首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 667 毫秒
1.
A key step for the success of meiosis is programmed homologous recombination, during which crossovers, or exchange of chromosome arms, take place. Crossovers increase genetic diversity but their main function is to ensure accurate chromosome segregation. Defects in crossover number and position produce aneuploidies that represent the main cause of miscarriages and chromosomal abnormalities such as Down's syndrome. Recombination is initiated by the formation of programmed double strand breaks (DSBs), which occur preferentially at places called DSB hotspots. Among all DSBs generated, only a small fraction is repaired by crossover, the other being repaired by other homologous recombination pathways. Crossover maps have been generated in a number of organisms, defining crossover hotspots. With the availability of genome-wide maps of DSBs as well as the ability to measure genetically the repair outcome at several hotspots, it is becoming more and more clear that not all DSB hotspots behave the same for crossover formation, suggesting that chromosomal features distinguish different types of hotspots.  相似文献   

2.
In the baker’s yeast Saccharomyces cerevisiae, most of the meiotic crossovers are generated through a pathway involving the highly conserved mismatch repair related Msh4-Msh5 complex. To understand the role of Msh4-Msh5 in meiotic crossing over, we determined its genome wide in vivo binding sites in meiotic cells. We show that Msh5 specifically associates with DSB hotspots, chromosome axes, and centromeres on chromosomes. A basal level of Msh5 association with these chromosomal features is observed even in the absence of DSB formation (spo11Δ mutant) at the early stages of meiosis. But efficient binding to DSB hotspots and chromosome axes requires DSB formation and resection and is enhanced by double Holliday junction structures. Msh5 binding is also correlated to DSB frequency and enhanced on small chromosomes with higher DSB and crossover density. The axis protein Red1 is required for Msh5 association with the chromosome axes and DSB hotspots but not centromeres. Although binding sites of Msh5 and other pro-crossover factors like Zip3 show extensive overlap, Msh5 associates with centromeres independent of Zip3. These results on Msh5 localization in wild type and meiotic mutants have implications for how Msh4-Msh5 works with other pro-crossover factors to ensure crossover formation.  相似文献   

3.
Meiotic recombination involves the repair of double-strand break (DSB) precursors as crossovers (COs) or noncrossovers (NCOs). The proper number and distribution of COs is critical for successful chromosome segregation and formation of viable gametes. In budding yeast the majority of COs occurs through a pathway dependent on the ZMM proteins (Zip2-Zip3-Zip4-Spo16, Msh4-Msh5, Mer3), which form foci at CO-committed sites. Here we show that the DNA-damage-response kinase Tel1/ATM limits ZMM-independent recombination. By whole-genome mapping of recombination products, we find that lack of Tel1 results in higher recombination and reduced CO interference. Yet the number of Zip3 foci in tel1Δ cells is similar to wild type, and these foci show normal interference. Analysis of recombination in a tel1Δ zip3Δ double mutant indicates that COs are less dependent on Zip3 in the absence of Tel1. Together these results reveal that in the absence of Tel1, a significant proportion of COs occurs through a non-ZMM-dependent pathway, contributing to a CO landscape with poor interference. We also see a significant change in the distribution of all detectable recombination products in the absence of Tel1, Sgs1, Zip3, or Msh4, providing evidence for altered DSB distribution. These results support the previous finding that DSB interference depends on Tel1, and further suggest an additional level of DSB interference created through local repression of DSBs around CO-designated sites.  相似文献   

4.
The unique segregation of homologs, rather than sister chromatids, at the first meiotic division requires the formation of crossovers (COs) between homologs by meiotic recombination in most species. Crossovers do not form at random along chromosomes. Rather, their formation is carefully controlled, both at the stage of formation of DNA double-strand breaks (DSBs) that can initiate COs and during the repair of these DSBs. Here, we review control of DSB formation and two recently recognized controls of DSB repair: CO homeostasis and CO invariance. Crossover homeostasis maintains a constant number of COs per cell when the total number of DSBs in a cell is experimentally or stochastically reduced. Crossover invariance maintains a constant CO density (COs per kb of DNA) across much of the genome despite strong DSB hotspots in some intervals. These recently uncovered phenomena show that CO control is even more complex than previously suspected.  相似文献   

