首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies from our laboratory demonstrated that PVC-211 murine leukemia virus (MuLV), a neuropathogenic variant of Friend MuLV (F-MuLV), had undergone genetic changes which allowed it to efficiently infect rat brain capillary endothelial cells (BCEC) in vivo and in vitro. Two amino acid changes from F-MuLV in the putative receptor binding domain (RBD) of the envelope surface protein of PVC-211 MuLV (Glu-116 to Gly and Glu-129 to Lys) were shown to be sufficient for conferring BCEC tropism on PVC-211 MuLV. Recent examination of the unique RBD of PVC-211 MuLV revealed that the substitution of Lys for Glu at position 129 created a new heparin-binding domain that overlapped a heparin-binding domain common to ecotropic MuLVs. In this study we used heparin-Sepharose columns to demonstrate that PVC-211 MuLV, but not F-MuLV, can bind efficiently to heparin and that one or both of the amino acids in the RBD of PVC-211 MuLV that are associated with BCEC tropism are responsible. We further showed that heparin can enhance or inhibit MuLV infection and that the mode of action is dependent on heparin concentration, sulfation of heparin, and the affinity of the virus for heparin. Our results suggest that the amino acid changes that occurred in the envelope surface protein of PVC-211 MuLV may allow the virus to bind strongly to the surface of BCEC via heparin-like molecules, increasing the probability that the virus will bind to its cell surface receptor and efficiently infect these cells.  相似文献   

2.
Entry of ecotropic murine leukemia virus (MuLV) into host cells is initiated by interaction between the receptor-binding domain of the viral SU protein and the third extracellular domain (TED) of the receptor, cationic amino acid transporter 1 (CAT1). To study the molecular basis for the retrovirus-receptor interaction, mouse CAT1 (mCAT1) was expressed in human 293 cells as a fusion protein with jellyfish green fluorescent protein (GFP). Easily detected by fluorescence microscopy and immunoblot analysis with anti-GFP antibodies, the mCAT1-GFP fusion protein was expressed in an N-glycosylated form on the cell surface and in the Golgi apparatus, retaining the ecotropic receptor function. The system was applied to compare Friend MuLV (F-MuLV) and its neuropathogenic variant, PVC-211 MuLV, which exhibits a unique cellular tropism and host range, for the ability to use various CAT family members as a receptor. The results indicated that F-MuLV and PVC-211 MuLV could infect the cells expressing wild-type mCAT1 at comparable efficiencies and that rat CAT3, but not mCAT2, conferred a low but detectable level of susceptibility to F-MuLV and PVC-211 MuLV. The data also suggested that CAT proteins might be expressed in an oligomeric form. Further application of the system developed in this study may provide useful insights into the entry mechanism of ecotropic MuLV.  相似文献   

3.
PVC-441 murine leukemia virus (MuLV) is a member of the PVC group of Friend MuLV (F-MuLV)-derived neuropathogenic retroviruses. In order to determine the molecular basis for the difference in neuropathogenicity between PVC-441 and the previously characterized PVC-211 MuLVs, the entire nucleotide sequence of PVC-441 MuLV was determined and compared with those of PVC-211 and F-MuLV. The results suggest that PVC-441 and PVC-211 MuLVs were formed as a result of random mutations of F-MuLV and developed differently. The distinct pathogenicities of PVC-441 and PVC-211 MuLVs were maintained in the viruses regenerated from their molecular clones, and the sequences responsible for the pathological differences observed can be localized to the env gene. The amino acid sequence of PVC-441 deduced from its nucleotide sequence revealed a number of differences from PVC-211, the most striking of which was a difference at position 129 of the SU proteins in the two viruses. Host range studies with a brain capillary endothelial cell line (RTEC-6) and Chinese hamster ovary cells (CHO-K1) revealed that PVC-441, like PVC-211, could infect these cells but its efficiency of infection was lower than that of PVC-211. These results may account for the difference in neuropathogenicity between PVC-441 and PVC-211.  相似文献   

