首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrins are heterodimeric cell adhesion molecules that are important in many biological functions, such as cell migration, proliferation, differentiation, and survival. They can transmit bi‐directional signals across the plasma membrane. Inside‐out activating signal from some cell surface receptors bound with soluble agonists triggers integrins conformational change leading to high affinity for extracellular ligands. Then binding of ligands to integrins results in outside‐in signaling, leading to formation of focal adhesion complex at the integrin cytoplasmic tail and activation of downstream signal pathways. This bi‐directional signaling is essential for rapid response of cell to surrounding environmental changes. During this process, the conformational change of integrin extracellular and transmembrane/cytoplasmic domains is particularly important. In this review, we will summarize recent progress in both inside‐out and outside‐in signaling with specific focus on the mechanism how integrins transmit bi‐directional signals through transmembrane/cytoplasmic domains. J. Cell. Physiol. 228: 306–312, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Integrins are the major cell adhesion molecules responsible for cell attachment to the extracellular matrix. The strength of integrin-mediated adhesion is controlled by the affinity of individual integrins (integrin activation) as well as by the number of integrins involved in such adhesion. The positive correlation between integrin activation and integrin clustering had been suggested previously, but several trials to induce integrin clustering by dimerization of the transmembrane domain or tail region of integrin α subunits failed to demonstrate any change in integrin activation. Here, using platelet integrin αIIbβ3 as a model system, we showed that there is intermolecular lateral interaction between integrins through the transmembrane domains, and this interaction can enhance the affinity state of integrins. In addition, when integrin clustering was induced through heteromeric lateral interactions using bimolecular fluorescence complementation, we could observe a significant increase in the number of active integrin molecules. Because the possibility of intermolecular interaction would be increased by a higher local concentration of integrins, we propose that integrin clustering can shift the equilibrium in favor of integrin activation.  相似文献   

3.
Integrins play an essential role in hemostasis, thrombosis, and cell migration, and they transmit bidirectional signals. Transmembrane/cytoplasmic domains are hypothesized to associate in the resting integrins; whereas, ligand binding and intracellular activating signals induce transmembrane domain separation. However, how this conformational change affects integrin outside-in signaling and whether the α subunit cytoplasmic domain is important for this signaling remain elusive. Using Chinese Hamster Ovary (CHO) cells that stably expressed different integrin αIIbβ3 constructs, we discovered that an αIIb cytoplasmic domain truncation led to integrin activation but not defective outside-in signaling. In contrast, preventing transmembrane domain separation abolished both inside-out and outside-in signaling regardless of removing the αIIb cytoplasmic tail. Truncation of the αIIb cytoplasmic tail did not obviously affect adhesion-induced outside-in signaling. Our research revealed that transmembrane domain separation is a downstream conformational change after the cytoplasmic domain dissociation in inside-out activation and indispensable for ligand-induced outside-in signaling. The result implicates that the β TM helix rearrangement after dissociation is essential for integrin transmembrane signaling. Furthermore, we discovered that the PI3K/Akt pathway is not essential for cell spreading but spreading-induced Erk1/2 activation is PI3K dependent implicating requirement of the kinase for cell survival in outside-in signaling.  相似文献   

4.
Integrins are transmembrane adhesion receptors that bind extracellular matrix (ECM) proteins and signal bidirectionally to regulate cell adhesion and migration. In many cell types, integrins cluster at cell-ECM contacts to create the foundation for adhesion complexes that transfer force between the cell and the ECM. Even though the temporal and spatial regulation of these integrin clusters is essential for cell migration, how cells regulate their formation is currently unknown. It has been shown that integrin cluster formation is independent of actin stress fiber formation, but requires active (high-affinity) integrins, phosphoinositol-4,5-bisphosphate (PIP2), talin, and immobile ECM ligand. Based on these observations, we propose a minimal model for initial formation of integrin clusters, facilitated by localized activation and binding of integrins to ECM ligands as a result of biochemical feedback between integrin binding and integrin activation. By employing a diffusion-reaction framework for modeling these reactions, we show how spatial organization of bound integrins into clusters may be achieved by a local source of active integrins, namely protein complexes formed on the cytoplasmic tails of bound integrins. Further, we show how such a mechanism can turn small local increases in the concentration of active talin or active integrin into integrin clusters via positive feedback. Our results suggest that the formation of integrin clusters by the proposed mechanism depends on the relationships between production and diffusion of integrin-activating species, and that changes to the relative rates of these processes may affect the resulting properties of integrin clusters.  相似文献   

