首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Although the FEED database focuses on muscle activity patterns, it is equally suitable for other physiological recording and especially for synthesizing different types of information. The present contribution addresses the interaction between muscle activity and ligamentary stretch during mastication. The postorbital ligament is the thickened edge of a septum dividing the orbital contents from the temporal fossa and is continuous with the temporal fascia. As a tensile element, this fascial complex could support the zygomatic arch against the pull of the masseter muscle. An ossified postorbital bar has evolved repeatedly in mammals, enabling resistance to compression and shear in addition to tension. Although such ossification clearly reinforces the skull against muscle pull, the most accepted explanation is that it helps isolate the orbital contents from contractions of the temporalis muscle. However, it has never been demonstrated that the contraction of jaw muscles deforms the unossified ligament. We examined linear deformation of the postorbital ligament in minipigs, Sus scrofa, along with electromyography of the jaw muscles and an assessment of changes in pressure and shape in the temporalis. During chewing, the ligament elongated (average 0.9%, maximum 2.8%) in synchrony with the contraction of the elevator muscles of the jaw. Although the temporalis bulged outward and created substantial pressure against the braincase, the superficial fibers usually retracted caudally, away from the postorbital ligament. In anesthetized animals, stimulating either the temporalis or the masseter muscle in isolation usually elongated the ligament (average 0.4-0.7%). These results confirm that contraction of the masticatory muscles can potentially distort the orbital contents and further suggest that the postorbital ligament does function as a tension member resisting the pull of the masseter on the zygomatic arch.  相似文献   

2.
A case of unilateral enophthalmos in a 1-year-old child is presented. This was caused by a meningoencephalocele that originated in the anterior cranial fossa and protruded into the orbit through a bony defect at the junction of the frontal and ethmoid bones at the site of the anterior ethmoid canal. This meningoencephalocele was reduced, and the dura was repaired with a temporalis fascia graft. A split calvarial bone graft was inserted into the floor of the orbit, and lateral canthal ligament elevation completed the operative correction.  相似文献   

3.
Many adaptive explanations for anthropoid origins incorporate hypotheses regarding the function of the postorbital septum. Two hypotheses are evaluated here: Cachel's ([1979b] Am. J. Phys. Anthropol. 50:1–18) hypothesis that the anthropoid postorbital septum evolved to augment muscle attachment area in the anterior temporal fossa and Cartmill's ([1980] in RL Ciochon and AB Chiarelli (eds.): Evolutionary Biology of the New World Monkeys and Continental Drift. New York: Plenum, pp. 243–274.) hypothesis that the septum evolved to insulate the foveate eye of haplorhines from movements in the temporal fossa during mastication. Dissections of the masticatory muscles of 55 species of primates, with emphasis on the anatomy of the anterior temporal fossa, reveal that in all anthropoids the temporal muscles take origin from the portion of the septum formed by the frontal bone. In some platyrrhines this muscle is anterior temporalis, and in others it is zygomatico-mandibularis. In tarsiers and most platyrrhines, muscle attachment to the zygomatic portion of the postorbital septum is very restricted (and of possibly varying homologies), whereas in catarrhines the zygomatico-mandibularis arises from the postorbital ridge on the zygomatic portion of the septum. This suggests that, contrary to Cachel's hypothesis, the earliest anthropoids did not have extensive areas of muscle attachment on the postorbital septum, a suggestion supported by the bony morphology of Catopithecus browni. Dissections also indicate that in all haplorhines the anteriormost temporal fibers curve around the postorbital septum between origin and insertion, implying that, were the septum not present, the anterior temporal muscles would disturb the orbital contents when contracting. This suggests that insulation may have been the septum's original function, even in the absence of a retinal fovea. In anthropoids, the rostral migration of the line of action of the anterior temporal muscles relative to the eye is attributed to their possession of extreme degrees of both orbital frontation and convergence; in tarsiers it is attributed to their possession of both massively hypertrophied eyes and moderately convergent and frontated orbits. It is argued that the postorbital septum is most likely to have evolved in a morphological context similar to that exhibited by omomyids. © 1995 Wiley-Liss, Inc.  相似文献   