4.
PVC-211 murine leukemia virus (MuLV) is a neuropathogenic variant of Friend MuLV (F-MuLV) which causes a rapidly progressive spongiform neurodegenerative disease in rodents. The primary target of PVC-211 MuLV infection in the brain is the brain capillary endothelial cell (BCEC), which is resistant to F-MuLV infection. Previous studies have shown that changes in the envelope gene of PVC-211 MuLV confer BCEC tropism to the virus. However, little is known about how infection of BCECs by PVC-211 MuLV induces neurological disease. Previous results suggest that nitric oxide (NO), which has been implicated as a potential neurotoxin, is involved in PVC-211 MuLV-induced neurodegeneration. In this study, we show that expression of inducible nitric oxide synthase (iNOS), which produces NO from L-arginine, is induced in BCECs from PVC-211 MuLV-infected rats. Furthermore, elevated levels of a 32-kDa cellular protein modified by 3-nitrotyrosine, which is a hallmark of NO production, were observed in virus-infected BCECs. BCECs from rats infected with BCEC-tropic but nonneuropathogenic PVF-e5 MuLV, which is a chimeric virus between PVC-211 MuLV and F-MuLV, fail to induce either iNOS expression or elevation of tyrosine nitration of a 32-kDa protein. These results suggest that expression of iNOS and nitration of tyrosine residues of a 32-kDa protein in PVC-211 MuLV-infected BCECs may play an important role in neurological disease induction.  相似文献   

5.
PVC-211 murine leukemia virus (MuLV) is a replication-competent, ecotropic type C retrovirus that was isolated after passage of the Friend virus complex through F344 rats. Unlike viruses in the Friend virus complex, it does not cause erythroleukemia but causes a rapidly progressive hind limb paralysis when injected into newborn rats and mice. We have isolated an infectious DNA clone (clone 3d) of this virus which causes neurological disease in animals as efficiently as parental PVC-211 MuLV. The restriction map of clone 3d is very similar to that of the nonneuropathogenic, erythroleukemogenic Friend murine leukemia virus (F-MuLV), suggesting that PVC-211 MuLV is a variant of F-MuLV and that no major structural alteration was involved in its derivation. Studies with chimeric viruses between PVC-211 MuLV clone 3d and wild-type F-MuLV clone 57 indicate that at least one determinant for neuropathogenicity resides in the 2.1-kb XbaI-ClaI fragment containing the gp70 coding region of PVC-211 MuLV. Compared with nonneuropathogenic ecotropic MuLVs, the env gene of PVC-211 MuLV encodes four unique amino acids in the gp70 protein. Nucleotide sequence analysis also revealed a deletion in the U3 region of the long terminal repeat (LTR) of PVC-211 MuLV clone 3d compared with F-MuLV clone 57. In contrast to the env gene of PVC-211 MuLV, particular sequences within the U3 region of the viral LTR do not appear to be required for neuropathogenicity. However, the changes in the LTR of PVC-211 MuLV may be responsible for the failure of this virus to cause erythroleukemia, because chimeric viruses containing the U3 region of F-MuLV clone 57 were erythroleukemogenic whereas those with the U3 of PVC-211 MuLV clone 3d were not.  相似文献   

