首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth and morphogenesis of filamentous fungi is underpinned by dynamic reorganization and polarization of the actin cytoskeleton. Actin has crucial roles in exocytosis, endocytosis, organelle movement and cytokinesis in fungi, and these processes are coupled to the production of distinct higher-order structures (actin patches, cables and rings) that generate forces or serve as tracks for intracellular transport. New approaches for imaging actin in living cells are revealing important similarities and differences in actin architecture and organization within the fungal kingdom, and have yielded key insights into cell polarity, tip growth and long-distance intracellular transport. In this Review, we discuss the contribution that recent live-cell imaging and mutational studies have made to our understanding of the dynamics and regulation of actin in filamentous fungi.  相似文献   

2.
Tec kinases: shaping T-cell activation through actin   总被引:4,自引:0,他引:4  
Following stimulation, T cells undergo marked actin-dependent changes in shape that are required for productive cellular interactions and movement during immune responses. Reorganization of the actin cytoskeletal is also necessary for the formation of an immunological synapse - the convergence of several signaling molecules at the plasma membrane that occurs after effective T-cell receptor (TCR) signaling. Much emerging evidence indicates that the Tec family of tyrosine kinases has a role in actin cytoskeleton reorganization. Specifically, T cells that lack or express mutant versions of the Tec kinase Itk show impaired TCR-induced actin polymerization, cell polarization and regulation of the signaling events involved in cytoskeletal reorganization. These data, as well as other findings, support roles for Tec kinases in actin cytoskeleton regulation.  相似文献   

3.
4.
Homeostatic chemokines such as CCL19, CCL21, and CXCL13 are known to elicit chemotaxis from naive T and B cells and play a critical role in lymphocyte homing to appropriate zones within secondary lymphoid organs (SLO). Here we tested whether CCL21 and CXCL13 modulate murine lymphocyte motility in the absence of concentration gradients, using videomicroscopy to directly observe the migration of single cells. CCL21 treatment of T cells induced rapid polarization and sustained random migration with average speeds of 5.16 +/- 2.08 microm/min; B cell migration (average velocity 4.10 +/- 1.58 microm/min) was similarly induced by CXCL13. Migration required the presence of both chemokine and adhesion ligands and was sustained for >24 h. Furthermore, in in vitro assays modeling the relative infrequency of Ag-specific T cell-dendritic cell (DC) encounters during primary immune responses, we found that CCL21 addition to T-DC cocultures accelerated the kinetics of CD69 up-regulation and enhanced by 2-fold the proliferation of Ag-specific T cells in a manner dependent on G-protein-coupled receptor signaling in T cells. These results suggest that homeostatic chemokines could substantially impact the dynamics and priming of lymphocytes within SLO even in the absence of significant concentration gradients.  相似文献   

5.
In a previous study, we showed that isoproterenol induced actin depolymerization in human airway smooth muscle cells by both protein kinase A (PKA)-dependent and -independent signaling pathways. We now investigate the signaling pathway of PKA-independent actin depolymerization induced by isoproterenol in these cells. Cells were briefly exposed to isoproterenol or PGE(1) in the presence and absence of specific inhibitors of Src-family tyrosine kinases, phosphatidylinositol-3-kinase (PI3 kinase), or MAP kinase, and actin depolymerization was measured by concomitant staining of filamentous actin with FITC-phalloidin and globular actin with Texas red DNase I. Isoproterenol, cholera toxin, and PGE(1) induced actin depolymerization, indicated by a decrease in the intensity of filamentous/globular fluorescent staining. Pretreatment with the Src kinase inhibitors 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyriimidine (PP2) or geldanamycin or the PKA inhibitor Rp-cAMPS only partly inhibited isoproterenol- or PGE(1)-induced actin depolymerization. In contrast, PP2 and geldanamycin did not inhibit forskolin-induced actin depolymerization, and AG-213 (an EGF receptor tyrosine kinase inhibitor) did not inhibit isoproterenol- or PGE(1)-induced actin depolymerization. PI3 kinase or MAP kinase inhibition did not inhibit isoproterenol-induced actin depolymerization. Moreover, isoproterenol but not forskolin induced tyrosine phosphorylation of an Src family member at position 416. These results further confirm that both PKA-dependent and PKA-independent pathways mediate actin depolymerization in human airway smooth muscle cells and that the PKA-independent pathway by which isoproterenol induces actin depolymerization in human airway smooth muscle cells involves Src protein tyrosine kinases and the G(s) protein.  相似文献   