4.
According to the “nocturnal visual predation hypothesis” (NVPH), the convergent eyes and orbits of primates result from selection for improved stereoscopic depth perception to facilitate manual capture of prey at night. Within primates, haplorhines share additional derived orbital morphologies, including a postorbital septum and greater orbital convergence than any other mammalian clade. While the homology and function of the haplorhine septum remain controversial, experimental data suggest that septa evolved to inhibit mechanical disturbance of the orbital contents by the anterior temporalis muscle during mastication. According to this “insulation hypothesis,” haplorhines are particularly susceptible to disruption of the orbital contents because they have large and highly convergent eyes and orbits. However, comparative tests of the insulation hypothesis have been hindered by the morphological uniqueness of the haplorhine septum among mammals. Among birds, owls (Strigiformes) exhibit an expanded postorbital process that may be functionally analogous to the haplorhine septum. Here we present a comparative analysis of orbital morphology in 103 avian species that tests two hypotheses: (1) large, convergent orbits are associated with nocturnal visual predation, and (2) the strigiform postorbital process and haplorhine postorbital septum similarly function to insulate the eyes from contractions of mandibular adductors. Strigiforms, as nocturnal visual predators, possess relatively large orbits and exhibit the highest degree of orbital convergence in our sample. Notably, orbital convergence does not scale with orbit size in birds as in mammals. Owls are also unique among the birds examined in possessing extensive, plate-like postorbital processes that largely isolate the orbits from the temporal fossae. Furthermore, dissections of four owl species demonstrate that the expanded strigiform postorbital process deflects the path of mandibular adductors around the eye's inferolateral margin. These findings provide further comparative support for both the NVPH and the insulation hypothesis.  相似文献   

5.
Anthropoids and tarsiers are distinguished from all other vertebrates by the possession of a postorbital septum, which is formed by the frontal, alisphenoid, and zygomatic bones. Cartmill [(1980) In: Evolutionary Biology of the New World Monkeys and Continental Drift. New York: Plenum, p 243-274] suggested that the postorbital septum evolved in the stem lineage of tarsiers and anthropoids to insulate the eye from movements arising in the temporal fossa. Ross [(1996) Am J Phys Anthropol 91:305-324] suggested that the septum insulates the orbital contents from incursions by the line of action of the anterior temporal muscles caused by the unique combination of high degrees of orbital frontation and convergence. Both of these hypotheses must explain why insulation of the orbital contents could not be achieved by decreasing the size of the anterior temporal musculature with a corresponding increase in size of the remaining jaw adductors, rather than evolving a postorbital septum. One possibility is that the anterior temporalis is an important contributor to vertically directed bite forces during all biting and chewing activities. Another possibility is that reduction in anterior temporal musculature would compromise the ability to produce powerful bite forces, either at the incisors or along the postcanine toothrow. To evaluate these hypotheses, electromyographic (EMG) recordings were made from the masseter muscle and the anterior and posterior portions of the temporalis muscles of two owl monkeys, Aotus trivirgatus. The EMG data indicate that anterior temporalis activity relative to that of the superficial masseter is lower during incision than mastication. In addition, activity of the anterior temporalis is not consistently higher than the posterior temporalis during incision. The data indicate relatively greater activity of anterior temporalis compared to other muscles during isometric biting on the postcanine toothrow. This may be due to decreased activity in superficial masseter and posterior temporalis, rather than elevated anterior temporalis activity. The anterior temporalis is not consistently less variable in activity than the superficial masseter and posterior temporalis. The EMG data gathered here indicate no reason for suggesting that the anterior temporal muscles in anthropoids are utilized especially for incisal preparation of hard fruits. Maintenance of relatively high EMG activity in anterior temporalis across a wide range of biting behaviors is to be expected in a vertically oriented and rostrally positioned muscle such as this because, compared to the posterior temporalis, superficial masseter and medial pterygoid, it can contribute relatively larger vertical components of force to bites along the postcanine toothrow. The in vivo data do not support this hypothesis, possibly because of effects of bite point and bite force orientation.  相似文献   