6.
PVC-211 murine leukemia virus (MuLV) is a neuropathogenic, weakly leukemogenic variant of the nonneuropathogenic, highly leukemogenic Friend MuLV (F-MuLV). Chimeric viruses constructed from PVC-211 MuLV clone 3d and F-MuLV clone 57 indicate that the env gene of PVC-211 MuLV contains the determinant(s) responsible for pathological changes in the central nervous system. However, sequences within the 5' one-third (AatII-EcoRI region) of the PVC-211 MuLV genome, which include the 5' leader sequence, the gag gene, and the 5' quarter of the pol gene, are also needed in conjunction with the env gene determinant(s) to cause clinically evident neurological disease in the majority of virus-infected animals after a short latency. In the presence of the AatII-EcoRI region of the PVC-211 MuLV genome, the PVC-211 MuLV env gene sequences encoding the amino-terminal half of the SU protein, which contains the receptor-binding region of the protein, were sufficient to cause rapidly progressive neurological disease. When PVC-211 MuLV, F-MuLV, and various chimeric viruses were tested for their ability to replicate in cultured brain capillary endothelial cells (BCEC), the primary site of PVC-211 MuLV replication within the central nervous system, there was a direct correlation between the replication efficiency of a virus in BCEC in vitro and its ability to cause neurological disease in vivo. This observation indicates that the sequences in PVC-211 MuLV that render it neuropathogenic affect its replication in BCEC and suggests that rapid and efficient replication of the virus in BCEC is crucial for the pathological changes in the central nervous system that result in development of neurological disease.  相似文献   

7.
PVC-211 murine leukemia virus (MuLV) causes neurodegenerative disease following inoculation of neonatal, but not adult, mice and rats. It was previously shown that tropism for brain capillary endothelial cells (CEC) was a determinant of the viral neuropathogenicity. In this study, we demonstrate that host age-dependent replication of PVC-211 MuLV in vivo occurs in CEC in the brain as well as in other organs, such as the liver, kidney, and heart. In contrast, primary explant cultures of CEC derived from brains and livers of adult and neonatal rats could be infected by PVC-211 MuLV, suggesting that the age-dependent susceptibility was abrogated in vitro. Although CEC were generally less susceptible to MuLV-mediated gene transduction than fibroblasts, treatment of CEC with 2-deoxyglucose followed by inoculation of a PVC-211 MuLV-pseudotyped vector in the absence of heparin improved the transduction efficiency. These observations support the possibility that PVC-211 MuLV may be useful for establishing models of CEC gene transduction.  相似文献   

8.
Four classes of murine leukemia virus (MuLV) which display distinct cellular tropisms and bind to different retrovirus receptors to initiate virus infection have been described. In the present study, we describe a rapid, sensitive immunofluorescence assay useful for characterizing the initial binding of MuLV to cells. By using the rat monoclonal antibody 83A25 (L. H. Evans, R. P. Morrison, F. G. Malik, J. Portis, and W. J. Britt, J. Virol. 64:6176-6183, 1990), which recognizes an epitope of the envelope gp70 molecule common to the different classes of MuLV, it is possible to analyse the binding of ecotropic, amphotropic, or xenotropic MuLV by using only a single combination of primary and secondary antibodies. The MuLV binding detected by this assay is envelope receptor specific and matches the susceptibility to infection determined for cells from a variety of species. The binding of amphotropic MuLV to NIH 3T3 cells was shown to be rapid, saturable, and temperature dependent. Chinese hamster ovary (CHO-K1) cells normally lack the ability to bind ecotropic virus and are not infectible by ecotropic vectors. Expression of the cloned ecotropic retrovirus receptor gene (Rec) in CHO-K1 cells confers high levels of ecotropic virus-specific binding and confers susceptibility to infection. Characterization of MuLV binding to primary cells may provide insight into the infectibility of cells by retroviruses and aid in the selection of appropriate vectors for gene transfer experiments.  相似文献   

