首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
3.

Background

Transposable elements are mobile DNA repeat sequences, known to have high impact on genes, genome structure and evolution. This has stimulated broad interest in the detailed biological studies of transposable elements. Hence, we have developed an easy-to-use tool for the comparative analysis of the structural organization and functional relationships of transposable elements, to help understand their functional role in genomes.

Results

We named our new software VisualTE and describe it here. VisualTE is a JAVA stand-alone graphical interface that allows users to visualize and analyze all occurrences of transposable element families in annotated genomes. VisualTE reads and extracts transposable elements and genomic information from annotation and repeat data. Result analyses are displayed in several graphical panels that include location and distribution on the chromosome, the occurrence of transposable elements in the genome, their size distribution, and neighboring genes’ features and ontologies. With these hallmarks, VisualTE provides a convenient tool for studying transposable element copies and their functional relationships with genes, at the whole-genome scale, and in diverse organisms.

Conclusions

VisualTE graphical interface makes possible comparative analyses of transposable elements in any annotated sequence as well as structural organization and functional relationships between transposable elements and other genetic object. This tool is freely available at: http://lcb.cnrs-mrs.fr/spip.php?article867.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1351-5) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

Prophages are integrated viral forms in bacterial genomes that have been found to contribute to interstrain genetic variability. Many virulence-associated genes are reported to be prophage encoded. Present computational methods to detect prophages are either by identifying possible essential proteins such as integrases or by an extension of this technique, which involves identifying a region containing proteins similar to those occurring in prophages. These methods suffer due to the problem of low sequence similarity at the protein level, which suggests that a nucleotide based approach could be useful.

Methodology

Earlier dinucleotide relative abundance (DRA) have been used to identify regions, which deviate from the neighborhood areas, in genomes. We have used the difference in the dinucleotide relative abundance (DRAD) between the bacterial and prophage DNA to aid location of DNA stretches that could be of prophage origin in bacterial genomes. Prophage sequences which deviate from bacterial regions in their dinucleotide frequencies are detected by scanning bacterial genome sequences. The method was validated using a subset of genomes with prophage data from literature reports. A web interface for prophage scan based on this method is available at http://bicmku.in:8082/prophagedb/dra.html. Two hundred bacterial genomes which do not have annotated prophages have been scanned for prophage regions using this method.

Conclusions

The relative dinucleotide distribution difference helps detect prophage regions in genome sequences. The usefulness of this method is seen in the identification of 461 highly probable loci pertaining to prophages which have not been annotated so earlier. This work emphasizes the need to extend the efforts to detect and annotate prophage elements in genome sequences.  相似文献   

5.

Introduction

Hypoxia induced factors (HIFs) are at the heart of the adaptive mechanisms cancer cells must implement for survival. HIFs are regulated by four hydroxylases; Prolyl hydroxylase (PHD)-1,-2,-3 and factor inhibiting HIF (FIH). We aimed to investigate the prognostic impact of these oxygen sensors in NSCLC.

Methods

Tumor tissue samples from 335 resected stages I to IIIA NSCLC patients was obtained and tissue microarrays (TMAs) were constructed. Hydroxylase expression was evaluated by immunohistochemistry.

Principal Findings

There was scorable expression for all HIF hydroxylases in tumor cells, but not in stroma. In univariate analyses, high tumor cell expression of all the HIF hydroxylases were unfavorable prognosticators for disease-specific survival (DSS); PHD1 (P = 0.023), PHD2 (P = 0.013), PHD3 (P = 0.018) and FIH (P = 0.033). In the multivariate analyses we found high tumor cell expression of PHD2 (HR = 2.03, CI 95% 1.20–3.42, P = 0.008) and PHD1 (HR = 1.45, CI 95% 1.01–2.10, P = 0.047) to be significant independent prognosticators for DSS. Besides, there was an additive prognostic effect by the increasing number of highly expressed HIF hydroxylases. Provided none high expression HIF hydroxylases, the 5-year survival was 80% vs. 23% if all four were highly expressed (HR = 6.48, CI 95% 2.23–18.8, P = 0.001).

