共查询到20条相似文献,搜索用时 0 毫秒
1.
Excess light is harmful for photosynthetic organisms. The cyanobacterium Synechocystis PCC 6803 protects itself by dissipating the excess of energy absorbed by the phycobilisome, the water-soluble antenna of Photosystem II, into heat decreasing the excess energy arriving to the reaction centers. Energy dissipation results in a detectable decrease of fluorescence. The soluble Orange Carotenoid Protein (OCP) is essential for this blue-green light induced mechanism. OCP genes appear to be highly conserved among phycobilisome-containing cyanobacteria with few exceptions. Here, we show that only the strains containing a whole OCP gene can perform a blue-light induced photoprotective mechanism under both iron-replete and iron-starvation conditions. In contrast, strains containing only N-terminal and/or C-terminal OCP-like genes, or no OCP-like genes at all lack this light induced photoprotective mechanism and they were more sensitive to high-light illumination. These strains must adopt a different strategy to longer survive under stress conditions. Under iron starvation, the relative decrease of phycobiliproteins was larger in these strains than in the OCP-containing strains, avoiding the appearance of a population of dangerous, functionally disconnected phycobilisomes. The OCP-containing strains protect themselves from high light, notably under conditions inducing the appearance of disconnected phycobilisomes, using the energy dissipation OCP-phycobilisome mechanism. 相似文献
2.
Haijun Liu Hao Zhang Jeremy D. King Nathan R. Wolf Mindy Prado Michael L. Gross Robert E. Blankenship 《BBA》2014
The orange carotenoid protein (OCP), a member of the family of blue light photoactive proteins, is required for efficient photoprotection in many cyanobacteria. Photoexcitation of the carotenoid in the OCP results in structural changes within the chromophore and the protein to give an active red form of OCP that is required for phycobilisome binding and consequent fluorescence quenching. We characterized the light-dependent structural changes by mass spectrometry-based carboxyl footprinting and found that an α helix in the N-terminal extension of OCP plays a key role in this photoactivation process. Although this helix is located on and associates with the outside of the β-sheet core in the C-terminal domain of OCP in the dark, photoinduced changes in the domain structure disrupt this interaction. We propose that this mechanism couples light-dependent carotenoid conformational changes to global protein conformational dynamics in favor of functional phycobilisome binding, and is an essential part of the OCP photocycle. 相似文献
3.
Erhard Mörschel 《Planta》1982,154(3):251-258
Phycobilisomes of red algae and cyanobacteria contain small amounts of nonpigmented polypeptides in addition to the major constituent biliprotein pigments. The localization of these polypeptides is analyzed by gel electrophoresis of phycobilisome fragments obtained by selective dissociation and subsequent separation. Five groups of biliprotein aggregates are determined, belonging to the 6, 11, 16, 18 and 23 S categories. Accessory nonpigmented high molecular weight proteins (80,000 MW) are exclusively bound to phycobilisome core fractions and thylakoids, thus apparently serving as links between the phycobilisomes and the photosynthetic units of the thylakoids. In contrast, smaller nonpigmented accessory polypeptides of 20,000 to 60,000 MW are preferably found in the peripheral biliprotein stacks. They may either form a compatible link between the phycobilisome core and periphery or bind and co-polymerize with hexameric biliproteins in the peripheral stacks to enhance or effect binding of the aggregates. Furthermore, they may determine the arrangement and composition of the phycobilisomes during development and chromatic adaptation.Abbreviations PE phycoerythrin - PEC phycoerythrocyanin - PC phycocyanin - APC allophycocyanin 相似文献
4.