5.
The activation of heterodimeric (α/β) integrin transmembrane receptors by cytosolic protein talin is crucial for regulating diverse cell-adhesion-dependent processes, including blood coagulation, tissue remodeling, and cancer metastasis. This process is triggered by the coincident binding of N-terminal FERM (four-point-one-protein/ezrin/radixin/moesin) domain of talin (talin-FERM) to the inner membrane surface and integrin β cytoplasmic tail, but how these binding events are spatiotemporally regulated remains obscure. Here we report the crystal structure of a dormant talin, revealing how a C-terminal talin rod segment (talin-RS) self-masks a key integrin-binding site on talin-FERM via a large interface. Unexpectedly, the structure also reveals a distinct negatively charged surface on talin-RS that electrostatically hinders the talin-FERM binding to the membrane. Such a dual inhibitory topology for talin is consistent with the biochemical and functional data, but differs significantly from a previous model. We show that upon enrichment with phosphotidylinositol-4,5-bisphosphate (PIP2) – a known talin activator, membrane strongly attracts a positively charged surface on talin-FERM and simultaneously repels the negatively charged surface on talin-RS. Such an electrostatic “pull-push” process promotes the relief of the dual inhibition of talin-FERM, which differs from the classic “steric clash” model for conventional PIP2-induced FERM domain activation. These data therefore unravel a new type of membrane-dependent FERM domain regulation and illustrate how it mediates the talin on/off switches to regulate integrin transmembrane signaling and cell adhesion.  相似文献   

6.
Integrin engagement on lymphocytes initiates “outside-in” signaling that is required for cytoskeleton remodeling and the formation of the synaptic interface. However, the mechanism by which the “outside-in” signal contributes to receptor-mediated intracellular signaling that regulates the kinetics of granule delivery and efficiency of cytolytic activity is not well understood. We have found that variations in ICAM-1 expression on tumor cells influence killing kinetics of these cells by CD16.NK-92 cytolytic effectors suggesting that changes in integrin ligation on the effector cells regulate the kinetics of cytolytic activity by the effector cells. To understand how variations of the integrin receptor ligation may alter cytolytic activity of CD16.NK-92 cells, we analyzed molecular events at the contact area of these cells exposed to planar lipid bilayers that display integrin ligands at different densities and activating CD16-specific antibodies. Changes in the extent of integrin ligation on CD16.NK-92 cells at the cell/bilayer interface revealed that the integrin signal influences the size and the dynamics of activating receptor microclusters in a Pyk2-dependent manner. Integrin-mediated changes of the intracellular signaling significantly affected the kinetics of degranulation of CD16.NK-92 cells providing evidence that integrins regulate the rate of target cell destruction in antibody-dependent cell cytotoxicity (ADCC).  相似文献   

7.
The ability of adhesion receptors to transmit biochemical signals and mechanical force across cell membranes depends on interactions with the actin cytoskeleton. Human filamins are large actin cross-linking proteins that connect integrins to the cytoskeleton. Filamin binding to the cytoplasmic tail of β integrins has been shown to prevent integrin activation in cells, which is important for controlling cell adhesion and migration. The molecular-level mechanism for filamin binding to integrin has been unclear, however, as it was recently demonstrated that filamin undergoes intramolecular auto-inhibition of integrin binding. In this study, using steered molecular dynamics simulations, we found that mechanical force applied to filamin can expose cryptic integrin binding sites. The forces required for this are considerably lower than those for filamin immunoglobulin domain unfolding. The mechanical-force-induced unfolding of filamin and exposure of integrin binding sites occur through stable intermediates where integrin binding is possible. Accordingly, our results support filamin's role as a mechanotransducer, since force-induced conformational changes allow binding of integrin and other transmembrane and intracellular proteins. This observed force-induced conformational change can also be one of possible mechanisms involved in the regulation of integrin activation.  相似文献   

