首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spontaneous oscillations of intracellular calcium and growth hormone secretion   总被引:10,自引:0,他引:10  
A novel combination of two single cell assays allowed the simultaneous measurement of intracellular calcium concentration and hormone secretion in normal pituitary cells. [Ca2+]i was recorded using the fluorescent Ca2+ indicator fura-2 and digital imaging microscopy. This technique was combined with a reverse hemolytic plaque assay for growth hormone in order to identify somatotropes and quantitate the amount of hormone released. A dynamic profile of rhythmic calcium oscillations was found in spontaneously secreting somatotropes. Each somatotrope displayed a distinct frequency (one pulse every 5-30 s) and amplitude (range 50-450 nM) generated asynchronously from cell to cell. The amount of growth hormone (GH) released correlated directly with both the frequency and amplitude of calcium oscillations at the level of single GH cells. Furthermore, calcium excursions in somatotropes were rapidly suppressed by either (i) removal of extracellular calcium, (ii) somatostatin (1 mM), or (iii) the calcium channel blockers cobalt (2 mM) and verapamil (100 microM). These observations demonstrate that spontaneous calcium oscillations are characteristic for normal somatotropes. These oscillations are related to spontaneous hormone secretion and due to influx through calcium channels in the membrane. Somatostatin, the physiologic inhibitor of GH secretion, suppresses calcium transients. These findings suggest that the intracellular signaling information may be encoded both in the frequency and amplitude of calcium oscillations.  相似文献   

2.
Integrins are ubiquitous trans-membrane adhesion molecules that mediate the interaction of cells with the extracellular matrix (ECM). Integrins link cells to the ECM by interacting with the cell cytoskeleton. In cases such as leukocyte binding, integrins mediate cell-cell interactions and cell-ECM interactions. Recent research indicates that integrins also function as signal transduction receptors, triggering a number of intracellular signaling pathways that regulate cell behavior and development. A number of integrins are known to stimulate changes in intracellular calcium levels, resulting in integrin activation. Although changes in intracellular calcium regulate a vast number of cellular functions, this review will discuss the stimulation of calcium signaling by integrins and the role of intracellular calcium in the regulation of integrin-mediated adhesion.  相似文献   

3.
Gonadotropin-releasing hormone (GnRH) receptors are expressed in hypothalamic tissues from adult rats, cultured fetal hypothalamic cells, and immortalized GnRH-secreting neurons (GT1 cells). Their activation by GnRH agonists leads to an overall increase in the extracellular Ca2+-dependent pulsatile release of GnRH. Electrophysiological studies showed that GT1 cells exhibit spontaneous, extracellular Ca2+-dependent action potentials, and that their inward currents include Na+, T-type and L-type Ca2+ components. Several types of potassium channels, including apamin-sensitive Ca2+-controlled potassium (SK) channels, are also expressed in GT1 cells. Activation of GnRH receptors leads to biphasic changes in intracellular Ca2+ concentration ([Ca2+]i), with an early and extracellular Ca2+-independent peak and a sustained and extracellular Ca2+-dependent plateau phase. During the peak [Ca2+]i response, electrical activity is abolished due to transient hyperpolarization that is mediated by SK channels. This is followed by sustained depolarization and resumption of firing with increased spike frequency and duration. The agonist-induced depolarization and increased firing are independent of [Ca2+]i and are not mediated by inhibition of K+ currents, but by facilitation of a voltage-insensitive and store depletion-activated Ca2+-conducting inward current. The dual control of pacemaker activity by SK and store depletion-activated Ca2+ channels facilitates voltage-gated Ca2+ influx at elevated [Ca2+]i levels, but also protects cells from Ca2+ overload. This process accounts for the autoregulatory action of GnRH on its release from hypothalamic neurons.  相似文献   

4.
《Cell calcium》2015,58(5-6):366-375
In healthy pancreatic islets, glucose-stimulated changes in intracellular calcium ([Ca2+]i) provide a reasonable reflection of the patterns and relative amounts of insulin secretion. We report that [Ca2+]i in islets under stress, however, dissociates with insulin release in different ways for different stressors. Islets were exposed for 48 h to a variety of stressors: cytokines (low-grade inflammation), 28 mM glucose (28G, glucotoxicity), free fatty acids (FFAs, lipotoxicity), thapsigargin (ER stress), or rotenone (mitochondrial stress). We then measured [Ca2+]i and insulin release in parallel studies. Islets exposed to all stressors except rotenone displayed significantly elevated [Ca2+]i in low glucose, however, increased insulin secretion was only observed for 28G due to increased nifedipine-sensitive calcium-channel flux. Following 3–11 mM glucose stimulation, all stressors substantially reduced the peak glucose-stimulated [Ca2+]i response (first phase). Thapsigargin and cytokines also substantially impacted aspects of calcium influx and ER calcium handling. Stressors did not significantly impact insulin secretion in 11 mM glucose for any stressor, although FFAs showed a borderline reduction, which contributed to a significant decrease in the stimulation index (11:3 mM glucose) observed for FFAs and also for 28G. We also clamped [Ca2+]i using 30 mM KCl + 250 μM diazoxide to test the amplifying pathway. Only rotenone-treated islets showed a robust increase in 3–11 mM glucose-stimulated insulin secretion under clamped conditions, suggesting that low-level mitochondrial stress might activate the metabolic amplifying pathway. We conclude that different stressors dissociate [Ca2+]i from insulin secretion differently: ER stressors (thapsigargin, cytokines) primarily affect [Ca2+]i but not conventional insulin secretion and ‘metabolic’ stressors (FFAs, 28G, rotenone) impacted insulin secretion.  相似文献   