Conclusions

HIF hydroxylases are, in general, poor prognosticators for NSCLC survival. PHD1 and PHD2 are independent negative prognostic factors in NSCLC. Moreover, there is an additive poor prognostic impact by an increasing number of highly expressed HIF hydroxylases.  相似文献   

6.

Background

The correct taxonomic assignment of bacterial genomes is a primary and challenging task. With the availability of whole genome sequences, the gene content based approaches appear promising in inferring the bacterial taxonomy. The complete genome sequencing of a bacterial genome often reveals a substantial number of unique genes present only in that genome which can be used for its taxonomic classification.

Results

In this study, we have proposed a comprehensive method which uses the taxon-specific genes for the correct taxonomic assignment of existing and new bacterial genomes. The taxon-specific genes identified at each taxonomic rank have been successfully used for the taxonomic classification of 2,342 genomes present in the NCBI genomes, 36 newly sequenced genomes, and 17 genomes for which the complete taxonomy is not yet known. This approach has been implemented for the development of a tool ‘Microtaxi’ which can be used for the taxonomic assignment of complete bacterial genomes.

Conclusion

The taxon-specific gene based approach provides an alternate valuable methodology to carry out the taxonomic classification of newly sequenced or existing bacterial genomes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1542-0) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background

Bacteriophages that infect the opportunistic pathogen Pseudomonas aeruginosa have been classified into several groups. One of them, which includes temperate phage particles with icosahedral heads and long flexible tails, bears genomes whose architecture and replication mechanism, but not their nucleotide sequences, are like those of coliphage Mu. By comparing the genomic sequences of this group of P. aeruginosa phages one could draw conclusions about their ontogeny and evolution.

Results

Two newly isolated Mu-like phages of P. aeruginosa are described and their genomes sequenced and compared with those available in the public data banks. The genome sequences of the two phages are similar to each other and to those of a group of P. aeruginosa transposable phages. Comparing twelve of these genomes revealed a common genomic architecture in the group. Each phage genome had numerous genes with homologues in all the other genomes and a set of variable genes specific for each genome. The first group, which comprised most of the genes with assigned functions, was named “core genome”, and the second group, containing mostly short ORFs without assigned functions was called “accessory genome”. Like in other phage groups, variable genes are confined to specific regions in the genome.

