首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In tundra, at a low temperature, there exists a slowly developing methanotrophic community. Methane-oxidizing bacteria are associated with plants growing at high humidity, such as sedge and sphagnum; no methonotrophs were found in polytrichous and aulacomnious mosses and lichens, typical of more arid areas. The methanotrophic bacterial community inhabits definite soil horizons, from moss dust to peat formed from it. Potential ability of the methanotrophic community to oxidize methane at 5 degrees C enhances with the depth of the soil profile in spite of the decreasing soil temperature. The methanotrophic community was found to gradually adapt to various temperatures due to the presence of different methane-oxidizing bacteria in its composition. Depending on the temperature and pH, different methanotrophs occupy different econiches. Within a temperature range from 5 to 15 degrees C, three morphologically distinct groups of methanotrophs could be distinguished. At pH 5-7 and 5-15 degrees C, forms morphologically similar to Methylobacter psychrophilus predominated, whereas at the acidic pH 4-6 and 10-15 degrees C, bipolar cells typical of Methylocella palustris were mostly found. The third group of methanotrophic bacteria growing at pH 5-7 and 5-10 degrees C was represented by a novel methanotroph whole large coccoid cells had a thick mucous capsule.  相似文献   

2.
Dedysh  S. N. 《Microbiology》2002,71(6):638-650
Acidic Sphagnum peat bogs cover a considerable part of the territory of Russia and are an important natural source of biogenic methane, which is formed in their anaerobic layers. A considerable portion of this methane is consumed in the aerobic part of the bog profile by acidophilic methanotrophic bacteria, which comprise the methane filter of Sphagnum peat bogs and decrease CH4 emission to the atmosphere. For a long time, these bacteria escaped isolation, which became possible only after the elucidation of the optimal conditions of their functioning in situ: pH 4.5–5.5; temperature, from 15 to 20°C; and low salt concentration in the solution. Imitation of these conditions and rejection of earlier used media with a high content of biogenic elements allowed methanotrophic bacteria of two new genera and species—Methylocella palustris and Methylocapsa acidiphila—to be isolated from the peat of Sphagnum peat bogs of European northern Russia and western Siberia. These bacteria are well adapted to the conditions in cold, acidic, oligotrophic Sphagnum peat bogs. They grow in a pH range of 4.2–7.5 with an optimum at 5.0–5.5, prefer moderate temperatures (15–25°C) and media with a low content of mineral salts (200–500 mg/l), and are capable of active dinitrogen fixation. Design of fluorescently labeled 16S rRNA–targeted oligonucleotide probes for the detection of Methylocella palustris and Methylocapsa acidiphila and their application to the analysis of sphagnum peat samples showed that these bacteria represent dominant populations of methanotrophs with a density of 105–106 cells/g peat. In addition to Methylocella and Methylocapsa populations, one more abundant population of methanotrophs was revealed (106 cells/g peat), which were phylogenetically close to the genus Methylocystis.  相似文献   

3.
The optimal growth of mesophilic methanotrophic bacteria (collection strains of the genera Methylocystis, Methylomonas, Methylosinus, and Methylobacter) occurred within temperature ranges of 31–34°C and 23–25°C. None of the 12 strains studied were able to grow at 1.5 or 4°C. Representatives of six methanotrophic species (strains Mcs. echinoides2, Mm. methanica12, Mb. bovis89, Mcs. pyriformis14, Mb. chroococcum90, and Mb. vinelandii87) could grow at 10°C (with a low specific growth rate). The results obtained suggest that some mesophilic methane-oxidizing bacteria display psychrotolerant (psychrotrophic) but not psychrophilic properties. In general, the Rosso model, which describes bacterial growth rate as a function of temperature, fits the experimental data well, although, for most methanotrophs, with symmetrical approximations for the optimal temperature.  相似文献   