5.
6.
Dynamical behaviors of unidirectionally, linearly coupled as well as isolated calcium subsystems are investigated by taking into account the internal noise resulting from finite system size and thus small numbers of interacting molecules. For an isolated calcium system, the internal noise can induce stochastic oscillations for a steady state close to the Hopf-bifurcation point, and the regularity of those stochastic oscillations depends resonantly on the system size, exhibiting system-size resonance. For the coupled system consisting of two subsystems, the system-size resonance effect observed in the subsystem subject to coupling is significantly amplified due to the nontrivial effects of coupling.  相似文献   

7.
8.
The review is presented, analysing the modern state of knowledge about the role of intracellularly stored calcium of nerve terminals in regulation of quantal mediator secretion in synapses. The data are considered, concerning the properties of two Ca(2+)-channels superfamilies, i.e. the ryanodine receptors (RyR) and IP3-receptors, which are incorporated into the membrane of endoplasmic reticulum fragments. The localization of cisternae, containing RyR and IP3-receptors in neurons and nerve terminals are described. The data, demonstrating the pattern of calcium signalization in neurons and terminals after their interaction with specific blockers or activators of RyRs or IP3-receptors are presented. The facts, demonstrating that calcium induced calcium release via RyRs or IP3-receptors takes part in controlling spontaneous secretion of different types of vesicles in synaptic terminals and supports the slow and fast types of regulated exocytosis of synaptic vesicles, in the course of single or repetitive activity of central or peripheral synapses are analysed.  相似文献   

9.
Rodent leptin is secreted by adipocytes and acutely regulates appetite and chronically regulates body weight. Mechanisms for leptin secretion in cultured adipocytes were investigated. Acutely, energy-producing substrates stimulated leptin secretion about twofold. Biologically inert carbohydrates failed to stimulate leptin secretion, and depletion of intracellular energy inhibited leptin release. There appears to be a correlation between intracellular ATP concentration and the rate of leptin secretion. Insulin increased leptin secretion by an additional 25%. Acute leptin secretion is calcium dependent. When incubated in the absence of calcium or in the presence of intracellular calcium chelators, glucose plus insulin failed to stimulate leptin secretion. In contrast, basal leptin secretion is secreted spontaneously and is calcium independent. Adipocytes from fatter animals secrete more leptin, even in the absence of calcium, compared with cells from thinner animals. Acute stimulus-secretion coupling mechanisms were then investigated. The potassium channel activator diazoxide and the nonspecific calcium channel blockers nickel and cadmium inhibited acute leptin secretion. These studies demonstrate that intracellular energy production is important for acute leptin secretion and that potassium and calcium flux may play roles in coupling intracellular energy production to leptin secretion.  相似文献   

10.
It has been suggested that intracellular Ca2+, in addition to cAMP, plays an important role in PTH-stimulated bone resorption. There is now strong evidence indicating that the osteoblast is the main target cell for PTH action, regulating indirectly, via cell-cell communication, osteoclastic bone resorption. In order to investigate the possible role of free cytosolic calcium in stimulated bone resorption, we studied the effects of the intact hormone (bPTH 1-84) and some of its fragments (bPTH (1-34), bPTH(3-34,) (Nle-8, Nle-18,Tyr-34) bPTH (3-34) amide) on their capacity to modify the cytosolic Ca2+ concentration in rat osteoblast-like cells. The experiments were performed using Quin-2, a fluorescent indicator of free calcium. We found an excellent correlation between the ability of PTH and PTH fragments to transiently increase cytosolic Ca2+ concentration in rat osteoblast-like cells and their ability to stimulate bone resorption in embryonic rat calvaria in vitro. On the other hand, no direct correlation was found for the cAMP and bone-resorbing responses. On the ground of these data we propose a two-receptor model for PTH action in osteoblasts, in which one receptor is coupled to the production of cAMP, whereas the other is involved in the increase of cytosolic Ca2+. Activation of both receptors by PTH (1-84) or PTH (1-34) leads to the full physiological response in osteoblasts, most probably the release of one or more factors which stimulate the activity of existing osteoclasts and others which stimulate the recruitment of additional osteoclasts.  相似文献   