Photoprotective mechanisms have evolved in photosynthetic organisms to cope with fluctuating light conditions. Under high irradiance, the production of dangerous oxygen species is stimulated and causes photo-oxidative stress. One of these photoprotective mechanisms, non photochemical quenching (qE), decreases the excess absorbed energy arriving at the reaction centers by increasing thermal dissipation at the level of the antenna. In this review we describe results leading to the discovery of this process in cyanobacteria (qE(cya)), which is mechanistically distinct from its counterpart in plants, and recent progress in the elucidation of this mechanism. The cyanobacterial photoactive soluble orange carotenoid protein is essential for the triggering of this photoprotective mechanism. Light induces structural changes in the carotenoid and the protein leading to the formation of a red active form. The activated red form interacts with the phycobilisome, the cyanobacterial light-harvesting antenna, and induces a decrease of the phycobilisome fluorescence emission and of the energy arriving to the reaction centers. The orange carotenoid protein is the first photoactive protein to be identified that contains a carotenoid as the chromophore. Moreover, its photocycle is completely different from those of other photoactive proteins. A second protein, called the Fluorescence Recovery Protein encoded by the slr1964 gene in Synechocystis PCC 6803, plays a key role in dislodging the red orange carotenoid protein from the phycobilisome and in the conversion of the free red orange carotenoid protein to the orange, inactive, form. This protein is essential to recover the full antenna capacity under low light conditions after exposure to high irradiance. This article is part of a Special Issue entitled: Photosystem II. 相似文献
5.
Adjele Wilson James N. Kinney Petrus H. Zwart Claire Punginelli Sandrine D'Haene Fran?ois Perreau Michael G. Klein Diana Kirilovsky Cheryl A. Kerfeld 《The Journal of biological chemistry》2010,285(24):18364-18375
The photoprotective processes of photosynthetic organisms involve the dissipation of excess absorbed light energy as heat. Photoprotection in cyanobacteria is mechanistically distinct from that in plants; it involves the orange carotenoid protein (OCP), a water-soluble protein containing a single carotenoid. The OCP is a new member of the family of blue light-photoactive proteins; blue-green light triggers the OCP-mediated photoprotective response. Here we report structural and functional characterization of the wild type and two mutant forms of the OCP, from the model organism Synechocystis PCC6803. The structural analysis provides high resolution detail of the carotenoid-protein interactions that underlie the optical properties of the OCP, unique among carotenoid-proteins in binding a single pigment per polypeptide chain. Collectively, these data implicate several key amino acids in the function of the OCP and reveal that the photoconversion and photoprotective responses of the OCP to blue-green light can be decoupled. 相似文献
6.
Václav Šlouf Valentyna Kuznetsova Marcel Fuciman Céline Bourcier de Carbon Adjélé Wilson Diana Kirilovsky Tomáš Polívka 《Photosynthesis research》2017,131(1):105-117
A quenching mechanism mediated by the orange carotenoid protein (OCP) is one of the ways cyanobacteria protect themselves against photooxidative stress. Here, we present a femtosecond spectroscopic study comparing OCP and RCP (red carotenoid protein) samples binding different carotenoids. We confirmed significant changes in carotenoid configuration upon OCP activation reported by Leverenz et al. (Science 348:1463–1466. doi: 10.1126/science.aaa7234, 2015) by comparing the transient spectra of OCP and RCP. The most important marker of these changes was the magnitude of the transient signal associated with the carotenoid intramolecular charge-transfer (ICT) state. While OCP with canthaxanthin exhibited a weak ICT signal, it increased significantly for canthaxanthin bound to RCP. On the contrary, a strong ICT signal was recorded in OCP binding echinenone excited at the red edge of the absorption spectrum. Because the carbonyl oxygen responsible for the appearance of the ICT signal is located at the end rings of both carotenoids, the magnitude of the ICT signal can be used to estimate the torsion angles of the end rings. Application of two different excitation wavelengths to study OCP demonstrated that the OCP sample contains two spectroscopically distinct populations, none of which is corresponding to the photoactivated product of OCP. 相似文献
7.