4.
Methane emission from the following types of tundra soils was studied: coarse humic gleyey loamy cryo soil, peaty gleyey soil, and peaty gleyey midloamy cryo soil of the arctic tundra. All the soils studied were found to be potential sources of atmospheric methane. The highest values of methane emission were recorded in August at a soil temperature of 8–10°C. Flooded parcels were the sources of atmospheric methane throughout the observation period. The rates of methane production and oxidation in tundra soils of various types were studied by the radioisotope method at 5 and 15°C. Methane oxidation was found to occur in bog water, in the green part of peat moss, and in all the soil horizons studied. Methane production was recorded in the horizons of peat, in clay with plant roots, and in peaty moss dust of the bogey parcels. At both temperatures, the methane oxidation rate exceeded the rate of methane production in all the horizons of the mossy-lichen tundra and of the hillock tundra with flat-bottom depressions. Methanogenesis prevailed only in a sedge-peat moss bog at 15°C. Bacterial enrichment cultures oxidizing methane at 5 and 15°C were obtained. Different types of methanotrophic bacteria were shown to be responsible for methane oxidation under these conditions. A representative of type I methylotrophs oxidized methane at 5°C, and Methylocella tundrae, a psychroactive representative of an acidophilic methanotrophic genus Methylocella, at 15°C.__________Translated from Mikrobiologiya, Vol. 74, No. 2, 2005, pp. 261–270.Original Russian Text Copyright © 2005 by Berestovskaya, Rusanov, Vasileva, Pimenov.  相似文献   

5.
A robust, naturally evolving methanotrophic community in landfill cover soil (LFCS) can be the simplest way to mitigate landfill methane emission. In this study, bacterial community composition in LFCS and methane oxidation potential of enriched methanotrophic consortium, in comparison to that of axenic Methylosinus sporium, was investigated. Growth and methane oxidation of the consortium was studied in liquid phase batch experiments under varying temperature (20–40°C), pH (5–10), headspace CO2, and in presence of porous adsorbent (1.3 cm3 sponge cubes). The 16S rRNA gene analysis revealed presence of both type-I and type-II methanotrophs along with few obligate methylotroph in LFCS. Though the optimal growth condition of the consortium was at 30°C and pH 7, it was more resilient in comparison to M. sporium. With increasing availability of porous adsorbent, methane consumption by the consortium was significantly improved (p < 0.001) reaching a maximum specific methane oxidation rate of 11.4 μmol mg?1 biomass h?1. Thus, inducing naturally thriving methanotrophs in LFCS is a better alternative to axenic methanotrophic culture in methane emission management.  相似文献   

6.
An aerobic methanotrophic-heterotrophic soil community has been characterised when growing with different partial pressures of CO2. The methanotrophic population using methane as carbon source reached 3 × 107 cfu ml–1 with one of the major methanotrophs being of type II which uses the serine pathway for C assimilation. Optimal methanotrophic activity required the addition of CO2, and in the absence of CO2 no methane oxidisers grew. Partial pressures of CO2 from 1.6 to 11.6 kPa gave optimal cell growth and production of soluble organic compounds. Biomass yield, soluble organics and CO2 production were 0.36, 0.15, and 0.48 mg mg–1 methane uptake, respectively, with CO2 at 11.6 kPa. The results presented here may have important implications for the use of methane-oxidising bacteria in bioremedial applications.  相似文献   