11.
A Atri  J Amundson  D Clapham    J Sneyd 《Biophysical journal》1993,65(4):1727-1739
We construct a minimal model of cytosolic free Ca2+ oscillations based on Ca2+ release via the inositol 1,4,5-trisphosphate (IP3) receptor/Ca2+ channel (IP3R) of a single intracellular Ca2+ pool. The model relies on experimental evidence that the cytosolic free calcium concentration ([Ca2+]c) modulates the IP3R in a biphasic manner, with Ca2+ release inhibited by low and high [Ca2+]c and facilitated by intermediate [Ca2+]c, and that channel inactivation occurs on a slower time scale than activation. The model produces [Ca2+]c oscillations at constant [IP3] and reproduces a number of crucial experiments. The two-dimensional spatial model with IP3 dynamics, cytosolic diffusion of IP3 (Dp = 300 microns 2 s-1), and cytosolic diffusion of Ca2+ (Dc = 20 microns 2 s-1) produces circular, planar, and spiral waves of Ca2+ with speeds of 7-15 microns.s-1, which annihilate upon collision. Increasing extracellular [Ca2+] influx increases wave speed and baseline [Ca2+]c. A [Ca2+]c-dependent Ca2+ diffusion coefficient does not alter the qualitative behavior of the model. An important model prediction is that channel inactivation must occur on a slower time scale than activation in order for waves to propagate. The model serves to capture the essential macroscopic mechanisms that are involved in the production of intracellular Ca2+ oscillations and traveling waves in the Xenopus laevis oocyte.  相似文献   

12.
13.
We examined the possible involvement of mitogen-activated protein (MAP) kinase activation in the secretory process and gene expression of prolactin and growth hormone. Thyrotropin-releasing hormone (TRH) rapidly stimulated the secretion of both prolactin and growth hormone from GH3 cells. Secretion induced by TRH was not inhibited by 50 microM PD098059, but was completely inhibited by 1 microM wortmannin and 10 microM KN93, suggesting that MAP kinase does not mediate the secretory process. Stimulation of GH3 cells with TRH significantly increased the mRNA level of prolactin, whereas expression of growth hormone mRNA was largely attenuated. The increase in prolactin mRNA stimulated by TRH was inhibited by addition of PD098059, and the decrease in growth hormone mRNA was also inhibited by PD098059. Transfection of the cells with a pFC-MEKK vector (a constitutively active MAP kinase kinase kinase), significantly increased the synthesis of prolactin and decreased the synthesis of growth hormone. These data taken together indicate that MAP kinase mediates TRH-induced regulation of prolactin and growth hormone gene expression. Reporter gene assays showed that prolactin promoter activity was increased by TRH and was completely inhibited by addition of PD098059, but that the promoter activity of growth hormone was unchanged by TRH. These results suggest that TRH stimulates both prolactin and growth hormone secretion, but that the gene expressions of prolactin and growth hormone are differentially regulated by TRH and are mediated by different mechanisms.  相似文献   

14.
The titer of juvenile hormone (JH) is determined by three factors: its rate of synthesis, its rate of degradation, and the degree to which JH is protected from degradation by binding to a diversity of JH-binding proteins. All three of these factors vary throughout the life history of an insect and contribute to variation in the JH titer. The relative importance of each of these factors in determining variation in the JH titer is not known and can, presumably, differ in different life stages and different species. Here we develop a mathematical model for JH synthesis, degradation, and sequestration that allows us to describe quantitatively how each of these contribute to the titer of total JH and free JH in the hemolymph. Our model allows for a diversity of JH-binding proteins with different dissociation constants, and also for a number of different modes of degradation and inactivation. The model can be used to analyze whether data on synthesis and degradation are compatible with the observed titer data. We use the model to analyze two data sets, from Manduca and Gryllus, and show that in both cases, the known data on synthesis and degradation cannot account for the observed JH titers because the role of JH sequestration by binding proteins is greatly underestimated, and/or the in vivo rate of JH degradation is greatly overestimated. These analyses suggest that there is a critical need to develop a better understanding of the in vivo role of synthesis, sequestration and degradation in JH titer regulation.  相似文献   