9.
PVC-211 murine leukemia virus (MuLV) is a neuropathogenic retrovirus that has undergone genetic changes from its nonneuropathogenic parent, Friend MuLV, that allow it to efficiently infect rat brain capillary endothelial cells (BCEC). To clarify the mechanism by which PVC-211 MuLV expression in BCEC induces neurological disease, we examined virus-infected rats at various times during neurological disease progression for vascular and inflammatory changes. As early as 2 weeks after virus infection and before any marked appearance of spongiform neurodegeneration, we detected vessel leakage and an increase in size and number of vessels in the areas of the brain that eventually become diseased. Consistent with these findings, the amount of vascular endothelial growth factor (VEGF) increased in the brain as early as 1 to 2 weeks postinfection. Also detected at this early disease stage was an increased level of macrophage inflammatory protein 1α (MIP-1α), a cytokine involved in recruitment of microglia to the brain. This was followed at 3 weeks postinfection by a marked accumulation of activated microglia in the spongiform areas of the brain accompanied by an increase in tissue plasminogen activator, a product of microglia implicated in neurodegeneration. Pathological observations at the end stage of the disease included loss of neurons, decreased myelination, and mild muscle atrophy. Treatment of PVC-211 MuLV-infected rats with clodronate-containing liposomes, which specifically kill microglia, significantly blocked neurodegeneration. Together, these results suggest that PVC-211 MuLV infection of BCEC results in the production of VEGF and MIP-1α, leading to the vascular changes and microglial activation necessary to cause neurodegeneration.PVC-211 murine leukemia virus (MuLV), a highly neuropathogenic variant of the leukemia-inducing virus Friend MuLV (F-MuLV), induces a rapid, age-dependent spongiform neurodegenerative disease in rodents, resulting in paralysis (24, 33). The primary target of PVC-211 MuLV infection within the rat central nervous system (CNS) is brain capillary endothelial cells (BCEC), which are resistant to F-MuLV infection (19). Previous studies using chimeras between PVC-211 MuLV and F-MuLV demonstrated that infection of BCEC is a prerequisite for neurodegeneration induced by PVC-211 MuLV (32). Further studies attributed the ability of PVC-211 MuLV to efficiently infect BCEC to two amino acid changes in the receptor binding domain of its envelope protein (31), which creates a unique heparin binding domain that may allow the virus to bind to proteoglycans on the surface of BCEC (22), aiding infection of this difficult-to-infect cell type. These results suggested that neurodegeneration caused by PVC-211 MuLV is an indirect result of virus infection of blood vessels within the CNS.The spongiform vacuolation observed in PVC-211 MuLV-infected brains is associated with oxidative damage (47), and BCEC isolated from PVC-211 MuLV-infected rats produce inducible nitric oxide synthase (iNOS) (23). However, iNOS was not induced after in vitro infection of primary BCEC, suggesting that expression of the virus in BCEC is insufficient to activate iNOS. Activated microglia, which can be detected in the brains of PVC-211 MuLV-infected rats (47), release inflammatory molecules that are known mediators of iNOS induction, and these molecules may stimulate BCEC to express iNOS and other factors. Microglial activation is thought to play a role in neuron death in a number of diseases (6, 26). Unlike BCEC, microglia in PVC-211 MuLV-infected brains are not infected with the virus, so the mechanism by which microglia are activated is unclear. Since vascular damage has been shown to lead to microglial activation (11), it is possible that PVC-211 MuLV infection of BCEC results in damaged vessels, causing the activation of microglia. Although an earlier study failed to detect enough vessel damage in the brains of PVC-211 MuLV-infected rats to allow entry of horseradish peroxidase across the blood-brain barrier (19), one cannot rule out the possibility that the virus causes more subtle vessel damage that is still sufficient to activate microglia.In this study, we examined the brains of rats at various times after infection with PVC-211 MuLV and found that vascular and inflammatory changes, associated with elevation of the endothelial cell growth factor VEGF and the inflammatory chemokine MIP-1α, occur early in the course of the disease. After spongiform neurodegeneration occurred, we detected loss of neurons, demyelination, axonal degeneration, and muscle atrophy as well as high levels of tissue plasminogen activator (tPA). Treatment of rats with clodronate-containing liposomes, which specifically kill macrophages and microglia, blocked the development of PVC-211 MuLV-induced neurodegeneration.  相似文献   