7.
Temperature change affects methane consumption in soil. However, there is no information on possible temperature control of methanotrophic bacterial populations. Therefore, we studied CH(4) consumption and populations of methanotrophs in an upland forest soil and a rice field soil incubated at different temperatures between 5 and 45 degrees C for up to 40 days. Potential methane consumption was measured at 4% CH(4). The temporal progress of CH(4) consumption indicated growth of methanotrophs. Both soils showed maximum CH(4) consumption at 25-35 degrees C, but no activity at >40 degrees C. In forest soil CH(4) was also consumed at 5 degrees C, but in rice soil only at 15 degrees C. Methanotroph populations were assessed by terminal restriction fragment length polymorphism (T-RFLP) targeting particulate methane monooxygenase (pmoA) genes. Eight T-RFs with relative abundance >1% were retrieved from both forest and rice soil. The individual T-RFs were tentatively assigned to different methanotrophic populations (e.g. Methylococcus/Methylocaldum, Methylomicrobium, Methylobacter, Methylocystis/Methylosinus) according to published sequence data. Two T-RFs were assigned to ammonium monooxygenase (amoA) gene sequences. Statistical tests showed that temperature affected the relative abundance of most T-RFs. Furthermore, the relative abundance of individual T-RFs differed between the two soils, and also exhibited different temperature dependence. We conclude that temperature can be an important factor regulating the community composition of methanotrophs in soil.  相似文献   

8.
Five strains of obligate methanotrophic bacteria (4G, 5G, 6G, 7G and 5B) isolated from bottom sediments of Southeastern Transbaikal soda lakes (pH 9.5–10.5) are taxonomically described. These bacteria are aerobic, Gram-negative monotrichous rods having tightly packed cup-shaped structures on the outer cell wall surface (S-layers) and Type I intracytoplasmic membranes. All the isolates possess particulate methane monooxygenase (pMMO) and one strain (5G) also contains soluble methane monooxygenase (sMMO). They assimilate methane and methanol via the ribulose monophosphate pathway (RuMP). The isolates are alkalitolerant or facultatively alkaliphilic, able to grow at pH 10.5–11.0 and optimally at pH 8.5–9.5. These organisms are obligately dependent on the presence of sodium ions in the growth medium and tolerate up to 0.9–1.4 M NaCl or 1 M NaHCO3. Although being mesophilic, all the isolates are resistant to heating (80 °C, 20 min), freezing and drying. Their cellular fatty acids profiles primarily consist of C16:1. The major phospholipids are phosphatidylethanolamine and phosphatidylglycerol. The main quinone is Q-8. The DNA G+C content ranges from 49.2–51.5 mol%. Comparative 16S rDNA sequencing showed that the newly isolated methanotrophs are related to membres of the Methylomicrobium genus. However, they differ from the known members of this genus by DNA-DNA relatedness. Based on pheno- and genotypic characteristics, we propose a new species of the genus Methylomicrobium - Methylomicrobium buryatense sp. nov.  相似文献   

9.
The results of the first systematical investigation into the aerobic methanotrophic communities inhabiting the bottom sediments of Lake Baikal have been reported. Use of the radioisotopic method revealed methane consumption in 12 10- to 50-cm-long sediment cores. The maximum methane consumption rates (495–737 µl/(dm3 day) were recorded in sediments in the regions of hydrothermal vents and oil and gas occurrence. Methane consumption was most active in the surface layers of the sediments (0–4 cm); it decreased with the sediment depth and became negligible or absent at depths below 20 cm. The number of methanotrophic bacteria usually ranged from 100 to 1000 cells/cm3 of sediment and reached 1 million cells/cm3 in the regions of oil and gas occurrence. The seventeen enrichment cultures obtained were represented mainly by morphotype II methanotrophs. Phylogenetic analysis of the enrichment cultures in terms of the amino acid sequence of the α subunit of the membrane-bound methane monooxygenase (MMO) revealed the predominance of methanotrophs of the genus Methylocystis. The results obtained suggest the presence of an active aerobic methanotrophic community in Lake Baikal.__________Translated from Mikrobiologiya, Vol. 74, No. 4, 2005, pp. 562–571.Original Russian Text Copyright © 2005 by Gainutdinova, Eshinimaev, Tsyrenzhapova, Dagurova, Suzina, Khmelenina, Namsaraev, Trotsenko.  相似文献   