8.
Integrins are heterodimeric (αβ) cell surface receptors that are activated to a high affinity state by the formation of a complex involving the α/β integrin transmembrane helix dimer, the head domain of talin (a cytoplasmic protein that links integrins to actin), and the membrane. The talin head domain contains four sub-domains (F0, F1, F2 and F3) with a long cationic loop inserted in the F1 domain. Here, we model the binding and interactions of the complete talin head domain with a phospholipid bilayer, using multiscale molecular dynamics simulations. The role of the inserted F1 loop, which is missing from the crystal structure of the talin head, PDB:3IVF, is explored. The results show that the talin head domain binds to the membrane predominantly via cationic regions on the F2 and F3 subdomains and the F1 loop. Upon binding, the intact talin head adopts a novel V-shaped conformation which optimizes its interactions with the membrane. Simulations of the complex of talin with the integrin α/β TM helix dimer in a membrane, show how this complex promotes a rearrangement, and eventual dissociation of, the integrin α and β transmembrane helices. A model for the talin-mediated integrin activation is proposed which describes how the mutual interplay of interactions between transmembrane helices, the cytoplasmic talin protein, and the lipid bilayer promotes integrin inside-out activation.  相似文献   

9.
Integrins are activated by signaling from inside the cell (inside-out signaling) through global conformational changes of integrins. We recently discovered that fractalkine activates integrins in the absence of CX3CR1 through the direct binding of fractalkine to a ligand-binding site in the integrin headpiece (site 2) that is distinct from the classical RGD-binding site (site 1). We propose that fractalkine binding to the newly identified site 2 induces activation of site 1 though conformational changes (in an allosteric mechanism). We reasoned that site 2-mediated activation of integrins is not limited to fractalkine. Human secreted phospholipase A2 type IIA (sPLA2-IIA), a proinflammatory protein, binds to integrins αvβ3 and α4β1 (site 1), and this interaction initiates a signaling pathway that leads to cell proliferation and inflammation. Human sPLA2-IIA does not bind to M-type receptor very well. Here we describe that sPLA2-IIA directly activated purified soluble integrin αvβ3 and transmembrane αvβ3 on the cell surface. This activation did not require catalytic activity or M-type receptor. Docking simulation predicted that sPLA2-IIA binds to site 2 in the closed-headpiece of αvβ3. A peptide from site 2 of integrin β1 specifically bound to sPLA2-IIA and suppressed sPLA2-IIA-induced integrin activation. This suggests that sPLA2-IIA activates αvβ3 through binding to site 2. sPLA2-IIA also activated integrins α4β1 and α5β1 in a site 2-mediated manner. We recently identified small compounds that bind to sPLA2-IIA and suppress integrin-sPLA2-IIA interaction (e.g. compound 21 (Cmpd21)). Cmpd21 effectively suppressed sPLA2-IIA-induced integrin activation. These results define a novel mechanism of proinflammatory action of sPLA2-IIA through integrin activation.  相似文献   

10.
Constitutive activation of growth factor receptor signaling pathways leads to uncontrolled growth, but why tumor cells become anchorage independent is less clear. The fact that integrins transmit signals required for cell growth suggests that constitutive activation of steps downstream from integrins mediates anchorage independence. Since the small GTPase Rho may mediate integrin signal transduction, the effects of serum and the Rho nucleotide exchange factor oncogenes dbl and lbc on cell growth and signaling pathways were examined. Our data show that these oncogenes induce anchorage-independent but serum-dependent growth and stimulation of signaling pathways. These results show, therefore, that anchorage-independent growth results from constitutive activation of integrin-dependent signaling events. They also support the view that Rho is a functionally important mediator of integrin signaling.  相似文献   

11.
12.
Crosstalk between hepatocyte growth factor and integrin signaling pathways   总被引:3,自引:0,他引:3  
Summary Most types of normal cells require integrin-mediated attachment to extracellular matrix to be able to respond to growth factor stimulation for proliferation and survival. Therefore, a consensus that integrins are close collaborators with growth factors in signal transduction has gradually emerged. Some integrins and growth factor receptors appear to be normally in relatively close proximity, which can be induced to form complexes upon cell adhesion or growth factor stimulation. Moreover, since integrins and growth factor receptors share many common elements in their signaling pathways, it is clear tzhat there are many opportunities for integrin signals to modulate growth factor signals and vice versa. Increasing evidence indicates that integrins can crosstalk with receptor tyrosine kinases in a cell- and integrin-type-dependent manner through a variety of specific mechanisms. This review is intended specifically for summarizing recent progress uncovering how the hepatocyte growth factor receptor c-Met coordinates with integrins to transmit signals.  相似文献   