Rishikesh P. Bhalerao Lisbet K. Lind Cathrine E. Persson Petter Gustafsson 《Molecular & general genetics : MGG》1993,237(1-2):89-96
Summary The phycobilisome rod linker genes in the two closely related cyanobacteria Synechococcus sp. PCC 6301 and Synechococcus sp. PCC 7942 were studied. Southern blot analysis showed that the genetic organization of the phycobilisome rod operon is very similar in the two strains. The phycocyanin gene pair is duplicated and separated by a region of about 2.5 kb. The intervening region between the duplicated phycocyanin gene pair was cloned from Synechococcus sp. PCC 6301 and sequenced. Analysis of this DNA sequence revealed the presence of three open reading frames corresponding to 273, 289 and 81 amino acids, respectively. Insertion of a kanamycin resistance cassette into these open reading frames indicated that they corresponded to the genes encoding the 30, 33 and 9 kDa rod linkers, respectively, as judged by the loss of specific linkers from the phycobilisomes of the insertional mutants. Amino acid compositions of the 30 and 33 kDa linkers derived from the DNA sequence were found to deviate from those of purified 33 and 30 kDa linkers in the amounts of glutamic acid/glutamine residues. On the basis of similarity of the amino acid sequence of the rod linkers between Synechococcus sp. PCC 6301 and Calothrix sp. PCC 7601 we name the genes encoding the 30, 33 and 9 kDa linkers cpcH, cpcI and cpcD, respectively. The three linker genes were found to be co-transcribed on an mRNA of 3700 nucleotides. However, we also detected a smaller species of mRNA, of 3400 nucleotides, which would encode only the cpcH and cpcI genes. The 30 kDa linker was still found in phycobilisome rods lacking the 33 kDa linker and the 9 kDa linker was detected in mutants lacking the 33 or the 30 kDa linkers. Free phycocyanin was found in the mutants lacking the 33 or the 30 kDa linkers, whereas no free phycocyanin could be found in the mutant lacking the 9 kDa linker.Abbreviations PCC
Pasteur Culture Collection
- UTEX
University of Texas Culture Collection
The nucleotide sequence data reported in this paper will appear in the EMBL, GenBank Nucleotide Sequence Databases under the accession number M94218 相似文献
8.
R. H. Reed S. R. C. Warr D. L. Richardson D. J. Moore W. D. P. Stewart 《Plant and Soil》1985,89(1-3):97-106
Summary Photosynthetic, prokaryotic blue-green algae (cyanobacteria) occur in a wide range of natural habitats of diverse ionic composition and as such, represent an important source of biological material for biosolar energy conversion programs using saline water. The gasvacuolate, filamentous Spirulina is grown in seminatural culture in Lake Texcoco, Mexico, as a major source of single-cell protein for animal nutrition. Pilot-scale trials in other areas of the world have also demonstrated the suitability of blue-green algae, including Spirulina, for growth under brackish conditions. The carbohydrate accumulation profiles of blue-green algae differ in isolates from freshwater, marine and hypersaline habitats, with a trend towards sucrose or trehalose accumulation in stenohaline freshwater strains grown in media containing NaCl, while euryhaline and marine forms frequently accumulate glucosylglycerol. Many halotolerant isolates from hypersaline habitats accumulate glycinebetaine in response to osmotic stress. This knowledge may provide scope for future improvement in the N2 fixation rates of blue-green algae in saline media, using betaine-accumulating N2-fixing strains in preference to other, saltsensitive isolates. 相似文献
9.
《FEBS letters》2014,588(24):4561-4565
The effects of the Hofmeister series of ions on the activation of the orange carotenoid protein (OCP) from the inactive orange form to the active red form were tested. Kosmotropes led to lower OCP activation, whereas chaotropes led to greater OCP activation. Concentrations of thiocyanate exceeding 1.5 M dark activate the orange carotenoid protein to its red form. This chemically activated OCP was studied by UV–vis and circular dichroism spectroscopies. The chemically-activated OCP quenches the fluorescence of phycobilisomes in vitro, to a level comparable to that of the light-activated OCP. 相似文献
10.
