首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Wang X  Baumann P 《Molecular cell》2008,31(4):463-473
Progressive telomere shortening eventually results in chromosome fusions and genome instability as the cell's ability to distinguish chromosome ends from DNA double-strand breaks is compromised. In fission yeast, such events frequently produce stable survivors with all circular chromosomes. To shed light on the repair pathways that mediate chromosome end fusions and generate circular chromosomes, we have examined a diverse array of DNA repair factors. We show that telomere attrition-induced chromosome fusions are dependent on the fission yeast homologs of Rad52, the ERCC1/XPF endonuclease, the single-stranded DNA-binding protein RPA, and the Srs2 and Werner/Bloom helicases, but not Ku and ligase 4. Consistent with a recombinational mechanism of single-strand annealing, cloned junctions map to four of five homology regions in subtelomeric DNA. A comparison with telomere uncapping caused by the absence of the double-stranded telomere-binding protein Taz1 demonstrates that the circumstances and cause of telomere dysfunction profoundly affect which DNA repair pathway is engaged.  相似文献   

2.
Bi X  Wei SC  Rong YS 《Current biology : CB》2004,14(15):1348-1353
The conserved ATM checkpoint kinase and the Mre11 DNA repair complex play essential and overlapping roles in maintaining genomic integrity. We conducted genetic and cytological studies on Drosophila atm and mre11 knockout mutants and discovered a telomere defect that was more severe than in any of the non-Drosophila systems studied. In mutant mitotic cells, an average of 30% of the chromosome ends engaged in telomere fusions. These fusions led to the formation and sometimes breakage of dicentric chromosomes, thus starting a devastating breakage-fusion-bridge cycle. Some of the fusions depended on DNA ligase IV, which suggested that they occurred by a nonhomologous end-joining (NHEJ) mechanism. Epistasis analyses results suggest that ATM and Mre11 might also act in the same telomere maintenance pathway in metazoans. Since Drosophila telomeres are not added by a telomerase, our findings support an additional role for both ATM and Mre11 in telomere maintenance that is independent of telomerase regulation.  相似文献   

3.
Ku: a multifunctional protein involved in telomere maintenance   总被引:1,自引:0,他引:1  
Fisher TS  Zakian VA 《DNA Repair》2005,4(11):1215-1226
  相似文献   

4.
End-to-end fusion of critically shortened telomeres in higher eucaryotes is presumed to be mediated by nonhomologous end-joining (NHEJ). Here we describe two PCR-based methods to monitor telomere length and examine the fate of dysfunctional telomeres in Arabidopsis lacking the catalytic subunit of telomerase (TERT) and the DNA repair proteins Ku70 and Mre11. Primer extension telomere repeat amplification relies on the presence of an intact G-overhang, and thus measures functional telomere length. The minimum functional telomere length detected was 300-400 bp. PCR amplification and sequence analysis of chromosome fusion junctions revealed exonucleolytic digestion of dysfunctional ends prior to fusion. In ku70 tert mutants, there was a greater incidence of microhomology at the fusion junction than in tert mutants. In triple ku70 tert mre11 mutants, chromosome fusions were still detected, but microhomology at the junction was no longer favored. These data indicate that both Ku70 and Mre11 contribute to fusion of critically shortened telomeres in higher eucaryotes. Furthermore, Arabidopsis processes critically shortened telomeres as double-strand breaks, using a variety of end-joining pathways.  相似文献   

5.
As we age, the majority of our cells gradually lose the capacity to divide because of replicative senescence that results from the inability to replicate the ends of chromosomes. The timing of senescence is dependent on the length of telomeric DNA, which elicits a checkpoint signal when critically short. Critically short telomeres also become vulnerable to deleterious rearrangements, end-degradation and telomere–telomere fusions. Here we report a novel role of non-homologous end-joining (NHEJ), a pathway of double-strand break repair in influencing both the kinetics of replicative senescence and the rate of chromosome loss in telomerase-deficient Saccharomyces cerevisiae . In telomerase-deficient cells, the absence of NHEJ delays replicative senescence, decreases loss of viability during senescence, and suppresses senescence-associated chromosome loss and telomere–telomere fusion. Differences in mating-type gene expression in haploid and diploid cells affect NHEJ function, resulting in distinct kinetics of replicative senescence. These results suggest that the differences in the kinetics of replicative senescence in haploid and diploid telomerase-deficient yeast are determined by changes in NHEJ-dependent telomere fusion, perhaps through the initiation of the breakage-fusion-bridge cycle.  相似文献   