5.
During meiosis in many organisms, homologous chromosomes engage in numerous recombination events initiated by DNA double-strand breaks (DSBs) formed by the Spo11 protein. DSBs are distributed nonrandomly, which governs how recombination influences inheritance and genome evolution. The chromosomal features that shape DSB distribution are not well understood. In the budding yeast Saccharomyces cerevisiae, trimethylation of lysine 4 of histone H3 (H3K4me3) has been suggested to play a causal role in targeting Spo11 activity to small regions of preferred DSB formation called hotspots. The link between H3K4me3 and DSBs is supported in part by a genome-wide spatial correlation between the two. However, this correlation has only been evaluated using relatively low-resolution maps of DSBs, H3K4me3 or both. These maps illuminate chromosomal features that influence DSB distributions on a large scale (several kb and greater) but do not adequately resolve features, such as chromatin structure, that act on finer scales (kb and shorter). Using recent nucleotide-resolution maps of DSBs and meiotic chromatin structure, we find that the previously described spatial correlation between H3K4me3 and DSB hotspots is principally attributable to coincident localization of both to gene promoters. Once proximity to the nucleosome-depleted regions in promoters is accounted for, H3K4me3 status has only modest predictive power for determining DSB frequency or location. This analysis provides a cautionary tale about the importance of scale in genome-wide analyses of DSB and recombination patterns.  相似文献   

6.
Ionizing radiation induces a variety of different DNA lesions; in addition to the most critical DNA damage, the DSB, numerous base alterations, SSBs and other modifications of the DNA double-helix are formed. When several non-DSB lesions are clustered within a short distance along DNA, or close to a DSB, they may interfere with the repair of DSBs and affect the measurement of DSB induction and repair. We have shown previously that a substantial fraction of DSBs measured by pulsed-field gel electrophoresis (PFGE) are in fact due to heat-labile sites within clustered lesions, thus reflecting an artifact of preparation of genomic DNA at elevated temperature. To further characterize the influence of heat-labile sites on DSB induction and repair, cells of four human cell lines (GM5758, GM7166, M059K, U-1810) with apparently normal DSB rejoining were tested for biphasic rejoining after gamma irradiation. When heat-released DSBs were excluded from the measurements, the fraction of fast rejoining decreased to less than 50% of the total. However, the half-times of the fast (t(1/2) = 7-8 min) and slow (t(1/2) = 2.5 h) DSB rejoining were not changed significantly. At t = 0, the heat-released DSBs accounted for almost 40% of the DSBs, corresponding to 10 extra DSBs per cell per Gy in the initial DSB yield. These heat-released DSBs were repaired within 60-90 min in all cells tested, including M059K cells treated with wortmannin and DNA-PKcs-defective M059J cells. Furthermore, cells lacking XRCC1 or poly(ADP-ribose) polymerase 1 (PARP1) rejoined both total DSBs and heat-released DSBs similarly to normal cells. In summary, the presence of heat-labile sites has a substantial impact on DSB induction and DSB rejoining rates measured by pulsed-field gel electrophoresis, and heat-labile sites repair is independent of DNA-PKcs, XRCC1 and PARP.  相似文献   

7.
Scale matters     
During meiosis in many organisms, homologous chromosomes engage in numerous recombination events initiated by DNA double-strand breaks (DSBs) formed by the Spo11 protein. DSBs are distributed nonrandomly, which governs how recombination influences inheritance and genome evolution. The chromosomal features that shape DSB distribution are not well understood. In the budding yeast Saccharomyces cerevisiae, trimethylation of lysine 4 of histone H3 (H3K4me3) has been suggested to play a causal role in targeting Spo11 activity to small regions of preferred DSB formation called hotspots. The link between H3K4me3 and DSBs is supported in part by a genome-wide spatial correlation between the two. However, this correlation has only been evaluated using relatively low-resolution maps of DSBs, H3K4me3 or both. These maps illuminate chromosomal features that influence DSB distributions on a large scale (several kb and greater) but do not adequately resolve features, such as chromatin structure, that act on finer scales (kb and shorter). Using recent nucleotide-resolution maps of DSBs and meiotic chromatin structure, we find that the previously described spatial correlation between H3K4me3 and DSB hotspots is principally attributable to coincident localization of both to gene promoters. Once proximity to the nucleosome-depleted regions in promoters is accounted for, H3K4me3 status has only modest predictive power for determining DSB frequency or location. This analysis provides a cautionary tale about the importance of scale in genome-wide analyses of DSB and recombination patterns.  相似文献   