6.
In this paper, we describe the characterization of DEF6, a novel PH-DH-like protein related to SWAP-70 that functions as an upstream activator of Rho GTPases. In NIH 3T3 cells, stimulation of the PI 3-kinase signaling pathway with either H2O2 or platelet-derived growth factor (PDGF) resulted in the translocation of an overexpressed DEF6-GFP fusion protein to the cell membrane and induced the formation of filopodia and lamellipodia. In contrast to full-length DEF6, expression of the DH-like (DHL) domain as a GFP fusion protein potently induced actin polymerization, including stress fiber formation in COS-7 cells, in the absence of PI 3-kinase signaling, indicating that it was constitutively active. The GTP-loading of Cdc42 was strongly enhanced in NIH 3T3 cells expressing the DH domain while filopodia formation, membrane ruffling, and stress fiber formation could be inhibited by the co-expression of the DH domain with dominant negative mutants of either N17Rac1, N17Cdc42, or N19RhoA, respectively. This indicated that DEF6 acts upstream of the Rho GTPases resulting in the activation of the Cdc42, Rac1, and RhoA signaling pathways. In vitro, DEF6 specifically interacted with Rac1, Rac2, Cdc42, and RhoA, suggesting a direct role for DEF6 in the activation of Rho GTPases. The ability of DEF6 to both stimulate actin polymerization and bind to filamentous actin suggests a role for DEF6 in regulating cell shape, polarity, and movement.  相似文献   

7.
Positive regulation of cell migration by chemotactic factors and downstream signaling pathways has been extensively investigated. In contrast, little is known about factors and mechanisms that induce migration arrest, a process important for retention of cells at inflammatory sites and homeostatic regulation of cell trafficking. In this study, we found that IFN-gamma directly inhibited monocyte migration by suppressing remodeling of the actin cytoskeleton and cell polarization in response to the chemokine CCL2. Inhibition was dependent on STAT1 and downstream genes, whereas STAT3 promoted migration. IFN-gamma altered monocyte responses to CCL2 by modulating the activity of Pyk2, JNK, and the GTPases Rac and Cdc42, and inhibiting CCL2-induced activation of the downstream p21-activated kinase that regulates the cytoskeleton and cell polarization. These results identify a new role for IFN-gamma in arresting monocyte chemotaxis by a mechanism that involves modulation of cytoskeleton remodeling. Crosstalk between Jak-STAT and Rac/Cdc42 GTPase-mediated signaling pathways provides a molecular mechanism by which cytokines can regulate cell migration.  相似文献   

8.
Fluid shear stress stimulation induces endothelial cells to elongate and align in the direction of applied flow. Using the complementary techniques of photoactivation of fluorescence and fluorescence recovery after photobleaching, we have characterized endothelial actin cytoskeleton dynamics during the alignment process in response to steady laminar fluid flow and have correlated these results to motility. Alignment requires 24 h of exposure to fluid flow, but the cells respond within minutes to flow and diminish their movement by 50%. Although movement slows, the actin filament turnover rate increases threefold and the percentage of total actin in the polymerized state decreases by 34%, accelerating actin filament remodeling in individual cells within a confluent endothelial monolayer subjected to flow to levels used by dispersed nonconfluent cells under static conditions for rapid movement. Temporally, the rapid decrease in filamentous actin shortly after flow stimulation is preceded by an increase in actin filament turnover, revealing that the earliest phase of the actin cytoskeletal response to shear stress is net cytoskeletal depolymerization. However, unlike static cells, in which cell motility correlates positively with the rate of filament turnover and negatively with the amount polymerized actin, the decoupling of enhanced motility from enhanced actin dynamics after shear stress stimulation supports the notion that actin remodeling under these conditions favors cytoskeletal remodeling for shape change over locomotion. Hours later, motility returned to pre-shear stress levels but actin remodeling remained highly dynamic in many cells after alignment, suggesting continual cell shape optimization. We conclude that shear stress initiates a cytoplasmic actin-remodeling response that is used for endothelial cell shape change instead of bulk cell translocation. atherosclerosis; cytoskeletal dynamics; endothelial cells; mechanotransduction  相似文献   

9.
Using a monoclonal antibody as a highly specific probe and a seminal particle-free fraction of rabbit ejaculated spermatozoa, actin has been localized in the postacrosomal region of mature rabbit spermatozoa. The sperm actin has been extracted and identified on two-dimensional PAGE immunoblots as a single spot of pI = 5.45 and Mr = 43,000. Rabbit sperm actin is present in a nonfilamentous form and is not removed by removing the plasma membrane. Unlike mature spermatozoa, however, filamentous actin is present in spermatogenic cells, as determined by rhodamine phalloidin staining. Starting as diffusely distributed in spermatocytes, actin accumulates in the subacrosomal space and appears as a band in conjunction with the developing acrosome. This band lengthens throughout the spermatid stage and becomes continuous with the postacrosomal region staining in testicular spermatozoa. Actin may therefore function during spermatogenesis to both shape the acrosome to the nucleus and to anchor inner acrosomal membrane proteins.  相似文献   