6.
A postorbital bar is one of a suite of derived features which distinguishes basal primates from their putative sister taxon, plesiadapiforms. Two hypotheses have been put forward to explain postorbital bar development and variation in circumorbital form: the facial torsion model and visual predation hypothesis. To test the facial torsion model, we employ strain data on circumorbital and mandibular loading patterns in representative primates with a postorbital bar and masticatory apparatus similar to basal primates. To examine the visual predation hypothesis, we employ metric data on orbit orientation in Paleocene and Eocene primates, as well as several clades of visual predators and foragers that vary interspecifically in postorbital bar formation.A comparison of galago circumorbital and mandibular peak strains during powerful mastication demonstrates that circumorbital strains are quite low. This indicates that, as in anthropoids, the strepsirhine circumorbital region is excessively overbuilt for countering routine masticatory loads. The fact that circumorbital peak-strain levels are uniformly low in both primate suborders undermines any model which posits that masticatory stresses are determinants of circumorbital form, function and evolution. This is interpreted to mean that sufficient cortical bone must exist to prevent structural failure due to non-masticatory traumatic forces. Preliminary data also indicate that the difference between circumorbital and mandibular strains is greater in larger taxa.Comparative analyses of several extant analogs suggest that the postorbital bar apparently provides rigidity to the lateral orbital margins to ensure a high level of visual acuity during chewing and biting. The origin of the primate postorbital bar is linked to changes in orbital convergence and frontation at smaller sizes due to nocturnal visual predation and increased encephalization. By incorporating in vivo and fossil data, we reformulate the visual predation hypothesis of primate origins and thus offer new insights into major adaptive transformations in the primate skull.  相似文献   

7.
Anthropoids and tarsiers are the only vertebrates possessing a postorbital septum. This septum, formed by the frontal, alisphenoid, and zygomatic bones, separates the orbital contents from the temporal muscles. Three hypotheses suggest that the postorbital septum evolved to resist stresses acting on the skull during mastication or incision. The facial-torsion hypothesis posits that the septum resists twisting of the face about a rostrocaudal axis during unilateral mastication; the transverse-bending hypothesis argues that the septum resists caudally directed forces acting at the lateral orbital margin during mastication or incision; and the tension hypothesis suggests that the septum resists ventrally directed components of masseter muscle force during mastication and incision. This study evaluates these hypotheses using in vitro and in vivo bone strain data recorded from the circumorbital region of owl monkeys. Incisor loading of an owl monkey skull in vitro bends the face upward in the sagittal plane, compressing the interorbital region rostrocaudally and “buckling” the lateral orbital walls. Unilateral loading of the toothrow in vitro also bends the face in the sagittal plane, compressing the interorbital region rostrocaudally and buckling the working side lateral orbital wall. When the lateral orbital wall is partially cut, so as to reduce the width of its attachment to the braincase, the following changes in circumorbital bone strain patterns occur. During loading of the incisors, lower bone strain magnitudes are recorded in the interorbital region and lateral orbital walls. In contrast, during unilateral loading of the P3, higher bone strain magnitudes are observed in the interorbital region, and generally lower bone strain magnitudes are observed in the lateral orbital walls. During unilateral loading of the M2, higher bone strain magnitudes are observed in both the interorbital region and in the lateral orbital wall ipsilateral to the loaded molar. Comparisons of the in vitro results with data gathered in vivo suggest that, during incision and unilateral mastication, the face is subjected to upward bending in the sagittal plane resulting in rostrocaudal compression of the interorbital region. Modeling the lateral orbital walls as curved plates suggests that during mastication the working side wall is buckled due to the dorsally directed component of the maxillary force which causes upward bending of the face in the sagittal plane. The balancing side lateral orbital wall may also be buckled due to upward bending of the face in the sagittal plane as well as being twisted by the caudoventrally directed components of the superficial masseter muscle force. The in vivo data do not exclude the possibility that the postorbital septum functions to improve the structural integrity of the postorbital bar during mastication. However, there is no reason to believe that a more robust postorbital bar could not also perform this function. Hypotheses stating that the postorbital septum originally evolved to reinforce the skull against routine masticatory loads must explain why, rather than evolving a postorbital septum, the stem anthropoids did not simply enlarge their postorbital bars. © 1996 Wiley-Liss, Inc.  相似文献   

8.
We report the use of the temporalis muscle as a transposition flap to obliterate the orbit in 5 patients. In 4 of the cases we split the muscle coronally and passed the anterior part through a window in the lateral orbital wall. In two of these patients, skin grafts were put on both sides of the temporalis muscle-fascia flap, to restore nasal lining and to cover the facial surface simultaneously. In the remaining patients, the muscle was split sagittally to provide a large surface for coverage. The temporalis muscle flap is a versatile one for filling orbits after exenteration.  相似文献   