In order to survive sunlight in the absence of water, desiccation-tolerant green plants need to be protected against photooxidation. During drying of the chlorolichen Cladonia rangiformis and the cyanolichen Peltigera neckeri, chlorophyll fluorescence decreased and stable light-dependent charge separation in reaction centers of the photosynthetic apparatus was lost. The presence of light during desiccation increased loss of fluorescence in the chlorolichen more than that in the cyanolichen. Heating of desiccated Cladonia thalli, but not of Peltigera thalli, increased fluorescence emission more after the lichen had been dried in the light than after drying in darkness. Activation of zeaxanthin-dependent energy dissipation by protonation of the PsbS protein of thylakoid membranes was not responsible for the increased loss of chlorophyll fluorescence by the chlorolichen during drying in the light. Glutaraldehyde inhibited loss of chlorophyll fluorescence during drying. Desiccation-induced loss of chlorophyll fluorescence and of light-dependent charge separation are interpreted to indicate activation of a highly effective mechanism of photoprotection in the lichens. Activation is based on desiccation-induced conformational changes of a pigment-protein complex. Absorbed light energy is converted into heat within a picosecond or femtosecond time domain. When present during desiccation, light interacts with the structural changes of the protein providing increased photoprotection. Energy dissipation is inactivated and structural changes are reversed when water becomes available again. Reversibility of ultra-fast thermal dissipation of light energy avoids photo-damage in the absence of water and facilitates the use of light for photosynthesis almost as soon as water becomes available. 相似文献
11.
Poly(hydroxyalkanoate) in cyanobacteria: an overview 总被引:2,自引:0,他引:2
Lucas J. Stal 《FEMS microbiology letters》1992,103(2-4):169-180
Abstract In this paper an overview is given on the occurrence of poly(hydroxyalkanoate) (PHA) in cyanobacteria and its possible role as a putative reserve compound. Comparisons are made with the function of other storage compounds that occur in cyanobacteria. For the cyanobacteria Oscillatoria limosa and Gloeothece sp. PCC 6909, some experimental data on the accumulation and mobilization of PHA are presented. O. limosa presumably contains poly(hydroxyvalerate) (PHV), whereas in Gloeothece poly(hydroxybutyrate) (PHB) was detected. Both species accumulated PHA to 6–9% of the dry weight. In Gloeothece PHB accumulation was stimulated by the addition of acetate but in O. limosa this was not the case. PHA was not involved in dark metabolism in either of the strains. 相似文献
12.
Geoffrey W. Garnham Martin Green 《Journal of industrial microbiology & biotechnology》1995,14(3-4):247-251
Summary The short-term accumulation of chromate by the cyanobacteriaAnabaena variabilis andSynechococcus PCC 6301 has been described as consisting of a rapid and relatively low level of biosorption of chromate to the cell walls; no energy-dependent uptake was detected. This biosorption was dependent on chromate concentration and could be described by a Freundlich adsorption isotherm for both cyanobacterial species studied. Decreasing the external pH increased the chromate accumulation by both species. Over a longer time period with growth it was shown thatA. variabilis was capable of reducing chromate (VI) to chromium (III) and then accumulating the chromium (III).Synechococcus PCC 6301 showed no further interaction with chromate concentrations over the same time period after the initial biosorption. 相似文献
13.
《BBA》2020,1861(4):148037
Photosynthetic organisms need to sense and respond to fluctuating environmental conditions, to perform efficient photosynthesis and avoid the formation of harmful reactive oxygen species. Cyanobacteria have developed a photoprotective mechanism that decreases the energy arriving at the reaction centers by increasing thermal energy dissipation at the level of the phycobilisome, the extramembranal light-harvesting antenna. This mechanism is triggered by the photoactive orange carotenoid protein (OCP). In this study, we characterized OCP and the related photoprotective mechanism in non-stressed and light-stressed cells of three different strains of Planktothrix that can form impressive blooms. In addition to changing lake ecosystemic functions and biodiversity, Planktothrix blooms can have adverse effects on human and animal health as they produce toxins (e.g., microcystins). Three Planktothrix strains were selected: two green strains, PCC 10110 (microcystin producer) and PCC 7805 (non-microcystin producer), and one red strain, PCC 7821. The green strains colonize shallow lakes with higher light intensities while red strains proliferate in deep lakes. Our study allowed us to conclude that there is a correlation between the ecological niche in which these strains proliferate and the rates of induction and recovery of OCP-related photoprotection. However, differences in the resistance to prolonged high-light stress were correlated to a better replacement of damaged D1 protein and not to differences in OCP photoprotection. Finally, microcystins do not seem to be involved in photoprotection as was previously suggested. 相似文献
14.