6.
7.
Loss of telomere protection occurs during physiological cell senescence and ageing, due to attrition of telomeric repeats and insufficient retention of the telomere-binding factor TRF2. Subsequently formed telomere fusions trigger rampant genomic instability leading to cell death or tumorigenesis. Mechanistically, telomere fusions require either the classical non-homologous end-joining (C-NHEJ) pathway dependent on Ku70/80 and LIG4, or the alternative non-homologous end-joining (A-NHEJ), which relies on PARP1 and LIG3. Here, we show that the tumour suppressor BRCA1, together with its interacting partner CtIP, both acting in end resection, also promotes end-joining of uncapped telomeres. BRCA1 and CtIP do not function in the ATM-dependent telomere damage signalling, nor in telomere overhang removal, which are critical for telomere fusions by C-NHEJ. Instead, BRCA1 and CtIP act in the same pathway as LIG3 to promote joining of de-protected telomeres by A-NHEJ. Our work therefore ascribes novel roles for BRCA1 and CtIP in end-processing and fusion reactions at uncapped telomeres, underlining the complexity of DNA repair pathways that act at chromosome ends lacking protective structures. Moreover, A-NHEJ provides a mechanism of previously unanticipated significance in telomere dysfunction-induced genome instability.  相似文献   

8.
Telomere maintenance is essential to preserve genomic stability and involves several telomere-specific proteins as well as DNA replication and repair proteins. The kinase ATR, which has a crucial function in maintaining genome integrity from yeast to human, has been shown to be involved in telomere maintenance in several eukaryotic organisms, including yeast, Arabidopsis and Drosophila. However, its role in telomere maintenance in mammals remains poorly explored. Here, we report by using telomere-fluorescence in situ hybridization (Telo-FISH) on metaphase chromosomes that ATR deficiency causes telomere instability both in primary human fibroblasts from Seckel syndrome patients and in HeLa cells. The telomere aberrations resulting from ATR deficiency (i.e. sister telomere fusions and chromatid-type telomere aberrations) are mainly generated during and/or after telomere replication, and involve both leading and lagging strand telomeres as shown by chromosome orientation-FISH (CO-FISH). Moreover, we show that ATR deficiency strongly sensitizes cells to the G-quadruplex ligand 360A, enhancing sister telomere fusions and chromatid-type telomere aberrations involving specifically the lagging strand telomeres. Altogether, these data reveal that ATR plays a critical role in telomere maintenance during and/or after telomere replication in human cells.  相似文献   

9.
Liti G  Louis EJ 《Molecular cell》2003,11(5):1373-1378
In a search for genes involved in cell-type-dependent chromosome instability, we have found a role for NEJ1, a regulator of nonhomologous end joining (NHEJ), in cells that survive in the absence of telomerase. In yeast, NHEJ is regulated by mating-type status through NEJ1, which is repressed in a/alpha cells. For efficient NHEJ, NEJ1 is required as part of a complex with LIF1 and DNL4, which catalyzes DNA ligation. In haploid cells without telomerase, we find that the absence of NEJ1 results in high frequencies of circular chromosomes in type II survivors (i.e., those typified by lengthened telomere repeat tracts). These telomere fusion events are DNL4 dependent. NEJ1 therefore has a role in protecting telomeres from end fusions by NHEJ in the absence of telomerase that contrasts with its role in promoting repair at sites of DNA double-strand breaks.  相似文献   