9.
The mammalian orbit, or eye-socket, is a highly plastic region of the skull. It comprises between seven and nine bones, all of which vary widely in their contribution to this region among the different mammalian orders and families. It is hypothesised that the structure of the mammalian orbit is principally influenced by the forces generated by the jaw-closing musculature. In order to quantify the orbit, fourteen linear, angular and area measurements were taken from 84 species of placental mammals using a Microscribe-3D digitiser. The results were then analysed using principal components analysis. The results of the multivariate analysis on untransformed data showed a clear division of the mammalian taxa into temporalis-dominant forms and masseter-dominant forms. This correlation between orbital structure and masticatory musculature was reinforced by results from the size-corrected data, which showed a separation of the taxa into the three specialised feeding types proposed by Turnbull (1970): i.e. 'carnivore-shear', 'ungulate-grinding' and 'rodent-gnawing'. Moreover, within the rodents there was a clear distinction between species in which the masseter is highly developed and those in which the temporalis has more prominence. These results were reinforced by analysis of variance which showed significant differences in the relative orbital areas of certain bones between temporalis-dominant and masseter-dominant taxa. Subsequent cluster analysis suggested that most of the variables could be grouped into three assemblages: those associated with the length of the rostrum; those associated with the width of the skull; and those associated with the relative size of the orbit and the shape of the face. However, the relative area of the palatine bone showed weak correlations with the other variables and did not fit into any group. Overall the relative area of the palatine was most closely correlated with feeding type, and this measure that appeared to be most strongly associated with the arrangement of the masticatory musculature. These results give a strong indication that, although orbital structure is in part determined by the relative size and orientation of the orbits, the forces generated by the muscles of mastication also have a large effect.  相似文献   

10.
Lee YH  Kim HC  Lee JS  Park WJ 《Plastic and reconstructive surgery》1999,103(4):1129-36; discussion 1137-8
Anophthalmic patients and patients afflicted with retinoblastoma incur severe deformity of the orbit. Treatment of the severely contracted orbit is very difficult, and patient satisfaction is often poor. Since 1988, we have performed temporalis muscle transfer and surgical expansion of the contracted bony orbit in 26 patients. Satisfactory results were obtained. Gradual expansion of the orbit was performed in case of congenital anophthalmic patients. The treatment should be established in multiplicity, among many methods available for contracted eye sockets, according to the degree of orbital deformity and the amount of residual conjunctiva. In case of severe deformity, volume expansion surgery and temporalis muscle transfer are necessary. If augmentation is required in the periorbital region, rib bone onlay graft must be performed. We were able to shorten the operative time by modifying the three-wall orbital expansion technique of Tessier and Wolfe to a more simplified method. Our observations show that our procedures achieved symmetry in both eyes in all patients, and there have been no remarkable complications.  相似文献   

11.
Orbitozygomatic junctions (bony connections between the postorbital and zygomatic processes) and secondary temporal fenestrae have long been known to occur in a few avian species, but no comprehensive study of this phenomenon has ever been published. Having surveyed all non‐passerine and most passerine families, we established that the orbitozygomatic junction evolved 18–20 times independently in Cracidae, Phasianoidea (Odontophoridae and Phasianidae), Gastornis, Columbidae (three times), Pteroclidae (Syrrhaptes), Aptornis, Thinocoridae (Thinocorus), Scolopacidae (possibly twice), Ciconiidae (twice), Brachypteraciidae (Uratelornis), Picidae (Picus spp.), Psittacidae (Melopsittacus), Cacatuidae, and Alaudidae (twice). The junction arises in evolution as a result of either elongation of the two processes that meet at angles or the appearance of a bony cross‐bridge in place of a ligament or aponeurosis. In the first case, the junction is initially non‐adaptive, as indicated by its extreme variation (e.g., in Cracinae and Ciconiidae), and may or may not prove functional as an exaptation. Whenever adaptive, the junction supports an expansion of the adductor mandibulae externus (primarily its pars media). In addition, a rostral extension of the tympanic wing has come to cross the temporal fossa in Strigidae (at least twice) and probably Podargus. Altogether, secondary bony connections across the temporal fossa evolved independently at least 21–23 times in neornithine birds.  相似文献   