The cyanobacterial water-soluble orange carotenoid binding protein (OCP) is an ideal system for study of the effects of protein environment on photophysical properties of carotenoids. It contains a single pigment, the carotenoid 3'-hydoxyechinenone (hECN). In this study, we focus on spectroscopic properties of hECN in solution and in the OCP, aiming to elucidate the spectroscopic effects of the carotenoid-protein interaction in the context of the function(s) of the OCP. The noncovalent binding of hECN to the OCP causes a conformational change in the hECN, leading to a prolongation of the effective conjugation length. This change is responsible for shortening of the S(1) lifetime from 6.5 ps in solution to 3.3 ps in the OCP. The conformational change and the hydrogen bonding via the carbonyl group of hECN result in stabilization of an intramolecular charge-transfer (ICT) state. No signs of the ICT state were found in hECN in solution, regardless of the solvent polarity; spectral bands in transient absorption spectra of OCP-bound hECN exhibit features typical for the ICT state. Application of global fitting analysis revealed further effects of binding hECN in the OCP. The S(1) state of hECN in the OCP decays with two time constants of 0.9 and 3.3 ps. Modeling of the excited-state processes suggests that these two components are due to two populations of hECN in the OCP that differ in the hydrogen bonding via the carbonyl group. These results support the hypothesis that the OCP functions as a photoprotective shield under excess light. Mechanistically, the broadening of the hECN absorption spectrum upon binding to OCP enhances filtering effect of hECN. Furthermore, the binding-induced conformational change and activation of the ICT state that leads to a shortening of hECN lifetime effectively makes the protein-bound hECN a more effective energy dissipator. 相似文献
15.
In the vegetative cells of heterocystous cyanobacteria, such asAnabaena, two Operons harbouring the nitrogen fixaton (nif) genes contain two separate intervening DNA elements resulting in the dispersion of genes and impaired gene expression. A 11 kb element disrupts thenifD gene in thenifH, D-K operon. It contains a 11 bp sequence (GGATTACTCCG) directly repeated at its ends and harbours a gene,xisA, which encodes a site-specific recombinase. A large 55 kb element interrupts thefdxN gene in thenifB fdxN-nifS-nifU operon. It contains two 5 bp direct repeats (TATTC) at its ends and accommodates at least one gene,xisF, which encodes another site-specific recombinase. During heterocyst differentiation both the discontinuities are precisely excised by two distinct site-specific recombination events. One of them is brought about by the XisA protein between the 11 bp direct repeats. The second one is caused by the XisF protein and occurs between the 5 bp direct repeats. As a consequence the 11kb and 55 kb elements are removed from the chromosome as circles and functionalnif Operons are created. Nitrogenase proteins are then expressed from the rearranged genes in heterocysts and aerobic nitrogen fixation ensues. How these elements intruded thenif genes and how and why are they maintained in heterocystous cyanobacteria are exciting puzzles engaging considerable research effort currently. The unique developmental regulation of these gene rearrangements in heterocystous cyanobacteria is discussed. 相似文献
16.
Populations of Limnothrix redekei, Oscillatoria lanceaeformis, Planktothrix agardhii and Pseudanabaena limnetica were found in a hypertrophic, gravel-pit lake near Madrid (Spain), throughout a one year sampling at weekly intervals. Physico-chemical factors, phytoplankton biomass and net growth rates were measured. Oscillatoria lanceaeformis was only observed a few weeks, probably being related to phosphorus limitation. Planktothrix agardhii biomass was related to PhAR irradiances, light attenuation coefficient in the water, Brunt-Väisäla frequency and decrease of soluble reactive phosphorus. Limnothrix redekei and Pseudanabaena limnetica biomass values were related to a decrease of inorganic nitrogen and temperature. A different lag response of populations was observed in relation to the environmental features. 相似文献
17.