Conclusion

Based on the known and inferred functions for some of the variable genes of the phages analyzed here, they appear to confer selective advantages for the phage survival under particular host conditions. We speculate that phages have developed a mechanism for horizontally acquiring genes to incorporate them at specific loci in the genome that help phage adaptation to the selective pressures imposed by the host.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1146) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.
10.
Enzymes of the AlkB and CYP153 families catalyze the first step in the catabolism of medium-chain-length alkanes, selective oxidation of the alkane to the 1-alkanol, and enable their host organisms to utilize alkanes as carbon sources. Small, gaseous alkanes, however, are converted to alkanols by evolutionarily unrelated methane monooxygenases. Propane and butane can be oxidized by CYP enzymes engineered in the laboratory, but these produce predominantly the 2-alkanols. Here we report the in vivo-directed evolution of two medium-chain-length terminal alkane hydroxylases, the integral membrane di-iron enzyme AlkB from Pseudomonas putida GPo1 and the class II-type soluble CYP153A6 from Mycobacterium sp. strain HXN-1500, to enhance their activity on small alkanes. We established a P. putida evolution system that enables selection for terminal alkane hydroxylase activity and used it to select propane- and butane-oxidizing enzymes based on enhanced growth complementation of an adapted P. putida GPo12(pGEc47ΔB) strain. The resulting enzymes exhibited higher rates of 1-butanol production from butane and maintained their preference for terminal hydroxylation. This in vivo evolution system could be useful for directed evolution of enzymes that function efficiently to hydroxylate small alkanes in engineered hosts.Microbial utilization and degradation of alkanes was discovered almost a century ago (27). Since then, several enzyme families capable of hydroxylating alkanes to alkanols, the first step in alkane degradation, have been identified and categorized based on their preferred substrates (30). The soluble and particulate methane monooxygenases (sMMO and pMMO) and the related propane monooxygenase and butane monooxygenase (BMO) are specialized on gaseous small-chain alkanes (C1 to C4), while medium-chain (C5 to C16) alkane hydroxylation seems to be the domain of the CYP153 and AlkB enzyme families.Conversion of C1 to C4 alkanes to alkanols is of particular interest for producing liquid fuels or chemical precursors from natural gas. The MMO-like enzymes that catalyze this reaction in nature, however, exhibit limited stability or poor heterologous expression (30) and have not been suitable for use in a recombinant host that can be engineered to optimize substrate or cofactor delivery. Alkane monooxygenases often cometabolize a wider range of alkanes than those which support growth (12). We wished to determine whether it is possible to engineer a medium-chain alkane monooxygenase to hydroxylate small alkanes, thereby circumventing difficulties associated with engineering MMO-like enzymes as well as investigating the fundamental question of whether enzymes unrelated to MMO can support growth on small alkanes.The most intensively studied medium-chain alkane hydroxylases are the AlkB enzymes (2, 20, 29), especially AlkB from Pseudomonas putida GPo1 (13, 28, 32, 35). While most members of the AlkB family act on C10 or longer alkanes, some accept alkanes as small as C5 (30). A recent study (12) indicated that AlkB from P. putida GPo1 may also be involved in propane and butane assimilation. AlkB selectively oxidizes at the terminal carbon to produce the 1-alkanols. No systematic protein engineering studies have been conducted on this di-iron integral membrane enzyme, although selection and site-directed mutagenesis efforts identified one amino acid residue that sterically determines long-chain alkane degradation (35).The most recent addition to the known biological alkane-hydroxylating repertoire is the CYP153 family of heme-containing cytochrome P450 monooxygenases. Although their activity was detected as early as 1981 (1), the first CYP153 was characterized only in 2001 (16). Additional CYP153 enzymes were identified and studied more recently (9, 10, 31). These soluble class II-type three-component P450 enzymes and the AlkB enzymes are the main actors in medium-chain-length alkane hydroxylation by the cultivated bacteria analyzed to date (31). CYP153 monooxygenases have been the subject of biochemical studies (9, 16, 19), and their substrate range has been explored (10, 14). Known substrates include C5 to C11 alkanes. The best-characterized member, CYP153A6, hydroxylates its preferred substrate octane predominantly (>95%) at the terminal position (9).Recent studies have shown that high activities on small alkanes can be obtained by engineering bacterial P450 enzymes such as P450cam (CYP101; camphor hydroxylase) and P450 BM3 (CYP102A; a fatty acid hydroxylase) (8, 36). The resulting enzymes, however, hydroxylate propane and higher alkanes primarily at the more energetically favorable subterminal positions; highly selective terminal hydroxylation is difficult to achieve by engineering a subterminal hydroxylase (22). We wished to determine whether a small-alkane terminal hydroxylase could be obtained instead by directed evolution of a longer-chain alkane hydroxylase that exhibits this desirable regioselectivity. For this study, we chose to engineer AlkB from P. putida GPo1 and CYP153A6 from Mycobacterium sp. strain HXN-1500 (9, 33) to enhance activity on butane. Because terminal alkane hydroxylation is the first step of alkane catabolism in P. putida GPo1, we reasoned that it should be possible to establish an in vivo evolution system that uses growth on small alkanes to select for enzyme variants exhibiting the desired activities.The recombinant host Pseudomonas putida GPo12(pGEc47ΔB) was engineered specifically for complementation studies with terminal alkane hydroxylases and was used previously to characterize members of the AlkB and CYP153 families (26, 31). This strain is a derivative of the natural isolate P. putida GPo1 lacking its endogenous OCT plasmid (octane assimilation) (5) but containing cosmid pGEc47ΔB, which carries all genes comprising the alk machinery necessary for alkane utilization, with the exception of a deleted alkB gene (34). We show that this host can be complemented by a plasmid-encoded library of alkane hydroxylases and that growth of the mixed culture on butane leads to enrichment of novel butane-oxidizing terminal hydroxylases.  相似文献   