10.
J A Ragheb  H Yu  T Hofmann    W F Anderson 《Journal of virology》1995,69(11):7205-7215
The murine leukemia virus (MuLV) envelope protein was examined to determine which sequences are responsible for the differences in direct membrane fusion observed with the ecotropic and amphotropic MuLV subtypes. These determinants were studied by utilizing amphotropic-ecotropic chimeric envelope proteins that have switched their host range but retain their original fusion domain (TM subunit). Fusion was tested both in rodent cells and in 293 cells bearing the human homolog of the ecotropic MuLV receptor. The results demonstrate that the amphotropic TM is able to mediate cell-to-cell fusion to an extent equivalent to that mediated by the ecotropic TM, indicating that their fusion domains are equivalent. The "murinized" human homolog of the ecotropic receptor supports syncytium formation as well as the native murine receptor. These findings suggest that interactions between the ecotropic envelope protein and conserved sequences in the ecotropic receptor are the principal determinants of syncytium formation. The relationship of the fusion phenotype to pH-dependent infection and the route of viral entry was examined by studying virions bearing the chimeric envelope proteins. Such virions appear to enter cells via a pathway that is directed by the host range-determining region of their envelope rather than by sequences that confer pH dependence. Therefore, the pH dependence of infection may not reflect the initial steps in viral entry. Thus, it appears that both the syncytium phenotype and the route of viral entry are properties of the viral receptor, the amino-terminal half of the ecotropic envelope protein, or the interaction between the two.  相似文献   

11.
We have studied the replication of ecotropic murine leukemia viruses (MuLV) in the spleens and thymuses of mice infected with the lymphocytic leukemia-inducing virus Moloney MuLV (M-MuLV), with the erythroleukemia-inducing virus Friend MuLV (F-MuLV), or with in vitro-constructed recombinants between these viruses in which the long terminal repeat (LTR) sequences have been exchanged. At 1 week after infection both the parents and the LTR recombinants replicated predominantly in the spleens with only low levels of replication in the thymus. At 2 weeks after infection, the patterns of replication in the spleens and thymuses were strongly influenced by the type of LTR. Viruses containing the M-MuLV LTR exhibited a remarkable elevation in thymus titers which frequently exceeded the spleen titers, whereas viruses containing the F-MuLV LTR replicated predominantly in the spleen. In older preleukemic mice (5 to 8 weeks of age) the structural genes of M-MuLV or F-MuLV predominantly influenced the patterns of replication. Viruses containing the structural genes of M-MuLV replicated efficiently in both the spleen and thymus, whereas viruses containing the structural genes of F-MuLV replicated predominantly in the spleen. In leukemic mice infected with the recombinant containing F-MuLV structural genes and the M-MuLV LTR, high levels of virus replication were observed in splenic tumors but not in thymic tumors. This phenotypic difference suggested that tumors of the spleen and thymus may have originated by the independent transformation of different cell types. Quantification of polytropic MulVs in late-preleukemic mice infected with each of the ecotropic MuLVs indicated that the level of polytropic MuLV replication closely paralleled the level of replication of the ecotropic MuLVs in all instances. These studies indicated that determinants of tissue tropism are contained in both the LTR and structural gene sequences of F-MuLV and M-MuLV and that high levels of ecotropic or polytropic MuLV replication, per se, are not sufficient for leukemia induction. Our results further suggested that leukemia induction requires a high level of virus replication in the target organ only transiently during an early preleukemic stage of disease.  相似文献   

12.
We have described previously the detection and tissue distribution of free cell surface receptors for ecotropic R-MuLV envelope glycoprotein and the growth factor EGF in vivo [1]. More recently, we have reported the chromosomal map position of the ecotropic viral receptor and its conservation between subspecies of the genus Mus [2]. This work has shown, for the first time, the presence of multiple, independently segregating cell surface receptor genes specific for different classes of ecotropic type C viral envelope glycoprotein. In this report we extend these findings and identify chromosome 2 as coding for the receptor used by M813, an ecotropic MuLV from a feral Asian mouse. This new receptor is probably also used by oncogenic, recombinant (MCF class) MuLV of C3H origin.  相似文献   

