, which accompanied with enhanced miR‐193b expression and reduced FAIM2 levels.

Conclusion

The results indicated that miR‐193b is indispensible for the ceRNA role of SNHG7 in FAIM2‐supported tumourigenesis of lung cancer.  相似文献   

10.
This study was designed to detecting the influences of lncRNA MEG3 in prostate cancer. Aberrant lncRNAs expression profiles of prostate cancer were screened by microarray analysis. The qRT‐PCR and Western blot were employed to investigating the expression levels of lncRNA MEG3, miR‐9‐5p and QKI‐5. The luciferase reporter assay was utilized to testifying the interactions relationship among these molecules. Applying CCK‐8 assay, wound healing assay, transwell assay and flow cytometry in turn, the cell proliferation, migration and invasion abilities as well as apoptosis were measured respectively. LncRNA MEG3 was a down‐regulated lncRNA in prostate cancer tissues and cells and could inhibit the expression of miR‐9‐5p, whereas miR‐9‐5p down‐regulated QKI‐5 expression. Overexpressed MEG3 and QKI‐5 could decrease the abilities of proliferation, migration and invasion in prostate cancer cells effectively and increased the apoptosis rate. On the contrary, miR‐9‐5p mimics presented an opposite tendency in prostate cancer cells. Furthermore, MEG3 inhibited tumour growth and up‐regulated expression of QKI‐5 in vivo. LncRNA MEG3 was a down‐regulated lncRNA in prostate cancer and impacted the abilities of cell proliferation, migration and invasion, and cell apoptosis rate, this regulation relied on regulating miR‐9‐5p and its targeting gene QKI‐5.  相似文献   

11.
Long non‐coding RNAs (lncRNAs) are important regulators of many cellular processes, and their aberrant expression and/or function is associated with many different diseases, including cancer. However, the identification of functional lncRNAs in gastric cancer is still a challenge. In this study, we describe a novel functional lncRNA, linc00483, that is upregulated and associated with tumorigenesis, tumour size, metastasis and poor prognosis in gastric cancer. In our study, linc00483 promoted gastric cancer cell proliferation, invasiveness and metastasis in vitro and in vivo. Mechanistically, upregulated expression of linc00483 in gastric cancer acts as a sponge to absorb endogenous tumour suppressor miR‐30a‐3p. Furthermore, it restores SPAG9 expression, which is negatively regulated by miR‐30a‐3p, and actives MAPK signaling pathway in gastric cancer cells. Thus, linc00483 is an oncogenic lncRNA in gastric cancer and targeting linc00483 or its pathway can potentially be useful in development of targeted therapies for patients with gastric cancer. Our results show that linc00483 is an important regulator in carcinogenesis and may be a useful biomarker to predict prognosis of gastric cancer patients. We believe our findings are novel and will be of interest to scientists working in many areas related to biomarkers in cancer.  相似文献   

12.
13.
Lung cancer is the most common incident cancer, with a high mortality worldwide, and non‐small‐cell lung cancer (NSCLC) accounts for approximately 85% of cases. Numerous studies have shown that the aberrant expression of microRNAs (miRNAs) is associated with the development and progression of cancers. However, the clinical significance and biological roles of most miRNAs in NSCLC remain elusive. In this study, we identified a novel miRNA, miR‐34b‐3p, that suppressed NSCLC cell growth and investigated the underlying mechanism. miR‐34b‐3p was down‐regulated in both NSCLC tumour tissues and lung cancer cell lines (H1299 and A549). The overexpression of miR‐34b‐3p suppressed lung cancer cell (H1299 and A549) growth, including proliferation inhibition, cell cycle arrest and increased apoptosis. Furthermore, luciferase reporter assays confirmed that miR‐34b‐3p could bind to the cyclin‐dependent kinase 4 (CDK4) mRNA 3′‐untranslated region (3′‐UTR) to suppress the expression of CDK4 in NSCLC cells. H1299 and A549 cell proliferation inhibition is mediated by cell cycle arrest and apoptosis with CDK4 interference. Moreover, CDK4 overexpression effectively reversed miR‐34‐3p‐repressed NSCLC cell growth. In conclusion, our findings reveal that miR‐34b‐3p might function as a tumour suppressor in NSCLC by targeting CDK4 and that miR‐34b‐3p may, therefore, serve as a biomarker for the diagnosis and treatment of NSCLC.  相似文献   