11.
12.
13.

Background

Prolyl oligopeptidases (POPs) are proteolytic enzymes, widely distributed in all the kingdoms of life. Bacterial POPs are pharmaceutically important enzymes, yet their functional and evolutionary details are not fully explored. Therefore, current analysis is aimed at understanding the distribution, domain architecture, probable biological functions and gene family expansion of POPs in bacterial and archaeal lineages.

Results

Exhaustive sequence analysis of 1,202 bacterial and 91 archaeal genomes revealed ~3,000 POP homologs, with only 638 annotated POPs. We observed wide distribution of POPs in all the analysed bacterial lineages. Phylogenetic analysis and co-clustering of POPs of different phyla suggested their common functions in all the prokaryotic species. Further, on the basis of unique sequence motifs we could classify bacterial POPs into eight subtypes. Analysis of coexisting domains in POPs highlighted their involvement in protein-protein interactions and cellular signaling. We proposed significant extension of this gene family by characterizing 39 new POPs and 158 new α/β hydrolase members.

Conclusions

Our study reflects diversity and functional importance of POPs in bacterial species. Many genomes with multiple POPs were identified with high sequence variations and different cellular localizations. Such anomalous distribution of POP genes in different bacterial genomes shows differential expansion of POP gene family primarily by multiple horizontal gene transfer events.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-985) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.

Background

Songbirds (oscine Passeriformes) are among the most diverse and successful vertebrate groups, comprising almost half of all known bird species. Identifying the genomic innovations that might be associated with this success, as well as with characteristic songbird traits such as vocal learning and the brain circuits that underlie this behavior, has proven difficult, in part due to the small number of avian genomes available until recently. Here we performed a comparative analysis of 48 avian genomes to identify genomic features that are unique to songbirds, as well as an initial assessment of function by investigating their tissue distribution and predicted protein domain structure.

Results

Using BLAT alignments and gene synteny analysis, we curated a large set of Ensembl gene models that were annotated as novel or duplicated in the most commonly studied songbird, the Zebra finch (Taeniopygia guttata), and then extended this analysis to 47 additional avian and 4 non-avian genomes. We identified 10 novel genes uniquely present in songbird genomes. A refined map of chromosomal synteny disruptions in the Zebra finch genome revealed that the majority of these novel genes localized to regions of genomic instability associated with apparent chromosomal breakpoints. Analyses of in situ hybridization and RNA-seq data revealed that a subset of songbird-unique genes is expressed in the brain and/or other tissues, and that 2 of these (YTHDC2L1 and TMRA) are highly differentially expressed in vocal learning-associated nuclei relative to the rest of the brain.

Conclusions

Our study reveals novel genes unique to songbirds, including some that may subserve their unique vocal control system, substantially improves the quality of Zebra finch genome annotations, and contributes to a better understanding of how genomic features may have evolved in conjunction with the emergence of the songbird lineage.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1082) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.

Background and Aims

Although monocotyledonous plants comprise one of the two major groups of angiosperms and include >65 000 species, comprehensive genome analysis has been focused mainly on the Poaceae (grass) family. Due to this bias, most of the conclusions that have been drawn for monocot genome evolution are based on grasses. It is not known whether these conclusions apply to many other monocots.