10.
Wang Y  Smith K  Waldman BC  Waldman AS 《DNA Repair》2011,10(4):416-426
Mutation of BLM helicase causes Blooms syndrome, a disorder associated with genome instability, high levels of sister chromatid exchanges, and cancer predisposition. To study the influence of BLM on double-strand break (DSB) repair in human chromosomes, we stably transfected a normal human cell line with a DNA substrate that contained a thymidine kinase (tk)-neo fusion gene disrupted by the recognition site for endonuclease I-SceI. The substrate also contained a closely linked functional tk gene to serve as a recombination partner for the tk-neo fusion gene. We derived two cell lines each containing a single integrated copy of the DNA substrate. In these cell lines, a DSB was introduced within the tk-neo fusion gene by expression of I-SceI. DSB repair events that occurred via homologous recombination (HR) or nonhomologous end-joining (NHEJ) were recovered by selection for G418-resistant clones. DSB repair was examined under conditions of either normal BLM expression or reduced BLM expression brought about by RNA interference. We report that BLM knockdown in both cell lines specifically increased the frequency of HR events that produced deletions by crossovers or single-strand annealing while leaving the frequency of gene conversions unchanged or reduced. We observed no change in the accuracy of individual HR events and no substantial alteration of the nature of individual NHEJ events when BLM expression was reduced. Our work provides the first direct evidence that BLM influences DSB repair pathway choice in human chromosomes and suggests that BLM deficiency can engender genomic instability by provoking an increased frequency of HR events of a potentially deleterious nature.  相似文献   

11.
The telomeres of linear eukaryotic chromosomes are protected by caps consisting of evolutionarily conserved nucleoprotein complexes. Telomere dysfunction leads to recombination of chromosome ends and this can result in fusions which initiate chromosomal breakage–fusion–bridge cycles, causing genomic instability and potentially cell death or cancer. We hypothesize that in the absence of the recombination pathways implicated in these fusions, deprotected chromosome ends will instead be eroded by nucleases, also leading to the loss of genes and cell death. In this work, we set out to specifically test this hypothesis in the plant, Arabidopsis. Telomere protection in Arabidopsis implicates KU and CST and their absence leads to chromosome fusions, severe genomic instability and dramatic developmental defects. We have analysed the involvement of end-joining recombination pathways in telomere fusions and the consequences of this on genomic instability and growth. Strikingly, the absence of the multiple end-joining pathways eliminates chromosome fusion and restores normal growth and development to cst ku80 mutant plants. It is thus the chromosomal fusions, per se, which are the underlying cause of the severe developmental defects. This rescue is mediated by telomerase-dependent telomere extension, revealing a competition between telomerase and end-joining recombination proteins for access to deprotected telomeres.  相似文献   

12.
DNA-PKcs is the catalytic subunit of the DNA-dependent protein kinase (DNA-PK) complex that functions in the non-homologous end-joining of double-strand breaks, and it has been shown previously to have a role in telomere capping. In particular, DNA-PKcs deficiency leads to chromosome fusions involving telomeres produced by leading-strand synthesis. Here, by generating mice doubly deficient in DNA-PKcs and telomerase (Terc(-/-)/DNA-PKcs(-/-)), we demonstrate that DNA-PKcs also has a fundamental role in telomere length maintenance. In particular, Terc(-/-)/DNA-PKcs(-/-) mice displayed an accelerated rate of telomere shortening when compared with Terc(-/-) controls, suggesting a functional interaction between both activities in maintaining telomere length. In addition, we also provide direct demonstration that DNA-PKcs is essential for both end-to-end fusions and apoptosis triggered by critically short telomeres. Our data predict that, in telomerase-deficient cells, i.e. human somatic cells, DNA-PKcs abrogation may lead to a faster rate of telomere degradation and cell cycle arrest in the absence of increased apoptosis and/or fusion of telomere-exhausted chromosomes. These results suggest a critical role of DNA-PKcs in both cancer and aging.  相似文献   

13.
Little is known about the genes that regulate telomere length diversity between mammalian species. A candidate gene locus was previously mapped to a region on distal mouse Chr 2q. Within this region, we identified a gene similar to the dog-1 DNA helicase-like gene in C. elegans. We cloned this Regulator of telomere length (Rtel) gene and inactivated its expression in mice. Rtel(-/-) mice died between days 10 and 11.5 of gestation with defects in the nervous system, heart, vasculature, and extraembryonic tissues. Rtel(-/-) embryonic stem cells showed telomere loss and displayed many chromosome breaks and fusions upon differentiation in vitro. Crosses of Rtel(+/-) mice with Mus spretus showed that Rtel from the Mus musculus parent is required for telomere elongation of M. spretus chromosomes in F1 cells. We conclude that Rtel is an essential gene that regulates telomere length and prevents genetic instability.  相似文献   