14.
Recently, aberrant expression of miR‐876‐5p has been reported to participate in the progression of several human cancers. However, the expression and function of miR‐876‐5p in osteosarcoma (OS) are still unknown. Here, we found that the expression of miR‐876‐5p was significantly down‐regulated in OS tissues compared to para‐cancerous tissues. Clinical association analysis indicated that underexpression of miR‐876‐5p was positively correlated with advanced clinical stage and poor differentiation. More importantly, OS patients with low miR‐876‐5p level had a significant shorter overall survival compared to miR‐876‐5p high‐expressing patients. In addition, gain‐ and loss‐of‐function experiments demonstrated that miR‐876‐5p restoration suppressed whereas miR‐876‐5p knockdown promoted cell proliferation, migration and invasion in both U2OS and MG63 cells. In vivo studies revealed that miR‐876‐5p overexpression inhibited tumour growth of OS in mice. Mechanistically, miR‐876‐5p reduced c‐Met abundance in OS cells and inversely correlated c‐Met expression in OS tissues. Herein, c‐Met was recognized as a direct target of miR‐876‐5p using luciferase reporter assay. Notably, c‐Met restoration rescued miR‐876‐5p attenuated the proliferation, migration and invasion of OS cells. In conclusion, these findings indicate that miR‐876‐5p may be used as a potential therapeutic target and promising biomarker for the diagnosis and prognosis of OS.  相似文献   

15.
16.
Intercellular communication between mesenchymal stem cells (MSCs) and their target cells in the perivascular environment is modulated by exosomes derived from MSCs. However, the potential role of exosome‐mediated microRNA transfer in neointimal hyperplasia remains to be investigated. To evaluate the effects of MSC‐derived exosomes (MSC‐Exo) on neointimal hyperplasia, their effects upon vascular smooth muscle cell (VSMC) growth in vitro and neointimal hyperplasia in vivo were assessed in a model of balloon‐induced vascular injury. Our results showed that MSC‐Exo were internalised by VSMCs and inhibited proliferation and migration in vitro. Further analysis revealed that miR‐125b was enriched in MSC‐Exo, and repressed the expression of myosin 1E (Myo1e) by targeting its 3? untranslated region. Additionally, MSC‐Exo and exosomally transferred miR‐125b repressed Myo1e expression and suppressed VSMC proliferation and migration and neointimal hyperplasia in vivo. In summary, our findings revealed that MSC‐Exo can transfer miR‐125b to VSMCs and inhibit VSMC proliferation and migration in vitro and neointimal hyperplasia in vivo by repressing Myo1e, indicating that miR‐125b may be a therapeutic target in the treatment of vascular diseases.  相似文献   

17.
Mounting evidence has illustrated the vital roles of long non‐coding RNAs (lncRNAs in gastric cancer (GC). Nevertheless, the majority of their roles and mechanisms in GC are still largely unknown. In this study, we investigate the roles of lncRNA SLC25A5‐AS1 on tumourigenesis and explore its potential mechanisms in GC. The results showed that the expressions of SLC25A5‐AS1 in GC were significantly lower than that of adjacent normal tissues, which were significantly associated with tumour size, TNM stage and lymph node metastasis. Moreover, SLC25A5‐AS1 could inhibit GC cell proliferation, induce G1/G1 cell cycle arrest and cell apoptosis in vitro, as well as GC growth in vivo. Dual‐luciferase reporter assay confirmed the direct interaction between SLC25A5‐AS1 and miR‐19a‐3p, rescue experiment showed that co‐transfection miR‐19a‐3p mimics and pcDNA‐SLC25A5‐AS1 could partially restore the ability of GC cell proliferation and the inhibition of cell apoptosis. The mechanism analyses further found that SLC25A5‐AS1 might act as a competing endogenous RNAs (ceRNA), which was involved in the derepression of PTEN expression, a target gene of miR‐19a‐3p, and regulate malignant phenotype via PI3K/AKT signalling pathway in GC. Taken together, this study indicated that SLC25A5‐AS1 was down‐regulated in GC and functioned as a suppressor in the progression of GC. Moreover, it could act as a ceRNA to regulate cellular behaviours via miR‐19a‐3p/PTEN/PI3K/AKT signalling pathway. Thus, SLC25A5‐AS1 might be served as a potential target for cancer therapeutics in GC.  相似文献   

