首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Placenta is a non-controversial and promising source of cells for the treatment of several liver diseases. We previously reported that transplanted human amnion epithelial cells (hAECs) differentiate into hepatocyte-like cells, resulting in correction of mouse models of metabolic liver disease or acute hepatic failure. As part of preclinical safety studies, we investigated the distribution of hAECs using two routes of administration to efficiently deliver hAECs to the liver. Optical imaging is commonly used because it can provide fast, high-throughput, whole-body imaging, thus DiR-labeled hAECs were injected into immunodeficient mice, via the spleen or the tail vein. The cell distribution was monitored using an in vivo imaging system over the next 24 h. After splenic injection, the DiR signal was detected in liver and spleen at 1, 3 and 24 h post-transplant. The distribution was confirmed by analysis of human DNA content at 24 h post-transplant and human-specific cytokeratin 8/18 staining. Tail vein infusion resulted in cell engraftment mainly in the lungs, with minimal detection in the liver. Delivery of cells to the portal vein, via the spleen, resulted in efficient delivery of hAECs to the liver, with minimal, off-target distribution to lungs or other organs.  相似文献   

3.
Adherent adipose-derived stromal/stem cells (ASC) have been used in pre-clinical regenerative medical studies applied to a broad range of tissues with an ultimate goal of translating these findings to clinical safety and efficacy testing; however, many protocols passage the cells using porcine-derived trypsin. We have compared porcine trypsin with animal protein-free products from recombinant bacteria (TrypLE Express; Invitrogene) and corn (TrypZean; Sigma) based on cell yield, viability and immunophenotype. ASC harvested with each trypsin product were comparable.  相似文献   

4.
Stem cells serve as potential therapeutics due to their high proliferative capacity, low immunogenic reactivity and their differentiating capabilities. Several pre-clinical and early-stage clinical studies are carried out to treat genetic diseases, cancers and neurodegenerative disorders with promising preliminary results. However, there are still many challenges that scientists are trying to overcome such as the unclear expression profile of stem cells in vivo, the homing of stem cells to the site of injury and their potential immune-reactivity. Prospective research lies in gene editing of autologous stem cells in vitro and safe injection of these modified cells back into patients. Here, we review the clinical trials executed using stem cell therapy in an attempt to cure challenging diseases like cancer, Parkinson’s and Alzheimer’s diseases.  相似文献   

5.
Drug discovery for brain disorders is undergoing a period of upheaval. Faced with an empty drug pipeline and numerous failures of potential new drugs in clinical trials, many large pharmaceutical companies have been shrinking or even closing down their research divisions that focus on central nervous system (CNS) disorders. In this paper, we argue that many of the difficulties facing CNS drug discovery stem from a lack of robustness in pre-clinical (i.e., non-human animal) testing. There are two main sources for this lack of robustness. First, there is the lack of replicability of many results from the pre-clinical stage, which we argue is driven by a combination of publication bias and inappropriate selection of statistical and experimental designs. Second, there is the frequent failure to translate results in non-human animals to parallel results in humans in the clinic. This limitation can only be overcome by developing new behavioral tests for non-human animals that have predictive, construct, and etiological validity. Here, we present these translational difficulties as a “grand challenge” to researchers from comparative cognition, who are well positioned to provide new methods for testing behavior and cognition in non-human animals. These new experimental protocols will need to be both statistically robust and target behavioral and cognitive processes that allow for better connection with human CNS disorders. Our hope is that this downturn in industrial research may represent an opportunity to develop new protocols that will re-kindle the search for more effective and safer drugs for CNS disorders.  相似文献   

6.
《Cytotherapy》2021,23(11):974-979
Although biologically appealing, the concept of tissue regeneration underlying first- and second-generation cell therapies has failed to translate into consistent results in clinical trials. Several types of cells from different origins have been tested in pre-clinical models and in patients with acute myocardial infarction (AMI). Mesenchymal stromal cells (MSCs) have gained attention because of their potential for immune modulation and ability to promote endogenous tissue repair, mainly through their secretome. MSCs can be easily obtained from several human tissues, the umbilical cord being the most abundant source, and further expanded in culture, making them attractive as an allogeneic “of-the-shelf” cell product, suitable for the AMI setting. The available evidence concerning umbilical cord-derived MSCs in AMI is reviewed, focusing on large animal pre-clinical studies and early human trials. Molecular and cellular mechanisms as well as current limitations and possible translational solutions are also discussed.  相似文献   