13.
The 10A1 murine leukemia virus (MuLV) is a recombinant type C retrovirus isolated from a mouse infected with amphotropic MuLV (A-MuLV). 10A1 and A-MuLV have 91% amino acid identity in their envelope proteins yet display different host ranges. For example, CHO-K1 cells are resistant to A-MuLV but susceptible to infection by 10A1. We have now determined that retroviral vectors bearing altered A-MuLV envelope proteins containing 10A1-derived residues at positions 71 (A71G), 74 (Q74K), and 139 (V139M) transduce CHO-K1 cells at efficiencies similar to those achieved with 10A1 enveloped vectors. A-MuLV enveloped retroviral vectors with these three 10A1 residues were also able to transduce A-MuLV-infected NIH 3T3 cells. This observation is consistent with the ability of vectors bearing this altered A-MuLV envelope protein to recognize the 10A1-specific receptor present on NIH 3T3 cells and supports the possibility that residues at positions 71, 74, and 139 of the 10A1 envelope SU protein account for the expanded host range of 10A1.  相似文献   

14.
Four clones of murine leukemia viruses (PVC-111, PVC-211, PVC-321, and PVC-441) were isolated from a paralyzed Fischer rat which had been infected with rat-passaged Friend leukemia virus. PVC-211 and PVC-321 viruses induced hind leg paralysis in rats and killed them within 1 month, and PVC-441 did so within 2 months after infection, whereas PVC-111 did not within 4 months. PVC-321 and PVC-441 but not PVC-111 virus grew well in brain and spinal cord media. The viral antigens were found often in glia cells and rarely in neurons of the rats infected with each of these PVC viruses. All of the PVC viruses induced neuronal degeneration but neither inflammation nor leukemic infiltration in the spinal cord. The isolated viruses were all ecotropic and NB-tropic. Age dependency of the susceptibility of rats to paralysis induction was observed.  相似文献   

15.
Taylor GM  Gao Y  Sanders DA 《Journal of virology》2001,75(22):11244-11248
Mice expressing the Fv-4 gene are resistant to infection by ecotropic murine leukemia viruses (MuLVs). The Fv-4 gene encodes an envelope (Env) protein whose putative receptor-binding domain resembles that of ecotropic MuLV Env protein. Resistance to ecotropic MuLVs appears to result from viral interference involving binding of the endogenously expressed Fv-4 env-encoded protein to the ecotropic receptor, although the immune system also plays a role in resistance. The Fv-4 env-encoded protein is processed normally and can be incorporated into virus particles but is unable to promote viral entry. Among the many sequence variations between the transmembrane (TM) subunit of the Fv-4 env-encoded protein and the TM subunits of other MuLV Env proteins, there is a substitution of an arginine residue in the Fv-4 env-encoded protein for a glycine residue (gly-491 in Moloney MuLV Env) that is otherwise conserved in all of the other MuLVs. This residue is present in the MuLV TM fusion peptide sequence. In this study, gly-491 of Moloney MuLV Env has been replaced with other residues and a mutant Env bearing a substitution for gly-487 was also created. G491R recapitulates the Fv-4 Env phenotype in cell culture, indicating that this substitution is sufficient for creation of an Env protein that can establish the interference-mediated resistance to ecotropic viruses produced by the Fv-4 gene. Analysis of the mutant MuLV Env proteins also has implications for an understanding of the role of conserved glycine residues in fusion peptides and for the engineering of organismal resistance to retroviruses.  相似文献   