13.
Binding of urokinase-type plasminogen activator (uPA) to its receptor (uPAR/CD87) regulates cellular adhesion, migration, and tumor cell invasion. However, it is unclear how glycosyl phosphatidylinositol-anchored uPAR, which lacks a transmembrane structure, mediates signal transduction. It has been proposed that uPAR forms cis-interactions with integrins as an associated protein and thereby transduces proliferative or migratory signals to cells upon binding of uPA. We provide evidence that soluble uPAR (suPAR) specifically binds to integrins alpha4beta1, alpha6beta1, alpha9beta1, and alphavbeta3 on Chinese hamster ovary cells in a cation-dependent manner. Anti-integrin and anti-uPAR antibodies effectively block binding of suPAR to these integrins. Binding of suPAR to alpha4beta1 and alphavbeta3 is blocked by known soluble ligands and by the integrin mutations that inhibit ligand binding. These results suggest that uPAR is an integrin ligand rather than, or in addition to, an integrin-associated protein. In addition, we demonstrate that glycosyl phosphatidylinositol-anchored uPAR on the cell surface specifically binds to integrins on the apposing cells, suggesting that uPAR-integrin interaction may mediate cell-cell interaction (trans-interaction). These previously unrecognized uPAR-integrin interactions may allow uPAR to transduce signals through the engaged integrin without a hypothetical transmembrane adapter and may provide a potential therapeutic target for control of inflammation and cancer.  相似文献   

14.
The regulation of integrins expressed on leukocytes must be controlled precisely, and members of different integrin subfamilies have to act in concert to ensure the proper traffic of immune cells to sites of inflammation. The activation of β2 family integrins through the T cell receptor or by chemokines leads to the inactivation of very late antigen 4. The mechanism(s) of this cross-talk has not been known. We have now elucidated in detail how the signals are transmitted from leukocyte function-associated antigen 1 and show that, after its activation, the signaling involves specific phosphorylations of β2 integrin followed by interactions with cytoplasmic signaling proteins. This results in loss of β1 phosphorylation and a decrease in very late antigen 4 binding to its ligand vascular cell adhesion molecule 1. Our results show how a member of one integrin family regulates the activity of another integrin. This is important for the understanding of integrin-mediated processes.  相似文献   

15.
Wang W  Fu G  Luo BH 《Biochemistry》2010,49(47):10158-10165
Integrin conformational changes mediate integrin activation and signaling triggered by intracellular molecules or extracellular ligands. Even though it is known that αβ transmembrane domain separation is required for integrin signaling, it is still not clear how this signal is transmitted from the transmembrane domain through two long extracellular legs to the ligand-binding headpiece. This study addresses whether the separation of the membrane-proximal extracellular αβ legs is critical for integrin activation and outside-in signaling. Using a disulfide bond to restrict dissociation of the α-subunit Calf-2 domain and β-subunit I-EGF4 domain, we were able to abolish integrin inside-out activation and outside-in signaling. In contrast, disrupting the interface by introducing a glycosylation site into either subunit activated integrins for ligand binding through a global conformational change. Our results suggest that the interface of the Calf-2 domain and the I-EGF4 domain is critical for integrin bidirectional signaling.  相似文献   

16.
The alpha and beta subunits of alpha/beta heterodimeric integrins function together to bind ligands in the extracellular region and transduce signals across cellular membranes. A possible function for the transmembrane regions in integrin signaling has been proposed from structural and computational data. We have analyzed the capacity of the integrin alpha(2), alpha(IIb), alpha(4), beta(1), beta(3), and beta(7) transmembrane domains to form homodimers and/or heterodimers. Our data suggest that the integrin transmembrane helices can help to stabilize heterodimeric integrins but that the interactions do not specifically associate particular pairs of alpha and beta subunits; rather, the alpha/beta subunit interaction constrains the extramembranous domains, facilitating signal transduction by a promiscuous transmembrane helix-helix association.  相似文献   