10.
The response of a bacterial community to liming of a forest humus soil (pH 4.9 increased to pH 7.5) was studied in the laboratory at three temperatures (5, 20, and 30°C). As a comparison an unlimed soil (pH 4.9) and a soil limed in the field 15 years ago (pH around 6) were also included. The bacterial community tolerance of pH was measured using TdR incorporation. The pH of the bacterial suspensions (bacteria directly extracted from soil) was altered to 3.6 and 8.3 using different buffers before measuring TdR incorporation. The logarithmic ratio between TdR incorporation at 8.3 and 3.6 was then used as an indicator of the community pH tolerance. The rate of changes in the community tolerance to pH after liming was fastest for the soil incubated at 30°C, but only minor differences in rate of change could be seen between samples incubated at 5 and 20°C. Changes in phospholipid fatty acid (PLFA) pattern after increasing the pH were most rapid for the bacterial community in the soil incubated at 30°C followed by the soil incubated at 20°C, whereas no changes could be seen in the PLFA pattern of the soil incubated at 5°C, even after 82 days’ incubation. Thus, the changes in the PLFA pattern were considerably slower than the changes in bacterial community tolerance to pH measured using TdR incorporation.  相似文献   

11.
Psychrophilic methanotroph from tundra soil   总被引:1,自引:0,他引:1  
The first psychrophilic obligate methanotroph was isolated from the tundra soil in the Polar Ural. The organism has an optimal temperature range of 3.5°–10°C, but at 20°C the growth is minimal. The cells of the metanotroph are Gram-negative cocci resemblingMethylococcus in appearance but of low G+C content (G+C=45.6 mol%). Membranes are arranged into bundles of vesicular discs. Gas vesicles are formed at the temperature range of 7°–20°C, and the number of cells with vesicles increases with the temperature. Only methane or methanol serves as substrate for growth in the mineral salt medium. Psychrophilic methanotrophs might be important components of a microbial gas filter in the tundra region.  相似文献   

12.
Oospore germination occurred over a temperature ranging of 15–35°C forPythium coloratum, 10–35°C forP. diclinum, 15–30°C forP. dissotocum, 7–30°C forP. monospermum, and 10–30°C forP. pleroticum. Optimum temperature was 25°C for all species tested. In case of pH, oospore germination occurred over a range of 4.76–8.55 with an optimum of 6.40–7.40. The least germination occurred at pH 4.76 forP. coloratum, P. diclinum, P. monospermum andP. pleroticum, whileP. dissotocum germinated from pH 5.02. Oospores of the all tested pythia were able to germinate at –0.13 to –1.65 MPa and could not germinate at –3.40 MPa, with the highest germination rate at –0.27 to –0.47 MPa. The effect of temperature, pH and osmotic potential on oospore germination was discussed in relation to pollution of pond water.  相似文献   

13.
14.
Field observations on temperature and pH of a small pond showed that a amphipod population of Hyalella azteca was exposed to variable seasonal pH between 5.10–5.85, and water temperatures between 2–21 °C. Laboratory experiments were designed to simulate seasonal temperatures and field pHs of a small pond habitat. Laboratory bioassay experiments were conducted to determine the survival of Hyalella azteca at pHs 4, 5, 6 and 7, and varying temperatures of 5°, 10°, 15°, 20° and 25 °C.The LT100 at pH 4 and 25 °C was 5.7 ± 0.47 days, compared to 47.3 ± 2.49 days at 5 °C. An Analysis of Variance (ANOVA) showed temperature was a significant (p > 0.0001) source of variation in the acute lethality of pH to H. azteca. A Duncans Multiple Range Test (DMRT) further showed that in laboratory experiments at pH 4, there was a significant difference ( = 0.01) between the LT100s at 5°, 10°, 15° and 20 °C, but not between temperatures 20° and 25 °C.  相似文献   