14.
The ability of linear replicons to propagate their DNA after telomere damage is essential for perpetuation of the genetic information they carry. We introduced deletions at specific locations within telomeres of streptomycete linear plasmids and investigated mechanisms that enable survival. Here, we report that rescue of such plasmids in Streptomyces lividans occurs by three distinct types of events: (i) repair of the damaged telomere by homologous recombination; (ii) circularization of the plasmid by non-homologous end-to-end joining; and (iii) formation of long palindromic linear plasmids that duplicate the intact telomere by a non-recombinational process. The relative frequency of use of these survival mechanisms depended on the location and length of the telomeric DNA deletion. Repair by intermolecular recombination between the telomeres of chromosomes and plasmids, deletion of additional DNA during plasmid circularization, and insertion of chromosomal DNA fragments into plasmids during end-to-end joining were observed. Our results show that damage to telomeres of Streptomyces linear replicons can promote major structural transformations in these replicons as well as genetic exchange between chromosomes and extrachromosomal DNA. Our findings also suggest that spontaneous circularization of linear Streptomyces chromosomes may be a biological response to instances of telomere damage that cannot be repaired by homologous recombination.  相似文献   

15.
Importance of TRF1 for functional telomere structure   总被引:10,自引:0,他引:10  
Telomeres are comprised of telomeric DNA sequences and associated binding molecules. Their structure functions to protect the ends of linear chromosomes and ensure chromosomal stability. One of the mammalian telomere-binding factors, TRF1, localizes telomeres by binding to double-stranded telomeric DNA arrays. Because the overexpression of wild-type and dominant-negative TRF1 induces progressive telomere shortening and elongation in human cells, respectively, a proposed major role of TRF1 is that of a negative regulator of telomere length. Here we report another crucial function of TRF1 in telomeres. In conditional mouse TRF1 null mutant embryonic stem cells, TRF1 deletion induced growth defect and chromosomal instability. Although no clear telomere shortening or elongation was observed in short term cultured TRF1-deficient cells, abnormal telomere signals were observed, and TRF1-interacting telomere-binding factor, TIN2, lost telomeric association. Furthermore, another double-stranded telomeric DNA-binding factor, TRF2, also showed decreased telomeric association. Importantly, end-to-end fusions with detectable telomere signals at fusion points accumulated in TRF1-deficient cells. These results strongly suggest that TRF1 interacts with other telomere-binding molecules and integrates into the functional telomere structure.  相似文献   

16.
Telomere repeat sequences cap the ends of eucaryotic chromosomes and help stabilize them. At interstitial sites, however, they may destabilize chromosomes, as suggested by cytogenetic studies in mammalian cells that correlate interstitial telomere sequence with sites of spontaneous and radiation-induced chromosome rearrangements. In no instance is the length, purity, or orientation of the telomere repeats at these potentially destabilizing interstitial sites known. To determine the effects of a defined interstitial telomere sequence on chromosome instability, as well as other aspects of DNA metabolism, we deposited 800 bp of the functional vertebrate telomere repeat, TTAGGG, in two orientations in the second intron of the adenosine phosphoribosyltransferase (APRT) gene in Chinese hamster ovary cells. In one orientation, the deposited telomere sequence did not interfere with expression of the APRT gene, whereas in the other it reduced mRNA levels slightly. The telomere sequence did not induce chromosome truncation and the seeding of a new telomere at a frequency above the limits of detection. Similarly, the telomere sequence did not alter the rate or distribution of homologous recombination events. The interstitial telomere repeat sequence in both orientations, however, dramatically increased gene rearrangements some 30-fold. Analysis of individual rearrangements confirmed the involvement of the telomere sequence. These studies define the telomere repeat sequence as a destabilizing element in the interior of chromosomes in mammalian cells.  相似文献   

