首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It was reported that NhaA, one of sodium/proton antiporters in Escherichia coli, was expressed at alkaline pH [J. Biol. Chem. 266 (1991) 21753]. In disagreement with their results, expression of an nhaA-lacZ fusion gene was found to be very low in an E. coli strain derived from MC4100 within the wide pH range from 5 to 9. When nhaB was deleted, the fusion gene was expressed at pH values below 8, while the expression was observed at alkaline pH after chaA was deleted. The internal level of sodium ions was increased by deletion of nhaA in strains deficient in nhaB and chaA at low and high pH values, respectively. These results suggested that nhaA is induced only when a low level of internal sodium ions is not kept by NhaB and ChaA. Strains used in the previous study may have low active ChaA.  相似文献   

2.
3.
Repair of thermal damage to the Escherichia coli nucleoid.   总被引:4,自引:0,他引:4       下载免费PDF全文
The folded chromosome or nucleoid of Escherichia coli was analyzed by low-speed sedimentation in neutral sucrose gradients after heat treatment (30 min at 50 degrees C) and subsequent incubation of cells at 37 degrees C for various times. Heat treatment resulted in in vivo association of the nucleoids with cellular protein and in an increase in sedimentation coefficient. During incubation at 37 degrees C, a fraction of the nucleoids, from heated cells, because dissociated from cellular protein and regained their characteristic sedimentation coefficients. The percentage of nucleoids which returned to their control sedimentation position in the sucrose gradients corresponded to the percentage of cells able to repair thermal damage as assayed by enumeration on agar plates.  相似文献   

4.
C Kemal  J R Knowles 《Biochemistry》1981,20(13):3688-3695
The interaction of the sulfone of penicillanic acid with the TEM-2 beta-lactamase from Escherichia coli has been investigated as a function of pH between pH 7.0 and 9.6. The first-formed acyl-enzyme suffers one of three fates: deacylation, tautomerization to a bound enamine that transiently inhibited the enzyme, and a process (possibly transimination) that leads to enzyme inactivation. The observed changes in ultraviolet absorbance are consistent with the initially observed product of deacylation being the enamine tautomer (4) of the imine from malonsemialdehyde and penicillamine sulfinate. The same enamine can be generated nonenzymically from the sulfone at high pH. The transiently inhibited enzyme appears to be the same enamine attached to the enzyme by an ester linkage. The rather complex kinetic behavior can be deconvuluted by exploiting the effect of pH on the partitioning of the acyl-enzyme between deacylation and the transiently inhibited form of the enzyme. The pathways followed by penicillanic acid sulfone provide a model for the behavior of a number of other reagents that inactivate the beta-lactamase.  相似文献   

5.
The nonenzymatic reaction between reducing sugars and amino groups of long-lived macromolecules results in an array of chemical modifications that may account for several physiological complications. The characteristics of the reaction are directly related to the type of the reducing sugars involved, whether aldoses or ketoses, phosphorylated or non-phosphorylated, and these in turn determine the consequences of the induced modifications. So far, most studies have been focused on the nonenzymatic reaction between glucose and proteins, while the reaction with fructose, a faster glycating agent, attracted only a minor attention. We have recently demonstrated that long-term fructose consumption induces age-related changes in collagen from skin and cortical bones faster than glucose. In the present study we provide evidence that fructose and its phosphate metabolites can modify DNA faster than glucose and its phosphate metabolites under in vitro conditions. Incubating the plasmid pBR322 with fructose and glucose phosphate metabolites induced DNA modifications and damage that were verified by gel electrophoresis and transformation capacity of the plasmid into an Escherichia coli host. The intensity of the tested sugars to modified and damage DNA after incubation for 15 days increased significantly in the following order: glucose 1-phosphate < glucose < glucose 6-phosphate < fructose 1-phosphate < fructose < fructose 6-phosphate. The data suggest that fructose should deserve more attention as a factor that may influence glycation and induce physiological complications.  相似文献   

6.
1. Several proteins were found to migrate when subjected to free-flow electrophoresis in buffered phenol-ethanediol-water (3:2:3, w/v/v) solvent mixtures. Mobility of these proteins changed with changing pH (apparent) values of this medium. A pH value of zero mobility for each individual protein could be estimated. 2. Founded on these observations, a high-voltage electrophoresis method in free-flowing buffer films was worked out. The method as presented here was particularly suitable for the separation of proteins on a preparative scale. Application of this and other protein fractionation techniques in dissociating media for the investigation of structural and other insoluble proteins was discussed.  相似文献   