Cyanobacteria have tremendous potential to produce clean, renewable fuel in the form of hydrogen gas derived from solar energy and water. Of the two cyanobacterial enzymes capable of evolving hydrogen gas (nitrogenase and the bidirectional hydrogenase), the hox-encoded bidirectional Ni-Fe hydrogenase has a high theoretical potential. The physiological role of this hydrogenase is a highly debated topic and is poorly understood relative to that of the nitrogenase. Here the structure, assembly, and expression of this enzyme, as well as its probable roles in metabolism, are discussed and analyzed to gain perspective on its physiological role. It is concluded that the bidirectional hydrogenase in cyanobacteria primarily functions as a redox regulator for maintaining a proper oxidation/reduction state in the cell. Recommendations for future research to test this hypothesis are discussed. 相似文献
18.
Akiyama H Okuhata H Onizuka T Kanai S Hirano M Tanaka S Sasaki K Miyasaka H 《Bioresource technology》2011,102(23):11039-11042
A practical antibiotics-free plasmid expression system in cyanobacteria was developed by using the complementation of cyanobacterial recA null mutation with the EscherichiacolirecA gene on the plasmid. This system was applied to the production of polyhydroxyalkanoate (PHA), a biodegradable plastic, and the transgenic cyanobacteria stably maintained the pha genes for PHA production in the antibiotics-free medium, and accumulated up to 52% cell dry weight of PHA. 相似文献
19.
Haijun Liu Yue Lu Benjamin Wolf Rafael Saer Jeremy D. King Robert E. Blankenship 《Photosynthesis research》2018,135(1-3):143-147
Photosynthesis starts with absorption of light energy by light-harvesting antenna complexes with subsequent production of energy-rich organic compounds. However, all photosynthetic organisms face the challenge of excess photochemical conversion capacity. In cyanobacteria, non-photochemical quenching (NPQ) performed by the orange carotenoid protein (OCP) is one of the most important mechanisms to regulate the light energy captured by light-harvesting antennas. This regulation permits the cell to meet its cellular energy requirements and at the same time protects the photosynthetic apparatus under fluctuating light conditions. Several reports have revealed that thermal dissipation increases under excess copper in plants. To explore the effects and mechanisms of copper on cyanobacteria NPQ, photoactivation and relaxation of OCP in the presence of copper were examined in this communication. When OCPo (OCP at orange state) is converted into OCPr(OCP at red state), copper ion has no effect on the photoactivation kinetics. Relaxation of OCPr to OCPo, however, is largely delayed—almost completely blocked, in the presence of copper. Even the addition of the fluorescence recovery protein (FRP) cannot activate the relaxation process. Native polyacrylamide gel electrophoresis (PAGE) analysis result indicates the heterogeneous population of Cu2+-locked OCPr. The Cu2+-OCP binding constant was estimated using a hyperbolic binding curve. Functional roles of copper-binding OCP in vivo are discussed. 相似文献
20.
Nico Betterle Matteo Ballottari Rainer Hienerwadel Roberto Bassi 《Archives of biochemistry and biophysics》2010,504(1):67-77
Lhcb6 (CP24) is a monomeric antenna protein of photosystem II, which has been shown to play special roles in photoprotective mechanisms, such as the Non-Photochemical Quenching and reorganization of grana membranes in excess light conditions. In this work we analyzed Lhcb6 in vivo and in vitro: we show this protein, upon activation of the xanthophyll cycle, accumulates zeaxanthin into inner binding sites faster and to a larger extent than any other pigment-protein complex. By comparative analysis of Lhcb6 complexes violaxanthin or zeaxanthin binding, we demonstrate that zeaxanthin not only down-regulates chlorophyll singlet excited states, but also increases the efficiency of chlorophyll triplet quenching, with consequent reduction of singlet oxygen production and significant enhancement of photo-stability. On these bases we propose that Lhcb6, the most recent addition to the Lhcb protein family which evolved concomitantly to the adaptation of photosynthesis to land environment, has a crucial role in zeaxanthin-dependent photoprotection. 相似文献