17.
Type I interferons serve as the first line of defense against pathogen invasion. Binding of IFNs to its receptors, IFNAR1 and IFNAR2, is leading to activation of the IFN response. To determine whether structural perturbations observed during binding are propagated to the cytoplasmic domain, multiple mutations were introduced into the transmembrane helix and its surroundings. Insertion of one to five alanine residues near either the N or C terminus of the transmembrane domain (TMD) likely promotes a rotation of 100° and a translation of 1.5 Å per added residue. Surprisingly, the added alanines had little effect on the binding affinity of IFN to the cell surface receptors, STAT phosphorylation, or gene induction. Similarly, substitution of the juxtamembrane residues of the TMD with alanines, or replacement of the TMD of IFNAR1 with that of IFNAR2, did not affect IFN binding or activity. Finally, only the addition of 10 serine residues (but not 2 or 4) between the extracellular domain of IFNAR1 and the TMD had some effect on signaling. Bioinformatic analysis shows a correlation between high sequence conservation of TMDs of cytokine receptors and the ability to transmit structural signals. Sequence conservation near the TMD of IFNAR1 is low, suggesting limited functional importance for this region. Our results suggest that IFN binding to the extracellular domains of IFNAR1 and IFNAR2 promotes proximity between the intracellular domains and that differential signaling is a function of duration of activation and affinity of binding rather than specific conformational changes transmitted from the outside to the inside of the cell.  相似文献   

18.
The ability of adhesion receptors to transmit biochemical signals and mechanical force across cell membranes depends on interactions with the actin cytoskeleton. Filamins are large, actin-crosslinking proteins that connect multiple transmembrane and signaling proteins to the cytoskeleton. Here, we describe the high-resolution structure of an interface between filamin A and an integrin adhesion receptor. When bound, the integrin beta cytoplasmic tail forms an extended beta strand that interacts with beta strands C and D of the filamin immunoglobulin-like domain (IgFLN) 21. This interface is common to many integrins, and we suggest it is a prototype for other IgFLN domain interactions. Notably, the structurally defined filamin binding site overlaps with that of the integrin-regulator talin, and these proteins compete for binding to integrin tails, allowing integrin-filamin interactions to impact talin-dependent integrin activation. Phosphothreonine-mimicking mutations inhibit filamin, but not talin, binding, indicating that kinases may modulate this competition and provide additional means to control integrin functions.  相似文献   

19.
Talin binding to integrin β tails increases ligand binding affinity (activation). Changes in β transmembrane domain (TMD) topology that disrupt α-β TMD interactions are proposed to mediate integrin activation. In this paper, we used membrane-embedded integrin β3 TMDs bearing environmentally sensitive fluorophores at inner or outer membrane water interfaces to monitor talin-induced β3 TMD motion in model membranes. Talin binding to the β3 cytoplasmic domain increased amino acid side chain embedding at the inner and outer borders of the β3 TMD, indicating altered topology of the β3 TMD. Talin's capacity to effect this change depended on its ability to bind to both the integrin β tail and the membrane. Introduction of a flexible hinge at the midpoint of the β3 TMD decoupled the talin-induced change in intracellular TMD topology from the extracellular side and blocked talin-induced activation of integrin αIIbβ3. Thus, we show that talin binding to the integrin β TMD alters the topology of the TMD, resulting in integrin activation.  相似文献   

20.
Clustering of integrin receptors during cell adhesion stimulates signal transduction across the cell membrane. Second messengers are generated, activating cytosolic proteins and causing cytoskeletal assembly and rearrangement. HeLa cell adhesion to a collagen substrate has been shown to initiate an arachidonic acid-mediated signaling pathway, leading to the activation of protein kinase C (PKC) and cell spreading. To determine the role of integrin receptors in triggering this signaling pathway, monoclonal antibodies to beta 1 integrins were used to either cluster integrins on the cell surface or to provide an integrin-dependent substrate for cell adhesion. Using this approach, we have defined a pathway required for cell spreading that can be initiated by the ligation of integrins and leads to the activation of PKC. Specifically, our results indicate that clustering beta 1 integrins results in the activation of phospholipase A2 leading to the production of arachidonic acid and the activation of PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号