7.
Hyaluronic acid (HA) was hydrolyzed using varying temperatures (40, 60, and 80 degrees C) and acid concentrations (0.0010, 0.010, 0.10, 0.50, 1.0, and 2.0 M HCl). The degradation process was monitored by determination of weight average molecular weight ( M w) by size-exclusion chromatography with online multiangle laser light scattering, refractive index, and intrinsic viscosity detectors (SEC-MALLS-RI-visc) on samples taken out continuously during the hydrolysis. SEC-MALLS-RI-visc showed that the degradation gave narrow molecular weight distributions with polydispersity indexes ( M w/ M n) of 1.3-1.7. Kinetic plots of 1/ M w versus time gave linear plots showing that acid hydrolysis of HA is a random process and that it follows a first order kinetics. For hydrolysis in HCl at 60 and 80 degrees C, it was shown that the kinetic rate constant ( k h) for the degradation depended linearly on the acid concentration. Further, the dependence of temperature on the hydrolysis in 0.1 M HCl was found to give a linear Arrhenius plot (ln k h vs 1/ T), with an activation energy ( E a) of 137 kJ/mol and Arrhenius constant ( A) of 7.86 x 10 (15) h (-1). (1)H NMR spectroscopy was used to characterize the product of extensive hydrolysis (48 h at 60 degrees C in 0.1 M HCl). No indication of de- N-acetylation of the N-acetyl glucosamine (GlcNAc) units or other byproducts were seen. Additionally, a low molecular weight HA was hydrolyzed in 0.1 M DCl for 4 h at 80 degrees C. It was shown that it was primarily the beta-(1-->4)-linkage between GlcNAc and glucuronic acid (GlcA) that was cleaved during hydrolysis at pH < p K a,GlcA. The dependence of the hydrolysis rate constant was further studied as a function of pH between -0.3 and 5. The degradation was found to be random (linear kinetic plots) over the entire pH range studied. Further, the kinetic rate constant was found to depend linearly on pH in the region -0.3 to 3. Above this pH (around the p K a of HA), the kinetic constant decreased more slowly, probably due to either a change in polymer conformation or due to an increased affinity for protons due to the polymer becoming charged as the GlcA units dissociated.  相似文献   

8.
Osmotic Reversal of Temperature Sensitivity in Escherichia coli   总被引:3,自引:3,他引:3       下载免费PDF全文
Forty temperature-sensitive mutants, unable to grow on tryptone or nutrient agar at 42 C, were isolated from Escherichia coli K-12. When 0.5% NaCl was added to the medium, 32 grew at the nonpermissive temperature. Several were tested with different amounts of NaCl added to tryptone broth; all grew best when the osmolality of the medium was between 400 and 1,000 milliosmolal. One of the mutants was studied in more detail. Sucrose, inositol, KCl, and MgCl(2), as well as NaCl, permitted growth at 42 C. Glycerol, however, had no effect. When shifted from 30 to 42 C without osmotic protection, the mutant stopped growing but did not lyse, die, or leak significant amounts of intracellular material. In a similar shift experiment, a second mutant leaked all of its trichloroacetic acid-soluble pools into the medium. The majority of the mutants were hypersensitive to certain antibiotics, indicating possible cell envelope defects.  相似文献   

9.
Temperature-Sensitive Osmotic Remedial Mutants of Escherichia coli   总被引:6,自引:4,他引:6       下载免费PDF全文
A collection of temperature-sensitive mutants of Escherichia coli K-12 was examined for ability to grow at the restrictive temperature when the osmotic pressure of the medium was increased. Five of the fourteen mutants were found to be osmotic remedial. Four strains containing temperature-sensitive, osmotic-remedial mutations affecting aminoacyl-transfer ribonucleic acid synthetases were found to have altered permeability characteristics which may be attributable to changes in the lipopolysaccharide layer of the cell envelope at restrictive temperatures.  相似文献   

10.
11.
Kinetic characteristics of light emission by intact cells of the photobacteria Photobacterium phosphoreum and Vibrio harveyi at pH 5.5, 7.0, and 8.0 were studied as well as specific features of inhibitory effects of 2,4-di- and 2,4,5-triphenoxyacetic acids (2,4-D and 2,4,5-T), pentachlorophenol (PCP), and 2,6-dimethylphenol (2,6-DMP) at the same pH values. Nonstationarity of emission kinetics was observed at all the pH values studied. Exponential luminescence decay in a 60-sec range was observed at pH 5.5; a 5-min luminescence activation, at pH 7.0 and 8.0. The cell respiratory activity drops by over one order of magnitude at pH 5.5 compared with the activities at pH 7.0 and 8.0. The inhibitory effects of 2,4-D, 2,4,5-T, and PCP differ by one-two orders of magnitude depending on pH. The maximal cell sensitivity to these compounds appears at pH 5.5; the minimal, at pH 8.0. The effect of 2,6-DMP is independent of pH. As is demonstrated, it is hydrophobicity of the molecule and pK values of the toxicants that determine the inhibitory effect. Characteristic of the substrate-starved photobacterial cells are higher sensitivity to chlorophenolic compounds compared with the cells provided with high energy supply at all the pH values.  相似文献   