16.
D Ott  R Friedrich    A Rein 《Journal of virology》1990,64(2):757-766
Viral interference studies have demonstrated the existence of four distinct murine leukemia virus (MuLV) receptors on NIH 3T3 mouse cells. The four viral interference groups are ecotropic MuLV; mink cell focus inducing virus (MCF); amphotropic MuLV; and 10A1, a recombinant derivative of amphotropic MuLV that uses a unique receptor but also retains affinity for the amphotropic MuLV receptor. We report here that 10A1 infects rat and hamster cells, unlike its amphotropic parent. We isolated an infectious molecular clone of 10A1 and present here the sequences of the env genes and enhancer regions of amphotropic MuLV and 10A1. The deduced amino acid sequences of amphotropic MuLV and 10A1 gp70su are remarkably similar to those of MCF and xenotropic MuLV (for which mouse cells lack receptors), with 64% amino acids identical in the four groups. We generated a consensus from these comparisons. Further, the differences are largely localized to a few discrete regions: (i) amphotropic MuLV has two short insertions relative to MCF, at residues 87 to 92 and 163 to 169, and (ii) amphotropic MuLV and MCF are totally different in a hypervariable region, which is greater than 30% proline, at residues approximately 253 to 304. 10A1 closely resembles amphotropic MuLV in its N terminus but contains an MCF-type hypervariable region. These results suggest the possibility that receptor specificity is localized in these short variable regions and further that the unique receptor specificity of 10A1 is due to the novel combination of amphotropic MuLV and MCF sequences rather than to the presence of any novel sequences. The Env proteins of ecotropic MuLV are far more distantly related to those of the other four groups than the latter are to each other. We also found that the enhancer regions of amphotropic MuLV and 10A1 are nearly identical, although 10A1 is far more leukemogenic than amphotropic MuLV.  相似文献   

17.
Previous studies indicate that mice infected with mixtures of mouse retroviruses (murine leukemia viruses [MuLVs]) exhibit dramatically altered pathology compared to mice infected with individual viruses of the mixture. Coinoculation of the ecotropic virus Friend MuLV (F-MuLV) with Fr98, a polytropic MuLV, induced a rapidly fatal neurological disease that was not observed in infections with either virus alone. The polytropic virus load in coinoculated mice was markedly enhanced, while the ecotropic F-MuLV load was unchanged. Furthermore, pseudotyping of the polytropic MuLV genome within ecotropic virions was nearly complete in coinoculated mice. In an effort to better understand these phenomena, we examined mixed retrovirus infections by utilizing in vitro cell lines. Similar to in vivo mixed infections, the polytropic MuLV genome was extensively pseudotyped within ecotropic virions; polytropic virus release was profoundly elevated in coinfected cells, and the ecotropic virus release was unchanged. A reduced level of polytropic SU protein on the surfaces of coinfected cells was observed and correlated with a reduced level of nonpseudotyped polytropic virion release. Marked amplification and pseudotyping of the polytropic MuLV were also observed in mixed Fr98-F-MuLV infections of cell lines derived from the central nervous system (CNS), the target for Fr98 pathogenesis. Additional experiments indicated that pseudotyping contributed to the elevated polytropic virus titer by increasing the efficiency of packaging and release of the polytropic genomes within ecotropic virions. Mixed infections are the rule rather than the exception in retroviral infection, and the ability to examine them in vitro should facilitate a more thorough understanding of retroviral interactions in general.  相似文献   