Methods

To extend our understanding of genome evolution in the monocots, Asparagales genomic sequence data were acquired and the structural properties of asparagus and onion genomes were analysed. Specifically, several available onion and asparagus bacterial artificial chromosomes (BACs) with contig sizes >35 kb were annotated and analysed, with a particular focus on the characterization of long terminal repeat (LTR) retrotransposons.

Key Results

The results reveal that LTR retrotransposons are the major components of the onion and garden asparagus genomes. These elements are mostly intact (i.e. with two LTRs), have mainly inserted within the past 6 million years and are piled up into nested structures. Analysis of shotgun genomic sequence data and the observation of two copies for some transposable elements (TEs) in annotated BACs indicates that some families have become particularly abundant, as high as 4–5 % (asparagus) or 3–4 % (onion) of the genome for the most abundant families, as also seen in large grass genomes such as wheat and maize.

Conclusions

Although previous annotations of contiguous genomic sequences have suggested that LTR retrotransposons were highly fragmented in these two Asparagales genomes, the results presented here show that this was largely due to the methodology used. In contrast, this current work indicates an ensemble of genomic features similar to those observed in the Poaceae.  相似文献   

18.

Background

Several genomes have now been sequenced, with millions of genetic variants annotated. While significant progress has been made in mapping single nucleotide polymorphisms (SNPs) and small (<10 bp) insertion/deletions (indels), the annotation of larger structural variants has been less comprehensive. It is still unclear to what extent a typical genome differs from the reference assembly, and the analysis of the genomes sequenced to date have shown varying results for copy number variation (CNV) and inversions.

Results

We have combined computational re-analysis of existing whole genome sequence data with novel microarray-based analysis, and detect 12,178 structural variants covering 40.6 Mb that were not reported in the initial sequencing of the first published personal genome. We estimate a total non-SNP variation content of 48.8 Mb in a single genome. Our results indicate that this genome differs from the consensus reference sequence by approximately 1.2% when considering indels/CNVs, 0.1% by SNPs and approximately 0.3% by inversions. The structural variants impact 4,867 genes, and >24% of structural variants would not be imputed by SNP-association.

Conclusions

Our results indicate that a large number of structural variants have been unreported in the individual genomes published to date. This significant extent and complexity of structural variants, as well as the growing recognition of their medical relevance, necessitate they be actively studied in health-related analyses of personal genomes. The new catalogue of structural variants generated for this genome provides a crucial resource for future comparison studies.  相似文献   

19.

Background

Pentastomiasis is a rare zoonotic disease caused by pentastomids. Despite their worm-like appearance, they are commonly placed into a separate sub-class of the subphylum Crustacea, phylum Arthropoda. However, until now, the systematic classification of the pentastomids and the diagnosis of pentastomiasis are immature, and genetic information about pentastomid nylum is almost nonexistent. The objective of this study was to obtain information on pentastomid nymph genes and identify the gene homologues related to host-parasite interactions or stage-specific antigens.

Methodology/Principal Findings

Total pentastomid nymph RNA was used to construct a cDNA library and 500 colonies were sequenced. Analysis shows one hundred and ninety-seven unigenes were identified. In which, 147 genes were annotated, and 75 unigenes (53.19%) were mapped to 82 KEGG pathways, including 29 metabolism pathways, 29 genetic information processing pathways, 4 environmental information processing pathways, 7 cell motility pathways and 5 organismal systems pathways. Additionally, two host-parasite interaction-related gene homologues, a putative Kunitz inhibitor and a putative cysteine protease.

Conclusion/Significance

We first successfully constructed a cDNA library and gained a number of expressed sequence tags (EST) from pentastomid nymphs, which will lay the foundation for the further study on pentastomids and pentastomiasis.  相似文献   

20.

Background

Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs).

Results

The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACON’s utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27 %, while the number of genes without any function assignment is reduced.

Conclusions

We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1826-4) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号