17.
Human telomeres are protected by TRF2. Inhibition of this telomeric protein results in partial loss of the telomeric 3' overhang and chromosome end fusions formed through nonhomologous end-joining (NHEJ). Here we report that ERCC1/XPF-deficient cells retained the telomeric overhang after TRF2 inhibition, identifying this nucleotide excision repair endonuclease as the culprit in overhang removal. Furthermore, these cells did not accumulate telomere fusions, suggesting that overhang processing is a prerequisite for NHEJ of telomeres. ERCC1/XPF was also identified as a component of the telomeric TRF2 complex. ERCC1/XPF-deficient mouse cells had a novel telomere phenotype, characterized by Telomeric DNA-containing Double Minute chromosomes (TDMs). We speculate that TDMs are formed through the recombination of telomeres with interstitial telomere-related sequences and that ERCC1/XPF functions to repress this process. Collectively, these data reveal an unanticipated involvement of the ERCC1/XPF NER endonuclease in the regulation of telomere integrity and establish that TRF2 prevents NHEJ at telomeres through protection of the telomeric overhang from ERCC1/XPF.  相似文献   

18.
Telomeres are nucleoprotein complexes that cap the ends of all linear chromosomes and function to prevent aberrant repair and end-to-end chromosome fusions. In somatic cells, telomere shortening is a natural part of the aging process as it occurs with each round of cell division. In germ and stem cells, however, the enzyme telomerase synthesizes telomere DNA to counter-balance telomere shortening and help maintain cellular proliferation. Of the primary telomere end-binding proteins, TPP1 has recently emerged as a primary contributor in protecting telomere DNA and in recruiting telomerase to the telomere ends. In this review, we summarize the current knowledge regarding the role of TPP1 in telomere maintenance.  相似文献   

19.
The MRN complex in double-strand break repair and telomere maintenance   总被引:1,自引:0,他引:1  
Genomes are subject to constant threat by damaging agents that generate DNA double-strand breaks (DSBs). The ends of linear chromosomes need to be protected from DNA damage recognition and end-joining, and this is achieved through protein-DNA complexes known as telomeres. The Mre11-Rad50-Nbs1 (MRN) complex plays important roles in detection and signaling of DSBs, as well as the repair pathways of homologous recombination (HR) and non-homologous end-joining (NHEJ). In addition, MRN associates with telomeres and contributes to their maintenance. Here, we provide an overview of MRN functions at DSBs, and examine its roles in telomere maintenance and dysfunction.  相似文献   

20.
Canine osteosarcoma (OSA) is known to present with highly variable and chaotic karyotypes, including hypodiploidy, hyperdiploidy, and increased numbers of metacentric chromosomes. The spectrum of genomic instabilities in canine OSA has significantly augmented the difficulty in clearly defining the biological and clinical significance of the observed cytogenetic abnormalities. In this study, eight canine OSA cell lines were used to investigate telomere fusions by fluorescence in situ hybridization (FISH) using a peptide nucleotide acid probe. We characterized each cell line by classical cytogenetic studies and cellular phenotypes including telomere associated factors and then evaluated correlations from this data. All eight canine OSA cell lines displayed increased abnormal metacentric chromosomes and exhibited numerous telomere fusions and interstitial telomeric signals. Also, as evidence of unstable telomeres, colocalization of γ-H2AX and telomere signals in interphase cells was observed. Each cell line was characterized by a combination of data representing cellular doubling time, DNA content, chromosome number, metacentric chromosome frequency, telomere signal level, cellular radiosensitivity, and DNA-PKcs protein expression level. We have also studied primary cultures from 10 spontaneous canine OSAs. Based on the observation of telomere aberrations in those primary cell cultures, we are reasonably certain that our observations in cell lines are not an artifact of prolonged culture. A correlation between telomere fusions and the other characteristics analyzed in our study could not be identified. However, it is important to note that all of the canine OSA samples exhibiting telomere fusion utilized in our study were telomerase positive. Pending further research regarding telomerase negative canine OSA cell lines, our findings may suggest telomere fusions can potentially serve as a novel marker for canine OSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号