10.
Acute exposure to 100 mM isotonic ethanol (EtOH) increased intracellular Ca2+ concentration ([Ca2+]i), induced cell swelling, and transformed actin cytoskeleton in astroglial primary cultures from rat cerebral cortex. Fluorometric recordings of fluo-3AM- or fura-2AM-incubated astroglial cells revealed that EtOH induced [Ca2+]i transients in a small population of the cells. Cell swelling was estimated using a new method based on three-dimensional fluorescence imaging in conjunction with image analysis and graphic visualization techniques. The method provides detailed results concerning the reformation of structural shape and specific volume alterations, as well as total proportions between the different states. Astroglial cell swelling was registered and quantified in 7 of 39 cells chosen from 12 different coverslips. EtOH also induced reversible conformational changes in filamentous actin, appearing as increases in ring formations and a more dispersed appearance of the filaments. Filamentous actin was stained with Alexa phalloidin after incubation with EtOH for varied periods. The results presented here suggest that EtOH affects astrocytes in a way that could be of physiological relevance.  相似文献   

11.
12.
Multiple angiogenic cues modulate phosphotyrosine signaling to promote vasculogenesis and angiogenesis. Despite its functional and clinical importance, how vascular cells integrate phosphotyrosine-dependent signaling to elicit cytoskeletal changes required for endothelial morphogenesis remains poorly understood. The family of Nck adaptors couples phosphotyrosine signals with actin dynamics and therefore is well positioned to orchestrate cellular processes required in vascular formation and remodeling. Culture of endothelial cells in three-dimensional collagen matrices in the presence of VEGF stimulation was combined with molecular genetics, optical imaging, and biochemistry to show that Nck-dependent actin remodeling promotes endothelial cell elongation and proper organization of VE-cadherin intercellular junctions. Major morphogenetic defects caused by abrogation of Nck signaling included loss of endothelial apical-basal polarity and impaired lumenization. Time-lapse imaging using a Förster resonance energy transfer biosensor, immunostaining with phospho-specific antibodies, and GST pull-down assays showed that Nck determines spatiotemporal patterns of Cdc42/aPKC activation during endothelial morphogenesis. Our results demonstrate that Nck acts as an important hub integrating angiogenic cues with cytoskeletal changes that enable endothelial apical-basal polarization and lumen formation. These findings point to Nck as an emergent target for effective antiangiogenic therapy.  相似文献   

13.
Immunofluorescence and cytochemical studies have demonstrated that filamentous actin is mainly localized in the cortical surface of the chromaffin cell. It has been suggested that these actin filament networks act as a barrier to the secretory granules, impeding their contact with the plasma membrane. Stimulation of chromaffin cells produces a disassembly of actin filament networks, implying the removal of the barrier. The presence of gelsolin and scinderin, two Ca(2+)-dependent actin filament severing proteins, in the cortical surface of the chromaffin cells, suggests the possibility that cell stimulation brings about activation of one or more actin filament severing proteins with the consequent disruption of actin networks. Therefore, biochemical studies and fluorescence microscopy experiments with scinderin and gelsolin antibodies and rhodamine-phalloidin, a probe for filamentous actin, were performed in cultured chromaffin cells to study the distribution of scinderin, gelsolin, and filamentous actin during cell stimulation and to correlate the possible changes with catecholamine secretion. Here we report that during nicotinic stimulation or K(+)-evoked depolarization, subcortical scinderin but not gelsolin is redistributed and that this redistribution precedes catecholamine secretion. The rearrangement of scinderin in patches is mediated by nicotinic receptors. Cell stimulation produces similar patterns of distribution of scinderin and filamentous actin. However, after the removal of the stimulus, the recovery of scinderin cortical pattern of distribution is faster than F-actin reassembly, suggesting that scinderin is bound in the cortical region of the cell to a component other than F-actin. We also demonstrate that peripheral actin filament disassembly and subplasmalemmal scinderin redistribution are calcium-dependent events. Moreover, experiments with an antibody against dopamine-beta-hydroxylase suggest that exocytosis sites are preferentially localized to areas of F-actin disassembly.  相似文献   