12.
A new explanation for the origin of the primate suborder Anthropoidea is presented. Functional analyses of the “forward”-facing orbits, postorbital septum and retinal fovea are used to reconstruct the morphological and ecological contexts in which these features are most likely to have evolved. The postorbital septum is argued to have evolved as an adaptation to protect the orbital contents from encroaching fibers of anterior temporalis. This encroachment resulted from increasing convergence and frontation of the orbital margins in a lineage of small-bodied animals with relatively large eyes. Increasing orbital convergence is hypothesized to have resulted from reduction in relative orbit diameter associated with a shift to diurnality at small body size (<1,300 g). Increased frontation (verticality) of the orbital margins is hypothesized to have been due to rostral displacement of the superior orbital margin or increasing basicranial flexion in a lineage of animals with orbits pushed to the midline below the olfactory tract. Either of these changes would have occurred as a result of increases in neocortex size. Increased neocortical volume is hypothesized to have resulted from a shift to group living associated with a shift to diurnality. Diurnal, visual predation among other vertebrates is commonly associated with possession of a retinal fovea and the haplorhine fovea is hypothesized to have evolved in a similar context. All these features are hypothesized to have evolved in association with a shift from nocturnal to diurnal visual predation of insects at small body size and this adaptive shift is argued to be the defining feature of the anthropoid suborder. The omomyid skull is the best structural antecedent of the anthropoid skull; however, if basal primates exhibited moderate degrees of orbital convergence and frontation, orbits that were closely approximated below the olfactory tract and nocturnal habits, they could easily have given rise to the anthropoid stem species. The presence of a retinal fovea and lack of a tapetum lucidum in extant tarsiers implies that they shared a diurnal ancestry with anthropoids. This suggests that the adaptive explanation for anthropoid origins presented here applies to the origins of the haplorhine stem lineage. © 1996 Wiley-Liss, Inc.  相似文献   

13.
New crania of the Oligocene anthropoidean Aegyptopithecus provide a test of the hypothesized tarsier-anthropoidean clade. Three cranial characters shared by Tarsius and some modern anthropoideans (apical interorbital septum, postorbital septum, "perbullar" carotid pathway) were examined. 1) An apical interorbital septum is absent in Aegyptopithecus. A septum does occur in Galago senegalensis (Lorisidae) and Microcebus murinus (Cheirogaleidae), so the presence of a septum is not strong evidence favoring a tarsiiform-anthropoidean clade. 2) In Aegyptopithecus and other anthropoideans, the postorbital septum is formed mainly by a periorbital flange of the zygomatic that extends medially from the lateral orbital margin onto or near the braincase. The postorbital plate of Tarsius is formed by frontal and alisphenoid flanges that extend laterally from the braincase to the zygomatic's frontal process, which is not broader than the postorbital bars of other prosimians. Periorbital flanges evolved in Tarsius for support or protection of the enormous eyes, as suggested by the occurrence of maxillary and frontal flanges that cup portions of the eye but do not separate it from temporal muscles. 3) The internal carotid artery of Aegyptopithecus enters the bulla posteriorly and crosses the anteroventral part of the promontorium. The tympanic cavity was probably separated from the anteromedial cavity by a septum stretching from the carotid channel to the ventrolateral bullar wall. In Tarsius, the carotid pathway is prepromontorial, and a septum stretches from the carotid channel to the posteromedial bullar wall. Quantitative analyses indicate that anterior carotid position has evolved because of erect head posture. The cranium of Oligocene anthropoideans thus provides no support for the hypothesized tarsier-anthropoidean clade.  相似文献   