15.
Synovial fluid basic calcium phosphate crystals (BCP) are often found in severely degenerated joints. Crystalline BCP is a growth factor stimulating fibroblast mitogenesis and acting as a competence factor similar to platelet-derived growth factor. In human fibroblasts (HF), the synthesis of collagenase and stromelysin is coordinately induced after stimulation with a variety of cytokines and growth factors. We sought to determine whether BCP, like other growth factors, might induce proteases that would damage articular tissue. Northern blot analysis of mRNA for collagenase and stromelysin in HF stimulated with BCP was performed. Secreted enzymes were analyzed by immunoblot using a monoclonal antibody to collagenase and by immunoprecipitation using a polyclonal antibody to stromelysin. Stromelysin activity was confirmed using casein substrate gels. A significant, dose-dependent accumulation of collagenase and stromelysin message was evident after 4 h and continued for at least 24 h in BCP-stimulated cultures. Forty-nine and 54 kD proteins immunoreacting with collagenase antibody were identified in the conditioned media (CM) from BCP-stimulated cultures while 50 and 55 kD proteins were identified by immunoprecipitation with stromelysin antibody. Collagenase activity was increased significantly in the CM from BCP treated cells; casein substrate gels showed casein degrading bands at molecular weights consistent with stromelysin. BCP stimulates coordinate induction of collagenase and stromelysin which may mediate the joint destruction associated with these crystals.  相似文献   

16.
17.
All secretory anterior pituitary cells exhibit spontaneous and extracellular calcium-dependent electrical activity, but differ with respect to the patterns of firing and associated calcium signaling and hormone secretion. Thus, somatotrophs and lactotrophs fire plateau-bursting action potentials spontaneously and without coupling to calcium release from intracellular stores, which generate calcium signals of sufficient amplitude to keep steady hormone release. In these cells, both spontaneous electrical activity and basal hormone secretion can be further amplified by activation of Gq/11 and Gs-coupled receptors and inhibited by Gi/o/z-coupled receptors. In contrast, gonadotrophs fire single, high-amplitude spikes with limited ability to promote calcium influx and exocytosis, whereas activated Gq/11-coupled receptors in these cells transform single-action potential spiking into the plateau-bursting type of electrical activity and trigger periodic high-amplitude calcium signals and exocytosis of prestored secretory vesicles. Here, we review biochemical and biophysical aspects of spontaneous and receptor-controlled electrical activity, calcium signaling, and hormone secretion in pituitary cells.  相似文献   

18.
Chronic GnRH treatment causes homologous desensitization by reducing GnRH receptor and Gq/11 expression and by down-regulating protein kinase C (PKC), cAMP, and calcium-dependent signaling. It also causes heterologous desensitization of other Gq-coupled receptors, but the mechanisms involved remain elusive. In this study, we investigated the effect of constitutive activation of Gq signaling on GnRH-induced signaling and LH secretion. We show that adenoviral expression of a constitutively active mutant Gq(Q209L) results in a state of GnRH resistance but does not alter GnRH receptor expression. We observed that Gq(Q209L) reduced expression of phospholipase C (PLC)beta1, a target of Gq in these cells, but not PLCbeta3 or PLCgamma1. Downstream of PLCbeta1, expression of novel PKC isoforms (delta and epsilon) was reduced. Adenoviral expression of a kinase-inactive, dominant-negative version of PKCdelta impaired GnRH activation of ERK, but not induction of c-Fos and LHbeta proteins, indicating that the novel PKCs signal to the ERK cascade. Despite reductions in PLCbeta1, calcium responses to GnRH were elevated in Gq(Q209L)-infected cells due to increased calcium influx through L-type calcium channels. Paradoxically, downstream calcium-dependent signaling and LH secretion were impaired. Taken together, these data demonstrate that prolonged activation of the Gq pathway desensitizes GnRH-induced signaling by selectively down-regulating the PLC-PKC-Ca2+ pathway, leading to reduced LHbeta synthesis and LH secretion.  相似文献   

19.
Recent observations in the field of signal transduction suggest that where a protein is located within a cell can be as important as its activity measured in solution for activation of its downstream pathway. The physical organization of the cell can provide an additional layer of control upon the chemical reaction networks that govern ultimately perceived signals. Using the cytosol and plasma membrane as relevant compartmental distinctions, we analyze the effect of relocation on the rate of association with a membrane-associated target. We quantify this effect as an enhancement factor E in terms of measurable parameters such as the number of available targets, molecular diffusivities, and intrinsic reaction rate constants. We then employ two simple yet relevant example models to illustrate how relocation can affect the dynamics of signal transduction pathways. The temporal profiles and phase behavior of these models are investigated. We also relate experimentally observable aspects of signal transduction such as peak activation and the relative time scales of stimulus and response to quantitative aspects of the relocation mechanisms in our models. In our example schemes, nearly complete relocation of the cytosolic species in the signaling pair is required to generate meaningful activation of the model pathways when the association rate enhancement factor E is as low as 10; when E is 100 or greater, only a small fraction of the protein must be relocated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号