15.
Microorganisms that oxidize atmospheric methane in soils were characterized by radioactive labelling with 14CH4 followed by analysis of radiolabelled phospholipid ester-linked fatty acids (14C-PLFAs). The radioactive fingerprinting technique was used to compare active methanotrophs in soil samples from Greenland, Denmark, the United States, and Brazil. The 14C-PLFA fingerprints indicated that closely related methanotrophic bacteria were responsible for the oxidation of atmospheric methane in the soils. Significant amounts of labelled PLFAs produced by the unknown soil methanotrophs coeluted with a group of fatty acids that included i17:0, a17:0, and 17:1ω8c (up to 9.0% of the total 14C-PLFAs). These PLFAs are not known to be significant constituents of methanotrophic bacteria. The major PLFAs of the soil methanotrophs (73.5 to 89.0% of the total PLFAs) coeluted with 18:1 and 18:0 fatty acids (e.g., 18:1ω9, 18:1ω7, and 18:0). The 14C-PLFAs fingerprints of the soil methanotrophs that oxidized atmospheric methane did not change after long-term methane enrichment at 170 ppm CH4. The 14C-PLFA fingerprints of the soil methanotrophs were different from the PLFA profiles of type I and type II methanotrophic bacteria described previously. Some similarity at the PLFA level was observed between the unknown soil methanotrophs and the PLFA phenotype of the type II methanotrophs. Methanotrophs in Arctic, temperate, and tropical regions assimilated between 20 and 54% of the atmospheric methane that was metabolized. The lowest relative assimilation (percent) was observed for methanotrophs in agricultural soil, whereas the highest assimilation was observed for methanotrophs in rain forest soil. The results suggest that methanotrophs with relatively high carbon conversion efficiencies and very similar PLFA compositions dominate atmospheric methane metabolism in different soils. The characteristics of the methane metabolism and the 14C-PLFA fingerprints excluded any significant role of autotrophic ammonia oxidizers in the metabolism of atmospheric methane.  相似文献   

16.
Currently, molecular biologic techniques achieve a great development in studies of soil samples. The objective of this research is to improve methods for microbial prospecting of oil and gas by applying culture-independent techniques to soil sampled from above a known oil and gas field. Firstly, the community structure of soil bacteria above the Ban 876 Gas and Oil Field was analyzed based on 16S rRNA gene clone libraries. The soil bacteria communities were consistently different along the depth; however, Chloroflexi and Gemmatimonadetes were predominant and methanotrophs were minor in both bacteria libraries (DGS1 and DGS2). Secondly, the numbers of methane-oxidizing bacteria, quantified using a culture-dependent procedure and culture-independent group-specific real-time PCR (RT-PCR), respectively, were inconsistent with a quantify variance of one or two orders of magnitude. Special emphasis was given to the counting advantages of RT-PCR based on the methanotrophic pmoA gene. Finally, the diversity and distribution of methanotrophic communities in the soil samples were analyzed by constructing clone libraries of functional gene. All 508-bp inserts in clones phylogenetically belonged to the methanotrophic pmoA gene with similarities from 83% to 100%. However, most of the similarities were below 96%. Five clone libraries of methanotrophs clearly showed that the anomalous methanotrophs (Methylosinus and Methylocystis) occupy the studied area.  相似文献   

17.
Knowledge about methanotrophs and their activities is important to understand the microbial mediation of the greenhouse gas CH4 under climate change and human activities in terrestrial ecosystems. The effects of simulated warming and sheep grazing on methanotrophic abundance, community composition, and activity were studied in an alpine meadow soil on the Tibetan Plateau. There was high abundance of methanotrophs (1.2–3.4 × 108 pmoA gene copies per gram of dry weight soil) assessed by real-time PCR, and warming significantly increased the abundance regardless of grazing. A total of 64 methanotrophic operational taxonomic units (OTUs) were obtained from 1,439 clone sequences, of these OTUs; 63 OTUs (98.4%) belonged to type I methanotrophs, and only one OTU was Methylocystis of type II methanotrophs. The methanotroph community composition and diversity were not apparently affected by the treatments. Warming and grazing significantly enhanced the potential CH4 oxidation activity. There were significantly negative correlations between methanotrophic abundance and soil moisture and between methanotrophic abundance and NH4–N content. The study suggests that type I methanotrophs, as the dominance, may play a key role in CH4 oxidation, and the alpine meadow has great potential to consume more CH4 under future warmer and grazing conditions on the Tibetan Plateau.  相似文献   