18.
MicroRNAs (miRNAs) are powerful regulators in the tumorigenesis of cholangiocarcinoma (CCA). Previous studies report that miR‐551b‐3p acts as an oncogenic factor in ovarian cancer, but plays a tumour suppressive role in gastric cancer. However, the expression pattern and potential function of miR‐551b‐3p were still unclear in CCA. Therefore, this study aimed to explore the expression of miR‐551b‐3p and its role as well as molecular mechanism in CCA. Analysis of TCGA dataset suggested that miR‐551b‐3p was under‐expressed in CCA tissues compared to normal bile duct tissues. Furthermore, our data confirmed the decreased levels of miR‐551b‐3p in CCA samples and cell lines. Interestingly, TCGA data suggested that low miR‐551b‐3p level indicated reduced overall survival of CCA patients. Gain‐ and loss‐of‐function experiments found that miR‐551b‐3p inhibited the proliferation, G1‐S phase transition and induced apoptosis of CCA cells. In vivo experiments revealed that ectopic expression of miR‐551b‐3p inhibited tumour growth of CCA in mice. Further investigation demonstrated that miR‐551b‐3p directly bond to the 3′‐UTR of Cyclin D1 (CCND1) mRNA and negatively regulated the abundance of CCND1 in CCA cells. An inverse correlation between miR‐551b‐3p expression and the level of CCND1 mRNA was detected in CCA tissues from TCGA dataset. Notably, CCND1 knockdown showed similar effects to miR‐551b‐3p overexpression in HuCCT‐1 cells. CCND1 restoration rescued miR‐551b‐3p‐induced inhibition of proliferation, G1 phase arrest and apoptosis in HuCCT‐1 cells. In summary, miR‐551b‐3p inhibits the expression of CCND1 to suppress CCA cell proliferation and induce apoptosis, which may provide a theoretical basis for improving CCA treatment.  相似文献   

19.
The aberrant expression of human sirtuin 2 (SIRT2) has been detected in various types of cancer; however, the biological roles, underlying mechanisms and clinical significance of SIRT2 dysregulation in human colorectal cancer (CRC) remain unclear. The results of this study demonstrate that compared with paired normal tissues, SIRT2 expression is significantly decreased in CRC tissues. SIRT2 loss has been correlated with clinicopathological characteristics, including distant metastasis, lymph node metastasis and American Joint Committee on Cancer (AJCC) stage; this loss serves as an independent factor that indicates a poor prognosis for patients with CRC. Further gain‐ and loss‐of‐function analyses have demonstrated that SIRT2 suppresses CRC cell proliferation and metastasis both in vivo and in vitro. Mechanistically, miR‐212‐5p was identified to directly target the SIRT2 3′‐untranslated region (3′‐UTR), leading to SIRT2 down‐regulation. The ectopic expression of SIRT2 reverses the effect of miR‐212‐5p overexpression on CRC cell colony formation, invasion, migration and proliferation. Clinically, an inverse correlation was found between miR‐212‐5p and SIRT2 expression. High miR‐212‐5p expression has been found to result in a poor prognosis and aggressive clinicopathological characteristics in patients with CRC. Taken together, these results suggest that SIRT2, targeted by miR‐212‐5p, acts as a tumour suppressor in CRC and that the miR‐212‐5p/SIRT2 axis is a promising prognostic factor and potential therapeutic target in CRC.  相似文献   

20.
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy. Long non‐coding RNAs (lncRNAs) are important regulators in pathological processes, yet their potential roles in PDAC are poorly understood. Here, we identify a fundamental role for a novel lincRNA, linc00511, in the progression of PDAC. Linc00511 levels in PDAC tissue specimens and cell lines were examined by quantitative real‐time PCR. Corresponding adjacent non‐neoplastic tissues were used as controls. The function of linc00511 in PDAC cell lines was determined by RNA interference approach in vitro and in vivo. Fluorescence in situ hybridization (FISH) was used to characterize linc00511 expression in PDAC cells. Insights of the mechanism of competitive endogenous RNAs (ceRNAs) were obtained from bioinformatic analysis, luciferase assays and RIP assays. The association between the linc00511/hsa‐miR29b‐3p axis and VEGFA was verified by Western blotting assay. Immunohistochemistry was performed to evaluate the expression of VEGFA in PDAC samples. The aberrant up‐regulation of linc00511 was detected in PDAC cell lines and patient specimens compared with controls. An increase in linc00511 expression indicates the adverse clinical pathological characteristics and poor prognosis. Functionally, linc00511 depletion in PDAC cells decreased proliferation, migration, invasion and endothelial tube formation. Mechanistically, linc00511 could up‐regulate VEGFA via its competing endogenous RNA (ceRNA) activity on hsa‐miR‐29b‐3p. In summary, our results define an important axis controlling proliferation, invasion and tumour angiogenesis in PDAC. Linc00511 is a novel lncRNA that plays a significant regulatory role in the pathogenesis and progression of PDAC. Thus, Linc00511 represents a new prognostic biomarker to predict clinical outcome of PDAC patients after surgery and may serve as a potential therapeutic target for PDAC treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号