7.
Stem cells, regenerative medicine, and animal models of disease   总被引:1,自引:0,他引:1  
The field of stem cell biology and regenerative medicine is rapidly moving toward translation to clinical practice, and in doing so has become even more dependent on animal donors and hosts for generating cellular reagents and assaying their potential therapeutic efficacy in models of human disease. Advances in cell culture technologies have revealed a remarkable plasticity of stem cells from embryonic and adult tissues, and transplantation models are now needed to test the ability of these cells to protect at-risk cells and replace cells lost to injury or disease. With such a mandate, issues related to acceptable sources and controversial (e.g., chimeric) models have challenged the field to provide justification of their potential efficacy before the passage of new restrictions that may curb anticipated breakthroughs. Progress from the use of both in vitro and in vivo regenerative medicine models already offers hope both for the facilitation of stem cell phenotyping in recursive gene expression profile models and for the use of stem cells as powerful new therapeutic reagents for cancer, stroke, Parkinson's, and other challenging human diseases that result in movement disorders. This article describes research in support of the following three objectives: (1) To discover the best stem or progenitor cell in vitro protocols for isolating, expanding, and priming these cells to facilitate their massive propagation into just the right type of neuronal precursor cell for protection or replacement protocols for brain injury or disease, including those that affect movement such as Parkinson's disease and stroke; (2) To discover biogenic factors--compounds that affect stem/progenitor cells (e.g., from high-throughput screening and other bioassay approaches)--that will encourage reactive cell genesis, survival, selected differentiation, and restoration of connectivity in central nervous system movement and other disorders; and (3) To establish the best animal models of human disease and injury, using both small and large animals, for testing new regenerative medicine therapeutics.  相似文献   

8.
Treatment of human disease by adeno-associated viral gene transfer   总被引:6,自引:0,他引:6  
During the past decade, in vivo administration of viral gene transfer vectors for treatment of numerous human diseases has been brought from bench to bedside in the form of clinical trials, mostly aimed at establishing the safety of the protocol. In preclinical studies in animal models of human disease, adeno-associated viral (AAV) vectors have emerged as a favored gene transfer system for this approach. These vectors are derived from a replication-deficient, non-pathogenic parvovirus with a single-stranded DNA genome. Efficient gene transfer to numerous target cells and tissues has been described. AAV is particularly efficient in transduction of non-dividing cells, and the vector genome persists predominantly in episomal forms. Substantial correction, and in some instances complete cure, of genetic disease has been obtained in animal models of hemophilia, lysosomal storage disorders, retinal diseases, disorders of the central nervous system, and other diseases. Therapeutic expression often lasted for months to years. Treatments of genetic disorders, cancer, and other acquired diseases are summarized in this review. Vector development, results in animals, early clinical experience, as well as potential hurdles and challenges are discussed.  相似文献   

9.
Mesenchymal stem cell(MSC)therapy has attracted the attention of scientists and clinicians around the world.Basic and pre-clinical experimental studies have highlighted the positive effects of MSC treatment after spinal cord and peripheral nerve injury.These effects are believed to be due to their ability to differentiate into other cell lineages,modulate inflammatory and immunomodulatory responses,reduce cell apoptosis,secrete several neurotrophic factors and respond to tissue injury,among others.There are many pre-clinical studies on MSC treatment for spinal cord injury(SCI)and peripheral nerve injuries.However,the same is not true for clinical trials,particularly those concerned with nerve trauma,indicating the necessity of more well-constructed studies showing the benefits that cell therapy can provide for individuals suffering the consequences of nerve lesions.As for clinical trials for SCI treatment the results obtained so far are not as beneficial as those described in experimental studies.For these reasons basic and pre-clinical studies dealing with MSC therapy should emphasize the standardization of protocols that could be translated to the clinical set with consistent and positive outcomes.This review is based on pre-clinical studies and clinical trials available in the literature from 2010 until now.At the time of writing this article there were 43 and 36 pre-clinical and 19 and 1 clinical trials on injured spinal cord and peripheral nerves,respectively.  相似文献   