14.
The mechanisms responsible for initiating the conversion of globular to filamentous actin (assembly) after stimulation of B lymphocytes and the role of these cytoskeletal changes in cell activation are incompletely understood. We investigated the molecular basis of the signals leading to actin polymerization and concentrated on the involvement of guanosine triphosphate (GTP)-binding regulatory proteins, and protein kinase C (PKC). In addition, we related these early events to later events in B-cell activation, including cell proliferation. Cross-linking the Ag receptor with Staphylococcus aureus Cowan I (SAC) or anti-IgM antibodies, or stimulation of PKC with phorbol ester induced a time- and concentration-dependent increase in the filamentous actin content of B cells. Inhibition or depletion of PKC resulted in decreased actin assembly induced by anti-IgM, SAC, and PMA, suggesting that the signal for polymerization is generated distally to PKC activation. Pertussis toxin pretreatment inhibited the responses to anti-IgM and SAC but not PMA, and direct stimulation of permeabilized cells with GTP gamma S induced microfilament assembly, indicating the involvement of a GTP-binding protein for receptor-mediated events. Disruption of actin polymerization with botulinum C2 toxin or cytochalasin D inhibited the assembly of actin and [3H]TdR incorporation induced by all stimuli. We conclude that human B cell activation by receptor-mediated stimuli results in actin polymerization by signaling pathways coupled to GTP-binding proteins. These changes in the cytoskeleton may be involved in the transduction of messages leading to responses such as proliferation in B lymphocytes.  相似文献   

15.
Angiogenesis requires coordinated changes in cell shape of endothelial cells (ECs), orchestrated by the actin cytoskeleton. The mechanisms that regulate this rearrangement in vivo are poorly understood - largely because of the difficulty to visualize filamentous actin (F-actin) structures with sufficient resolution. Here, we use transgenic mice expressing Lifeact-EGFP to visualize F-actin in ECs. We show that in the retina, Lifeact-EGFP expression is largely restricted to ECs allowing detailed visualization of F-actin in ECs in situ. Lifeact-EGFP labels actin associated with cell-cell junctions, apical and basal membranes and highlights actin-based structures such as filopodia and stress fiber-like cytoplasmic bundles. We also show that in the skin and the skeletal muscle, Lifeact-EGFP is highly expressed in vascular mural cells (vMCs), enabling vMC imaging. In summary, our results indicate that the Lifeact-EGFP transgenic mouse in combination with the postnatal retinal angiogenic model constitutes an excellent system for vascular cell biology research. Our approach is ideally suited to address structural and mechanistic details of angiogenic processes, such as endothelial tip cell migration and fusion, EC polarization or lumen formation.  相似文献   

16.
Changes in cellular shape and filamentous actin (f-actin) organization within the trophectoderm of pig embryos have been studied by fluorescence microscopy during the transitions from spherical to filamentous blastocysts. Cells comprising the trophectoderm of spherical, ovoid, tubular, and filamentous blastocysts are distinctive in their shape, size, and organization of membrane-associated f-actin. Trophectodermal cells of spherical and ovoid embryos are both generally circular in shape. However, as the spherical embryo acquires an ovoid shape, uniformally distributed apical cell surface microvilli relocate to the apical intercellular margins of adjoining trophectodermal cells. Transitional modifications in cellular shape and f-actin organization are observed in tubular blastocysts when apical cell surface microvilli reappear. In elongating filamentous blastocysts, trophectodermal cells assume a spindle-shaped morphology. The f-actin associated with the apical surface is diminished whereas the associated with the basolateral membrane predominates, especially in constricted regions of the blastocyst. These observations, in conjunction with morphometric parameters of trophectodermal cells and whole blastocysts, are discussed in relation to the role of the actin cytoskeleton in processes that modify trophectodermal cell shape and function in the elongating pig blastocyst.  相似文献   

17.
The serine/threonine kinase Akt is a key mediator of cell survival and cell growth that is activated by most growth factors, but its downstream signaling largely remains to be elucidated. To identify signaling partners of Akt, we analyzed proteins co-immunoprecipitated with Akt in MCF-7 breast cancer cells. Mass spectrometry analysis (MALDI-TOF and MS-MS) of SDS-PAGE-separated Akt co-immunoprecipitates allowed the identification of 10 proteins: alpha -actinin, valosin-containing protein, inhibitor kappaB kinase, mortalin, tubulin beta, cytokeratin 8, actin, 14-3-3sigma, proliferating cell nuclear antigen, and heat shock protein HSP27. The identification of these putative Akt binding partners were validated with specific antibodies. Interestingly, the major protein band observed in Akt co-immunoprecipitates was found to be the cytoskeleton protein actin for which a 14-fold increase was observed in Akt-activated compared with non-activated conditions. The interaction between Akt and actin was further confirmed by reverse immunoprecipitation, and confocal microscopy demonstrated a co-localization specifically induced under growth factor stimulation. The use of wortmannin indicated a dependence on the phosphatidylinositol 3-kinase pathway. Using a phospho-Akt substrate antibody, the phosphorylation of actin on an Akt consensus site was detected upon growth factor stimulation, both in cellulo and in vitro, suggesting that actin is a substrate of Akt kinase activity. Interestingly, cortical remodeling of actin associated with cell migration was reversed by small interfering RNA directed against Akt, indicating the involvement of Akt in the dynamic reorganization of actin cytoskeleton germane to breast cancer cell migration. Together these data identify actin as a new functional target of Akt signaling.  相似文献   