14.
Explanations invoking the complex mechanical effects of orbital enlargement in Tarsius have been extended to several areas of the skull, including the conformation of the postorbital septum. The strong cline in the degree of relative orbital enlargement across tarsier species groups presents an unexploited opportunity to test such scenarios. Our goal is to evaluate hypotheses concerning the impact of orbital hypertrophy on the size of specific components of the postorbital region including the frontal, zygomatic, alisphenoid, and maxillary bones. The frontal process is almost always viewed as a functional projection whose bracing role requires a positive morphometric association with orbital hypertrophy. Conversely, the periorbital expansion of the zygomatic is often perceived as functionally unrelated to orbital enlargement and therefore is not expected to track increases in relative orbit size. Interpretations of the alisphenoid and maxillary periorbital processes range from vestigial remnants of once larger structures reduced because of ocular enlargement to structures large in tarsiers because of their functionally relevant role in supporting the enlarged ocular apparatus. We measured these attributes in an extensive sample of 4 tarsier species groups including Tarsius bancanus, T. syrichta, T. spectrum, and T. pumilus. In contrast to proposed functional interpretations, our results indicate that variation in most linear parameters might be better explained by differences in body size than intrageneric differences in orbit size. As expected, width of the zygomatic postorbital contribution does not parallel intrageneric variation in orbit size. However, morphometric relationships between relative orbit size and other parts of the septum are complex but not clearly associated with orbit size differences within Tarsius.  相似文献   

15.
a new elasmosaurid plesiosaur from the Lower Jurassic of southern France   总被引:1,自引:0,他引:1  
Plesiosaurus tournemirensis Sciau, Crochet and Mattei, based on a nearly complete skeleton with skull from the Upper Toarcian (Lower Jurassic) of Tournemire (Aveyron Department, southern France), is here redescribed and reinterpreted. Comparisons with other plesiosaurs indicate that it belongs to a new genus, Occitanosaurus . O. tournemirensis is characterized mainly by its spatulate premaxillae with short facial process, very high postorbital broadly contacting posterior ramus of the maxilla, trapezoidal jugal excluded from orbital margin, orbit diagonally oriented, temporal fenestra with a sigmoidal anterior margin, 43 cervical vertebrae, powerful interclavicle-clavicle complex and coracoids with a pointed protuberance on lateral border and expanded posterolateral cornua. Cranial and cervical vertebra features show that this new genus is undoubtedly a representative of the Elasmosauridae. A preliminary cladistic analysis of long-necked plesiosaurs reveals that, within Elasmosauridae, Occitanosaurus is a close relative of Microcleidus and Muraenosaurus .  相似文献   

16.
Temporal fossa bone grafts: a new technique in craniofacial surgery   总被引:1,自引:0,他引:1  
The calvarium has become an increasingly popular bone-graft donor site. Previously described harvesting techniques are often difficult to perform and may produce unsatisfactory bone fragments. However, full-thickness bone grafts taken from the region of the temporal fossa, beneath the temporaiis muscle, have proven to be of high quality and technically easy to obtain. In our experience with eight patients, temporal fossa bone grafts were used primarily around the orbit, including reconstruction of the orbital floor, frontal bone, and zygoma. The procedure begins with a hemicoronal or bicoronal incision; the temporalis muscle is reflected, and an underlying bone plate up to 4 X 6 cm is removed. The resulting bone graft is consistently 3 to 4 mm in thickness. The cranial defect is packed with bone debris, and the muscle is replaced. This technique has proven to be safe, technically simple, consistently productive of high-quality bone grafts, and within discernible donor-site deformity.  相似文献   

17.
Among primates, nocturnal species exhibit relatively larger orbital apertures than diurnal species. Most researchers have considered this disparity in orbital aperture size to reflect differences in eye size, with nocturnal primates having relatively large eyes in order to maximize visual sensitivity. Presumed changes in eye size due to shifts in activity pattern are an integral part of theoretical explanations for many derived features of anthropoids, including highly convergent orbits and a postorbital septum. Here I show that despite clear differences in relative orbital aperture size, many diurnal and nocturnal primates do not differ in relative eye size. Among nocturnal primates, relative eye size is influenced by diet. Nocturnal visual predators (e.g., Tarsius, Loris, and Galago moholi) tend to have larger relative eye sizes than diurnal primates. By contrast, nocturnal frugivores (e.g., Perodicticus, Nycticebus, and Cheirogaleus) have relative eye sizes that are comparable to those of diurnal primates. Although some variation in orbital aperture size can be attributed to variation in eye size, both cornea size and orbit orientation also exert a strong influence on orbital aperture size. These findings argue for caution in the use of relative orbital aperture size as an indicator of activity pattern in fossil primates. These findings further suggest that existing scenarios for the evolution of unique orbital morphologies in anthropoids must be modified to reflect the importance of ecological variables other than activity pattern.  相似文献   