18.
A dominant restriction allele, Akvr-1r, from California wild mice (Mus musculus domesticus) confers resistance to exogenous ecotropic murine leukemia virus (MuLV) infection. The presence of an ecotropic MuLV envelope-related glycoprotein in uninfected virus-resistant cells suggests that viral interference is a possible mechanism for this resistance. We molecularly cloned the ecotropic MuLV envelope-related sequence from the genomic DNA of a wild mouse homozygous for the Akvr-1r locus. The cloned provirus was defective and contained a C-terminal end of the pol gene, a complete envelope gene, and a 3' long terminal repeat. The presence of this provirus was directly correlated with Akvr-1r-mediated virus resistance in cell cultures and hybrid mice. The Akvr-1r provirus restriction map and partial DNA sequence were identical to those of the Fv-4r allele, an ecotropic MuLV resistance locus from Japanese feral mice (M. musculus molossinus), which was previously shown to be allelic with the Akvr-1r gene. The 3' host flanking sequences of Fv-4r and Akvr-1r also had identical restriction maps. These findings indicate that Akvr-1r and Fv-4r are the same gene. It was probably acquired by interbreeding of these feral species in recent times. Conservation of this locus might be favored by the useful function that it performs in protection against ecotropic MuLV infection endemic in both populations of wild mice.  相似文献   

19.
Murine type C ecotropic retrovirus infection is initiated by virus envelope binding to a membrane receptor expressed on mouse cells. We have identified a cDNA clone that may encode for this receptor through a strategy combining gene transfer of mouse NIH 3T3 DNA into nonpermissive human EJ cells, selection of EJ clones that have acquired susceptibility to infection by retrovirus vectors containing drug resistance genes, and identification of the putative receptor cDNA clone through linkage to a mouse repetitive DNA sequence. Human EJ cells that express the cDNA acquire a million-fold increase in MuLV infectivity. The predicted 622 amino acid sequence of the putative receptor protein is extremely hydrophobic; 14 potential membrane-spanning domains have been identified. A computer-based search of sequence data banks did not identify a protein with significant similarity to the putative receptor. We conclude that a novel membrane protein determines susceptibility to ecotropic MuLV infection by binding and/or fusion with the virus envelope.  相似文献   

20.
Certain mouse strains, such as AKR and C58, which possess N-tropic, ecotropic murine leukemia virus (MuLV) proviruses and are homozygous at the Fv-1n locus are specifically susceptible to paralytic infection (age-dependent poliomyelitis [ADPM]) by lactate dehydrogenase-elevating virus (LDV). Our results provide an explanation for this genetic linkage and directly prove that ecotropic MuLV infection of spinal cord cells is responsible for rendering anterior horn neurons susceptible to cytocidal LDV infection, which is the cause of the paralytic disease. Northern (RNA) blot hybridization of total tissue RNA and in situ hybridization of tissue sections demonstrated that only mice harboring central nervous system (CNS) cells that expressed ecotropic MuLV were susceptible to ADPM. Our evidence indicates that the ecotropic MuLV RNA is transcribed in CNS cells from ecotropic MuLV proviruses that have been acquired by infection with exogenous ecotropic MuLV, probably during embryogenesis, the time when germ line proviruses in AKR and C58 mice first become activated. In young mice, MuLV RNA-containing cells were found exclusively in white-matter tracts and therefore were glial cells. An increase in the ADPM susceptibility of the mice with advancing age correlated with the presence of an increased number of ecotropic MuLV RNA-containing cells in the spinal cords which, in turn, correlated with an increase in the number of unmethylated proviruses in the DNA extracted from spinal cords. Studies with AKXD recombinant inbred strains showed that possession of a single replication-competent ecotropic MuLV provirus (emv-11) by Fv-1n/n mice was sufficient to result in ecotropic MuLV infection of CNS cells and ADPM susceptibility. In contrast, no ecotropic MuLV RNA-positive cells were present in the CNSs of mice carrying defective ecotropic MuLV proviruses (emv-3 or emv-13) or in which ecotropic MuLV replication was blocked by the Fv-1n/b or Fv-1b/b phenotype. Such mice were resistant to paralytic LDV infection. In utero infection of CE/J mice, which are devoid of any endogenous ecotropic MuLVs, with the infectious clone of emv-11 (AKR-623) resulted in the infection of CNS cells, and the mice became ADPM susceptible, whereas littermates that had not become infected with ecotropic MuLV remained ADPM resistant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号