18.
The effect of soil moisture at different temperatures on root rot of wheat seedlings caused by Rhizoctonia solani AG-8 was studied in temperature controlled water tanks under glasshouse conditions. Four moisture levels (15, 30, 50 and 75% of soil water holding capacity at saturation which were equal to –10, –7, –5 and –3 kPa, respectively) were tested in tanks maintained 10, 15, 20 or 25 °C. The role of microbial activity in the effect of soil moisture and temperature on disease severity was also studied by including treatments of steam treated soil. Results showed that at soil moisture levels optimum for plant growth (50 and 75% WHC) disease was more severe at a lower temperature (10 °C), but under relatively dry conditions (15% WHC) disease levels were similar at all temperatures tested. In warm soils (20 and 25 °C) at high soil moisture levels (50 and 75% WHC), disease was more severe in steam treated soil than in non-steam treated soil, indicating that the suppression of disease in natural soil under these conditions was associated with high soil microbial activity.  相似文献   

19.
Seasonal net nitrogen (N) and phosphorus (P) mineralization was investigated at Abisko, Swedish Lapland in soils of a subarctic heath and in soils of a colder (by about 4° C), high altitude fellfield by (a) using in situ soil incubation in soils which had been shaded or subjected to two levels of increased temperature, combined with (b) reciprocal transplantation of soils between the two sites. Proportionally large and significant net seasonal mineralization of N, in contrast to non-significant P mineralization, was found in untransplanted and transplanted fellfield soil. In contrast, P was mineralized in proportionally large amounts, in contrast to low N mineralization, in the transplanted and untransplanted heath soil. The differences indicate that P was strongly immobilized in relation to N at the fellfield and that N was more strongly immobilized than P in the heath soil. The immobilization in both soils remained high even after a temperature change of 4–5° C experienced by transplanted soils. Air temperature increases of up to 4–5° C in greenhouses resulted in a soil temperature increase of 1–2° C and did not cause any extra increase of net N and P mineralization. The results suggest that soil temperature increases of up to 2° C, which are likely to occur by the end of the next century as an effect of a predicted 4–5° C rise in air temperature, have only small effects on net mineralization in at least two characteristic tundra soils. These effects are probably smaller than the natural fluctuation of plant available nutrients from site to site, even within the same plant community. A further soil temperature increase of up to 4–5° C may enhance decomposition and gross mineralization, but the rate of net mineralization, and hence the change of nutrient availability to the plants, depends on the extent of microbial immobilization of the extra nutrients released.  相似文献   

20.
Influence of salinity and temperature on the germination of Kochia scoparia   总被引:1,自引:0,他引:1  
Kochia scoparia is one of the most common annual halophytes foundin the Great Basin. Seeds were collected from a population growing in asalt playa at Faust, Utah and were germinated at 5 temperature regimes(12 h night/12 h day, 5–15 °C, 10–20 °C, 15–25 °C,20–30 °C and 25–35 °C) and 6 salinities (0, 200, 400,600, 800 and 1000 mM NaCl) to determine optimal conditions forgermination and recovery of germination from saline conditions after beingtransferred to distilled water. Maximum germination occurred in distilledwater, and an increase in NaCl concentration progressively inhibited seedgermination. Few seeds germinated at 1000 mM NaCl. A temperatureregime of 25 °C night and 35 °C day yielded maximumgermination. Cooler temperature 5–15 °C significantly inhibited seedgermination. Rate of germination decreased with increase in salinity.Germination rate was highest at 25–35 °C and lowest at5–15 °C. Seeds were transferred from salt solutions to distilled waterafter 20 days and those from high salinities recovered quickly at warmertemperature regimes. Final recovery germination percentages in high salttreatments were high, indicating that exposure to high concentration ofNaCl did not inhibit germination permanently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号