12.
Novel acid sensitivity induced in Escherichia coli at alkaline pH   总被引:1,自引:1,他引:0  
Transfer of pH 7.0-grown Escherichia coli to pH 9.0 led to rapid acid sensitivity induction (ASI), the response being fully accomplished within 15 min at 37°C in broth. Only a slight increase in acid sensitivity occurred at pH 8.2 but the response was substantial at pH 8.4 and complete at pH 9.0 with no further sensitization at pH 9.5–10.5. ASI was not prevented by lesions in rpoH, katF, ompR, relA, spoT, fur, phoU, phoM (CreC), phoB/R, unc(atp), phoP or cadA and was unaffected by nalidixic acid, L-leucine or iron starvation or excess. Full acid sensitivity was maintained for at least 2 h after a shift from pH 9.0 back to pH 7.0. ASI did not depend to a major extent on PhoE derepression and increased acid sensitivity of alkali-induced strain C75a ( phoE+ ) probably did not involve use of a new outer membrane proton pore.  相似文献   

13.
We investigated the degree of physiological damage to bacterial cells caused by optical trapping using a 1,064-nm laser. The physiological condition of the cells was determined by their ability to maintain a pH gradient across the cell wall; healthy cells are able to maintain a pH gradient over the cell wall, whereas compromised cells are less efficient, thus giving rise to a diminished pH gradient. The pH gradient was measured by fluorescence ratio imaging microscopy by incorporating a pH-sensitive fluorescent probe, green fluorescent protein or 5(6)-carboxyfluorescein diacetate succinimidyl ester, inside the bacterial cells. We used the gram-negative species Escherichia coli and three gram-positive species, Listeria monocytogenes, Listeria innocua, and Bacillus subtilis. All cells exhibited some degree of physiological damage, but optically trapped E. coli and L. innocua cells and a subpopulation of L. monocytogenes cells, all grown with shaking, showed only a small decrease in pH gradient across the cell wall when trapped by 6 mW of laser power for 60 min. However, another subpopulation of Listeria monocytogenes cells exhibited signs of physiological damage even while trapped at 6 mW, as did B. subtilis cells. Increasing the laser power to 18 mW caused the pH gradient of both Listeria and E. coli cells to decrease within minutes. Moreover, both species of Listeria exhibited more-pronounced physiological damage when grown without shaking than was seen in cells grown with shaking, and the degree of damage is therefore also dependent on the growth conditions.  相似文献   

14.
15.
Escherichia coli tRNAPhe was modified by 3 M sodium bisulphite pH 6.0 for 24 h in the temperature range 25 degrees C (x 5 degrees C) to 55 degrees C and in the absence of added magnesium ions. The sites and extents of conversion of cytidines to uridine occurring at each temperature were determined by fingerprinting. The new sites of cytidine modification found at higher reaction temperatures were assumed to arise from breakage of secondary and tertiary structure hydrogen bonds involving cytidine residues. From these data, we conclude that hydrogen bonds within the 'complex core' of the tRNA (including the base pairs G-10 . C-25, C-11 . G-24 and C-13 . G-21 within the dihydrouridine stem and the tertiary structure base pair G-15 . C-48 melt at a lower temperature than the tertiary structure hydrogen bonds between G-19 in the dihydrouridine loop and C-56 in the TpsiC loop.  相似文献   

16.
17.
In contrast to enzymatic adaptation, osmotic adaption is possible with T4-infected Escherichia coli B cells. After an osmotic shift from 220 mOsM to 690 mOsM the intracellular content of potassium rises in infected cells as well as in uninfected cells. After osmotic shock the involved TrKA transport system shows an increased discrimination against rubidium (Rb+) and for potassium (K+).  相似文献   

18.
19.
In this work alternative media for detection and enumeration of E. coli and coliform bacteria were compared to the reference method ISO 9308-1 (LTTC) using non-disinfected water samples with background flora. The alternative media included LES Endo agar medium (LES Endo), Colilert-18 with 51-well Quanti-tray (Colilert), Chromocult Coliform agar (CC), Harlequin E. coli/Coliform medium (HECM) and Chromogenic Escherichia coli/Coliform medium (CECM). A total of 110 samples of groundwater, bathing water and spiked water was used. Our results revealed that confirmation of coliform bacteria counts is necessary, not only on lactose-based LTTC and LES Endo media, but also on the chromogenic agar media tested, due to the growth of oxidase positive colonies. LTTC and CC media also allowed the growth of some morphologically typical coliform colonies containing gram-positive bacteria. The recovery of coliform bacteria was lower on LES Endo than on LTTC. In most cases Colilert, CC, HECM and CECM gave higher coliform counts than LTTC. The use of the LTTC medium led to higher E. coli counts than obtained with any of the alternative mediums. There are three explanations for this: (1) high sensitivity of LTTC, (2) false positives on LTTC or (3) false negatives especially with Colilert, but also with chromogenic agar media. Although LTTC was found to be a very sensitive medium, the high degree of background growth of non-disinfected waters disturbed substantially the use of it. In conclusion, our results suggest that Colilert, CC and CECM are potential alternative media for detection of coliform bacteria and E. coli from non-disinfected water.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号