18.
The epithelial cells exhibit either a columnar or a flat shape dependent on extracellular stimuli or the cell-cell adhesion. Membrane-anchored ephrinA stimulates EphA receptor tyrosine kinases as a ligand in a cell-cell contact-dependent manner. The mechanism through which ephrinA1/EphA2 signal regulates the cell morphology remains elusive. We demonstrate here that ephrinA1/EphA2 signal induces compaction and enhanced polarization (columnar change) of Madin-Darby canine kidney epithelial cells by regulating Ezrin, a linker that connects plasma membrane and actin cytoskeleton. Activation of EphA2 resulted in RhoA inactivation through p190RhoGAP-A and subsequent dephosphorylation of Ezrin on Thr-567 phosphorylated by Rho kinase. Consistently, the cells expressing an active mutant of Ezrin in which Thr-567 was replaced with Asp did not change their shape in response to ephrinA1. Furthermore, depletion of Ezrin led to compaction and enhanced polarization without ephrinA1 stimulation, suggesting the role for active Ezrin in keeping the flat cell shape. Ezrin localized to apical domain irrespective of ephrinA1 stimulation, whereas phosphorylated Ezrin on the apical domain was reduced by ephrinA1 stimulation. Collectively, ephrinA1/EphA2 signal negatively regulates Ezrin and promotes the alteration of cell shape, from flat to columnar shape.  相似文献   

19.
Cell polarization and migration in response to chemokines is essential for proper development of the immune system and activation of immune responses. Recent studies of chemokine signaling have revealed a critical role for PI3-Kinase, which is required for polarized membrane association of pleckstrin homology (PH) domain-containing proteins and activation of Rho family GTPases that are essential for cell polarization and actin reorganization. Additional data argue that tyrosine kinases are also important for chemokine-induced Rac activation. However, how and which kinases participate in these pathways remain unclear. We demonstrate here that the Tec kinases Itk and Rlk play an important role in chemokine signaling in T lymphocytes. Chemokine stimulation induced transient membrane association of Itk and phosphorylation of both Itk and Rlk, and purified T cells from Rlk(-/-)Itk(-/-) mice exhibited defective migration to multiple chemokines in vitro and decreased homing to lymph nodes upon transfer to wt mice. Expression of a dominant-negative Itk impaired SDF-1alpha-induced migration, cell polarization, and activation of Rac and Cdc42. Thus, Tec kinases are critical components of signaling pathways required for actin polarization downstream from both antigen and chemokine receptors in T cells.  相似文献   

20.
Microglia are major immunocompetent cells in the central nervous system and retain highly dynamic motility. The processes which allow these cells to move, such as chemotaxis and phagocytosis, are considered part of their functions and are closely related to purinergic signaling. Previously, we reported that the activation of the P2Y6 receptor by UDP stimulation in microglia evoked dynamic cell motility which enhanced their phagocytic capacity, as reported by Koizumi et al. (Nature 446(7139):1091–1095, 2007). These responses require actin cytoskeletal rearrangement, which is seen after UDP stimulation. However, the intracellular signaling pathway has not been defined. In this study, we found that UDP in rat primary microglia rapidly induced the transient phosphorylation at Ser157 of vasodilator-stimulated phosphoprotein (VASP). VASP, one of actin binding protein, accumulated at the plasma membrane where filamentous (F)-actin aggregated in a time-dependent manner. The phosphorylation of VASP was suppressed by inhibition of PKC. UDP-induced local actin aggregations were also abrogated by PKC inhibitors. The Rho inhibitor CT04 and the expression of p115-RGS, which suppresses G12/13 signaling, attenuated UDP-induced phosphorylation of VASP and actin aggregation. These results indicate that PKC- and Rho-dependent phosphorylation of VASP is involved in UDP-induced actin aggregation of microglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号