8.
9.
Meiotic recombination is initiated by DNA double-strand breaks (DSBs) made by Spo11 (Rec12 in fission yeast), which becomes covalently linked to the DSB ends. Like recombination events, DSBs occur at hotspots in the genome, but the genetic factors responsible for most hotspots have remained elusive. Here we describe in fission yeast the genome-wide distribution of meiosis-specific Rec12-DNA linkages, which closely parallel DSBs measured by conventional Southern blot hybridization. Prominent DSB hotspots are located ~65 kb apart, separated by intervals with little or no detectable breakage. Most hotspots lie within exceptionally large intergenic regions. Thus, the chromosomal architecture responsible for hotspots in fission yeast is markedly different from that of budding yeast, in which DSB hotspots are much more closely spaced and, in many regions of the genome, occur at each promoter. Our analysis in fission yeast reveals a clearly identifiable chromosomal feature that can predict the majority of recombination hotspots across a whole genome and provides a basis for searching for the chromosomal features that dictate hotspots of meiotic recombination in other organisms, including humans.  相似文献   

10.
T. C. Wu  M. Lichten 《Genetics》1995,140(1):55-66
Double-strand DNA breaks (DSBs) initiate meiotic recombination in Saccharomyces cerevisiae. DSBs occur at sites that are hypersensitive in nuclease digests of chromatin, suggesting a role for chromatin structure in determining DSB location. We show here that the frequency of DSBs at a site is not determined simply by DNA sequence or by features of chromatin structure. An arg4-containing plasmid was inserted at several different locations in the yeast genome. Meiosis-induced DSBs occurred at similar sites in pBR322-derived portions of the construct at all insert loci, and the frequency of these breaks varied in a manner that mirrored the frequency of meiotic recombination in the arg4 portion of the insert. However, DSBs did not occur in the insert-borne arg4 gene at a site that is frequently broken at the normal ARG4 locus, even though the insert-borne arg4 gene and the normal ARG4 locus displayed similar DNase I hypersensitivity patterns. Deletions that removed active DSB sites from an insert at HIS4 restored breaks to the insert-borne arg4 gene and to a DSB site in flanking chromosomal sequences. We conclude that the frequency of DSB at a site can be affected by sequences several thousands nucleotides away and suggest that this is because of competition between DSB sites for locally limited factors.  相似文献   

11.
12.
Meiotic recombination is initiated by programmed DNA double-strand break (DSB) formation mediated by Spo11. DSBs occur with frequency in chromosomal regions called hot domains but are seldom seen in cold domains. To obtain insights into the determinants of the distribution of meiotic DSBs, we examined the effects of inducing targeted DSBs during yeast meiosis using a UAS-directed form of Spo11 (Gal4BD-Spo11) and a meiosis-specific endonuclease, VDE (PI-SceI). Gal4BD-Spo11 cleaved its target sequence (UAS) integrated in hot domains but rarely in cold domains. However, Gal4BD-Spo11 did bind to UAS and VDE efficiently cleaved its recognition sequence in either context, suggesting that a cold domain is not a region of inaccessible or uncleavable chromosome structure. Importantly, self-association of Spo11 occurred at UAS in a hot domain but not in a cold domain, raising the possibility that Spo11 remains in an inactive intermediate state in cold domains. Integration of UAS adjacent to known DSB hotspots allowed us to detect competitive interactions among hotspots for activation. Moreover, the presence of VDE-introduced DSB repressed proximal hotspot activity, implicating DSBs themselves in interactions among hotspots. Thus, potential sites for Spo11-mediated DSB are subject to domain-specific and local competitive regulations during and after DSB formation.  相似文献   