10.
There has been a great deal of scientific interest recently generated by the potential therapeutic applications of adult stem cells in human care but there are several challenges regarding quality and safety in clinical applications and a number of these challenges relate to the processing and banking of these cells ex-vivo. As the number of clinical trials and the variety of adult cells used in regenerative therapy increases, safety remains a primary concern. This has inspired many nations to formulate guidelines and standards for the quality of stem cell collection, processing, testing, banking, packaging and distribution. Clinically applicable cryopreservation and banking of adult stem cells offers unique opportunities to advance the potential uses and widespread implementation of these cells in clinical applications. Most current cryopreservation protocols include animal serum proteins and potentially toxic cryoprotectant additives (CPAs) that prevent direct use of these cells in human therapeutic applications. Long term cryopreservation of adult stem cells under good manufacturing conditions using animal product free solutions is critical to the widespread clinical implementation of ex-vivo adult stem cell therapies. Furthermore, to avoid any potential cryoprotectant related complications, reduced CPA concentrations and efficient post-thaw washing to remove CPA are also desirable. The present review focuses on the current strategies and important aspects of adult stem cell banking for clinical applications. These include current good manufacturing practices (cGMPs), animal protein free freezing solutions, cryoprotectants, freezing & thawing protocols, viability assays, packaging and distribution. The importance and benefits of banking clinical grade adult stem cells are also discussed.  相似文献   

11.
Fatimah SS  Ng SL  Chua KH  Hayati AR  Tan AE  Tan GC 《Human cell》2010,23(4):141-151
Human amniotic epithelial cells (hAECs) are potentially one of the key players in tissue engineering due to their easy availability. The aim of the present study was to develop an optimal isolation and transportation technique, as well as to determine the immunophenotype and epithelial gene expression of hAECs. Amnion was mechanically peeled off from the chorion and digested with trypsin-ethylenediaminetetraacetic acid. The isolated hAECs were cultured in medium containing 10 ng/mL epidermal growth factor until P4. The epithelial gene expression, cell surface antigen and protein expression of hAECs were analyzed by quantitative polymerase chain reaction, flow cytometry and immunocytochemistry. hAECs were also cultured in adipogenic, osteogenic and neurogenic induction media. The best cell yield of hAECs was seen in the digestion of 15 pieces of amnion (2 × 2 cm) and isolated 30 min after digestion with trypsin. F12:Dulbecco's modified eagle medium was the best medium for short term storage at 4 °C. hAECs expressed CD9, CD44, CD73 and CD90, and negligibly expressed CD31, CD34, CD45 and CD117. After serial passage, CK3, CK19 and involucrin gene expressions were upregulated, while p63, CK1 and CK14 gene expressions were downregulated. Sustained gene expressions of integrin β1 and CK18 were observed. At initial culture, these cells might have stem-like properties. However, they differentiated after serial passage. Nonetheless, hAECs have epithelial stem cell characteristics and have the potential to differentiate into corneal epithelial cells. Further investigations are still needed to elucidate the mechanism of differentiation involved and to optimize the culture condition for long term in vitro culture.  相似文献   

12.
Background aimsMesenchymal stem/stromal cells (MSCs) are of interest for the treatment of graft-versus-host disease, autoimmune diseases, osteoarthritis and neurological and cardiovascular diseases. Increasing numbers of clinical trials emphasize the need for standardized manufacturing of these cells. However, many challenges related to diverse isolation and expansion protocols and differences in cell tissue sources exist. As a result, the cell products used in numerous trials vary greatly in characteristics and potency.MethodsThe authors have established a standardized culture platform using xeno- and serum-free commercial media for expansion of MSCs derived from umbilical cord (UC), bone marrow and adipose-derived (AD) and examined their functional characteristics.ResultsMSCs from the tested sources stably expanded in vitro and retained their biomarker expression and normal karyotype at early and later passages and after cryopreservation. MSCs were capable of colony formation and successfully differentiated into osteogenic, adipogenic and chondrogenic lineages. Pilot expansion of UC-MSCs and AD-MSCs to clinical scale revealed that the cells met the required quality standard for therapeutic applications.ConclusionsThe authors’ data suggest that xeno- and serum-free culture conditions are suitable for large-scale expansion and enable comparative study of MSCs of different origins. This is of importance for therapeutic purposes, especially because of the numerous variations in pre-clinical and clinical protocols for MSC-based products.  相似文献   