18.
In birds, the ability to move the upper beak relative to the braincase has been the subject of many functional morphological investigations, but in many instances the adaptive significance of cranial kinesis remains unclear. Alternatively, cranial kinesis may be considered a consequence of the general design of the skull, rather than an adaptive trait as such. The present study reviews some results related to the mechanism and functional significance of cranial kinesis in birds. Quantitative three-dimensional X-ray has shown that in skulls morphologically as divers as paleognaths and neognaths the mechanism for elevation of the upper beak is very similar. One of the mechanisms proposed for avian jaw movement is a mechanical coupling of the upper and the lower jaw movement by the postorbital ligament. Such a mechanical coupling would necessitate upper beak elevation. However, independent control of upper and lower jaw has been shown to occur during beak movements in birds. Moreover, kinematic modeling and force measurements suggests that the maximum extensibility of collagen, in combination with the short distance of the insertion of the postorbital ligament to the quadrato-mandibular articulation do not constitute a block to lower jaw depression. The lower jaw ligaments serve to limit the maximal extension of the mandibula. It is suggested here that cranial kinesis in avian feeding may have evolved as a consequence of an increase in eye size. This increase in size led to a reduction of bony bars in the lateral aspect of the skull enabling the transfer of quadrate movement to the upper jaw. The selective forces favoring the development of a kinetic upper beak in birds may be subtle and act in different ecological contexts. Simultaneous movement of the upper and lower jaw not only increases the velocity of beak movements, but with elevated upper beak also less force is required to open the lower jaw. However, the penalty of increased mobility of elements in a lightweight skull and a large eye is potential instability of skull elements during biting, smaller bite forces and limitations on joint reaction forces. Such a lightly built, kinetic skull may have evolved in animals that feed on small plant material or insects. This type of food does not require the resistance of large external forces on the jaws as in carnivores eating large prey.  相似文献   

19.
A juvenile Australopithecus boisei specimen from the Omo basin, southern Ethiopia, is found to exhibit and extraordinarily large overlap of the temporal squama on the parietal, a phenomenon shared with at least two adult specimens of A. boisei. An attempt is made to interpret the overlap as a structural (bony/ligamentous) adaptation necessitated by the unique combination of certain components of the masticatory system of A. boisei. These are: (1) the massiveness and strength of the temporalis muscle, (2) its relatively anterior location, and (3) the lateral position of the masseter muscle due to the flaring of the zygomatic arches. The effect of the temporalis muscle is to create excessive pressure on the portion of the squamosal suture along the parietal, while the lateral placement of the masseter and the resultant increase of pressure on the temporal squama via the zygomatic arch tend to "loosen" the contact between the temporal and parietal bones.  相似文献   

20.
The recessus lateralis , a complex structure in the otic region of the skull that is probably associated with detection and analysis of small vibrational pressures and displacements, is widely recognized as a synapomorphy of the Clupeiformes. The Clupeiformes includes the Denticipitoidei, with one living species, Denticeps clupeoides , and the Clupeoidei, with about 360 living species commonly known as herrings and anchovies. Comparisons between details of the recessus lateralis of the Clupeoidei and Denticipitoidei, and the sensory cephalic canals of other teleosts, lead to hypotheses of a series of transformations of the cephalic sensory canals . Treating that complex as a single binary 'presence vs. absence' character as was traditional practice obscures important phylogenetically informative variation. Specific synapomorphies in that system exist for the Clupeiformes and the Clupeoidei. Hypothesized synapomorphies in the recessus lateralis for the Clupeiformes are the presence of a dilated internal temporal sensory canal in the pterotic, a postorbital branch of the supraorbital sensory canal located in a bony groove in the lateral wing of the frontal, and the terminal portions of preopercular and infraorbital sensory canals closely positioned. Hypothesized synapomorphies for the Clupeoidei are the presence of a postorbital branch of the supraorbital sensory canal located deep within the body of the lateral wing of the frontal, with the distal portion of that branch totally internal on the cranium, and the expanded distal portion of the postorbital branch of the supraorbital sensory canal. The homology of the sinus temporalis of Clupeoidei, and of the dermosphenotic of both Denticeps and the Clupeoidei, with those of other teleosts is also considered.  © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society , 2004, 141 , 257–270.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号