13.
《Cytotherapy》2023,25(3):261-269
Genome editing of hematopoietic stem and progenitor cells is being developed for the treatment of several inherited disorders of the hematopoietic system. The adaptation of CRISPR-Cas9-based technologies to make precise changes to the genome, and developments in altering the specificity and efficiency, and improving the delivery of nucleases to target cells have led to several breakthroughs. Many clinical trials are ongoing, and several pre-clinical models have been reported that would allow these genetic therapies to one day offer a potential cure to patients with diseases where limited options currently exist. However, there remain several challenges with respect to establishing safety, expanding accessibility and improving the manufacturing processes of these therapeutic products. This review focuses on some of the recent advances in the field of genome editing of hematopoietic stem and progenitor cells and illustrates the ongoing challenges.  相似文献   

14.
The easy accessibility of the skin as a therapeutic target provides an exciting potential for this organ for the development of gene therapy protocols for cutaneous diseases and a variety of metabolic disorders. Thus far, full phenotypic reversion of a diseased phenotype has been achieved in vivo for junctional epidermolysis bullosa and X-linked or lamellar ichthyosis and in vitro for xeroderma pigmentosum. These recessive skin diseases are characterized by skin blistering, abnormalities in epidermal differentiation and increased development of skin cancers, respectively. Corrective gene delivery at both molecular and functional levels was achieved by transduction of cultured skin cells using retroviral vectors carrying the specific curative cDNA. These positive results should prompt clinical trials based on transplantation of artificial epithelia reconstructed ex vivo using genetically modified keratinocytes. Promising results have also been obtained in phenotypic reversion of cells isolated from patients suffering from a number of metabolic diseases such as gyrate atrophy, familial hypercholesterolemia or phenylketonuria. In these diseases transplantation of autologous artificial epithelia expressing the transgenes of interest or direct transfer of the DNA to the skin represents a potential therapeutic approach for the systemic delivery of active molecules. Successful cutaneous gene therapy trials, however, require development of protocols for efficient gene transfer to epidermal stem cells, and information about the host immune response to the recombinant polypeptides produced by the implanted keratinocytes. The availability of spontaneous animal models for genodermatoses will validate the gene therapy approach in preclinical trials.  相似文献   

15.
The mesenchymal stem cells (MSCs), which are derived from the mesoderm, are considered as a readily available source for tissue engineering. They have multipotent differentiation capacity and can be differentiated into various cell types. Many studies have demonstrated that the MSCs identified from amniotic membrane (AM-MSCs) and amniotic fluid (AF-MSCs) are shows advantages for many reasons, including the possibility of noninvasive isolation, multipotency, self-renewal, low immunogenicity, anti-inflammatory and nontumorigenicity properties, and minimal ethical problem. The AF-MSCs and AM-MSCs may be appropriate sources of mesenchymal stem cells for regenerative medicine, as an alternative to embryonic stem cells (ESCs). Recently, regenerative treatments such as tissue engineering and cell transplantation have shown potential in clinical applications for degenerative diseases. Therefore, amnion and MSCs derived from amnion can be applied to cell therapy in neuro-degeneration diseases. In this review, we will describe the potential of AM-MSCs and AF-MSCs, with particular focus on cures for neuronal degenerative diseases. [BMB Reports 2014; 47(3): 135-140]  相似文献   

16.
Mesenchymal stromal cells (MSCs) are being employed in clinical trials to facilitate engraftment and to treat steroid-resistant acute graft-versus-host disease after hematopoietic stem cell transplantation, as well as to repair tissue damage in inflammatory/degenerative disorders, in particular, in inflammatory bowel diseases (IBDs). When entering the clinical arena, a few potential risks of MSC therapy have to be taken into account: (i) immunogenicity of the cells, (ii) biosafety of medium components, (iii) risk of ectopic tissue formation, and (iv) potential in vitro transformation of the cells during expansion. This paper analyzes the main risks connected with the use of MSCs in cellular therapy approaches, and reports on some of the most intriguing findings on the use of MSCs in the context of regenerative medicine. Experimental studies in animal models and phase I/II clinical trials on the use of MSCs for the treatment of IBDs and other inflammatory/degenerative conditions are reviewed.  相似文献   

17.
The identification of disease-causing genes in familial forms of neurodegenerative disorders and the development of genetic models closely replicating human central nervous system (CNS) pathologies have drastically changed our understanding of the molecular events leading to neuronal cell death. If these achievements open new opportunities of therapeutic interventions, including gene-based therapies, the presence of the blood-brain barrier and the post-mitotic and poor regenerative nature of the target cells constitute important challenges. Efficient delivery systems taking into account the specificity of the CNS are required to administer potential therapeutic candidates. In addition, genetic models in large animals that replicate the late stages of the diseases are in most cases not available for pre-clinical studies. The present review summarizes the potential of viral vectors as tools to create new genetic models of CNS disorders in various species including primates and the recent progress toward viral gene therapy clinical trials for the administration of therapeutic candidates into the brain.  相似文献   

18.
Heart failure is becoming a major issue for public health in western countries and the effect of currently available therapies is limited. Therefore cell transplantation was developed as an alternative strategy to improve cardiac structure and function. This review describes the multiple cell types and clinical trials considered for use in this indication. Most studies have been developed in models of post-ischemic heart failure. The transplantation of fetal or neonatal cardiomyocytes has proven to be functionally successful, but ethical as well as immunological and technical reasons make their clinical use limited. Recent reports, however, suggested that adult autologous cardiomyocytes could be prepared from stem cells present in various tissues (bone marrow, vessels, adult heart itself, adipose tissue). Alternatively, endothelial progenitors originating from bone marrow or peripheral blood could promote the neoangiogenesis within the scar tissue. Hematopietic stem cells prepared from bone marrow or peripheral blood have been proposed but their differentiation ability seems limited. Finally, the transplantation of skeletal muscle cells (myoblasts) in the infarcted area improved myocardial function, in correlation with the development of skeletal muscle tissue in various animal models. The latter results paved the way for the development of a first phase I clinical trial of myoblast transplantation in patients with severe post-ischemic heart failure. It required the scale-up of human cell production according to good manufacturing procedures, started in june 2000 in Paris and was terminated in november 2001, and was followed by several others. The results were encouraging and prompted the onset of a blinded, multicentric phase II clinical trial for skeletal muscle cells transplantation. Meanwhile, phase I clinical trials also evaluate the safeness and efficacy of various cell types originating from the bone marrow or the peripheral blood. However, potential side effects related to the biological properties of the cells or the delivery procedures are being reported. High quality clinical trials supported by strong pre-clinical data will help to evaluate the role of cell therapy as a potential treatment for heart failure.  相似文献   

19.
Sah DW 《Life sciences》2006,79(19):1773-1780
During the past decade, numerous molecular mediators of neurodegenerative diseases and neurological disorders have been identified and validated, yet few novel therapies have emerged and the unmet medical needs remain high. These molecular mediators belong to target classes such as ion channels, neurotransmitters and neurotransmitter receptors, cytokines, growth factors, enzymes and other proteins. In some cases, substantial pre-clinical validation exists, but the molecular target has not been readily druggable with small molecules, proteins or antibodies. RNA interference represents a therapeutic approach applicable to such non-druggable targets. Both non-viral and viral delivery strategies are being undertaken for in vivo silencing of molecular targets by RNA interference, which has resulted in robust efficacy in animal models of Alzheimer's disease, ALS, Huntington's disease, spinocerebellar ataxia, anxiety, depression, neuropathic pain, encephalitis and glioblastoma. These proof-of-concept data in animal models, together with the commencement of clinical trials using RNA interference for macular degeneration and respiratory syncytial virus infection, point to the potential of direct RNA interference for neurological disorders and neurodegenerative diseases.  相似文献   

20.
Stem cell therapies are successfully used in various fields of medicine. This new approach of research is also expanding in ophthalmology. Huge investments, resources and important clinical trials have been performed in stem cell research and in potential therapies. In recent years, great strides have been made in genetic research, which permitted and enhanced the differentiation of stem cells. Moreover, the possibility of exploiting stem cells from other districts (such as adipose, dental pulp, bone marrow stem cells, etc.) for the treatment of ophthalmic diseases, renders this topic fascinating. Furthermore, great strides have been made in biomedical engineering, which have proposed new materials and three-dimensional structures useful for cell therapy of the eye. The encouraging results obtained on clinical trials conducted on animals have given a significant boost in the creation of study protocols also in humans. Results are limited to date, but clinical trials continue to evolve. Our attention is centered on the literature reported over the past 20 years, considering animal (the most represented in literature) and human clinical trials, which are limiting. The aim of our review is to present a brief overview of the main types of treatments based on stem cells in the field of ophthalmic pathologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号