13.
Telomeres play the key protective role at chromosomes. Many studies indicate that loss of telomere function causes activation of DNA damage response. Here, we review evidence supporting interdependence between telomere maintenance and DNA damage response and present a model in which these two pathways are combined into a single mechanism for protecting chromosomal integrity. Proteins directly involved in telomere maintenance and DNA damage response include Ku, DNA-PKcs, RAD51D, PARP-2, WRN and RAD50/MRE11/NBS1 complex. Since most of these proteins participate in the repair of DNA double-strand breaks (DSBs), this was perceived by many authors as a paradox, given that telomeres function to conceal natural DNA ends from mechanisms that detect and repair DSBs. However, we argue here that the key function of one particular DSB protein, Ku, is to prevent or control access of telomerase, the enzyme that synthesises telomeric sequences, to both internal DSBs and natural chromosomal ends. This view is supported by observations that Ku has a high affinity for DNA ends; it acts as a negative regulator of telomerase and that telomerase itself can target internal DSBs. Ku then directs other DSB repair/telomere maintenance proteins to either repair DSBs at internal chromosomal sites or prevent uncontrolled elongation of telomeres by telomerase. This model eliminates the above paradox and provides a testable scenario in which the role of DSB repair proteins is to protect chromosomal integrity by balancing repair activities and telomere maintenance. In our model, a close association between telomeres and different DNA damage response factors is not an unexpected event, but rather a logical result of chromosomal integrity maintenance activities. Review related to the 15th International Chromosome Conference (ICC XV), held in September 2004, Brunel University, London, UK  相似文献   

14.
Capture of linear fragments at a double-strand break in yeast   总被引:2,自引:0,他引:2  
Double-strand breaks (DSBs) are dangerous chromosomal lesions that must be efficiently repaired in order to avoid loss of genetic information or cell death. In all organisms studied to date, two different mechanisms are used to repair DSBs: homologous recombination (HR) and non-homologous end joining (NHEJ). Previous studies have shown that during DSB repair, non-homologous exogenous DNA (also termed ‘filler DNA’) can be incorporated at the site of a DSB. We have created a genetic system in the yeast Saccharomyces cerevisiae to study the mechanism of fragment capture. Our yeast strains carry recognition sites for the HO endonuclease at a unique chromosomal site, and plasmids in which a LEU2 gene is flanked by HO cut sites. Upon induction of the HO endonuclease, a linear extrachromosomal fragment is generated in each cell and its incorporation at the chromosomal DSB site can be genetically monitored. Our results show that linear fragments are captured at the repaired DSB site at frequencies of 10−6 to 10−4 per plated cell depending on strain background and specific end sequences. The mechanism of fragment capture depends on the NHEJ machinery, but only partially on the homologous recombination proteins. More than one fragment can be used during repair, by a mechanism that relies on the annealing of small complementary sequences. We present a model to explain the basis for fragment capture.  相似文献   

15.
The faithful alignment of homologous chromosomes during meiotic prophase requires the coordination of DNA double-strand break (DSB) repair with large-scale chromosome reorganization. Here we identify the phosphatase PP4 (Pph3/Psy2) as a mediator of this process in Saccharomyces cerevisiae. In pp4 mutants, early stages of crossover repair and homology-independent pairing of centromeres are coordinately blocked. We traced the loss of centromere pairing to the persistent phosphorylation of the chromosomal protein Zip1 on serine 75. Zip1-S75 is a consensus site for the ATR-like checkpoint kinase Mec1, and centromere pairing is restored in mec1 mutants. Importantly, Zip1-S75 phosphorylation does not alter chromosome synapsis or DSB repair, indicating that Mec1 separates centromere pairing from the other functions of Zip1. The centromeric localization and persistent activity of PP4 during meiotic prophase suggest a model whereby Zip1-S75 phosphorylation dynamically destabilizes homology-independent centromere pairing in response to recombination initiation, thereby coupling meiotic chromosome dynamics to DSB repair.  相似文献   

16.
For most organisms, chromosome segregation during meiosis relies on deliberate induction of DNA double-strand breaks (DSBs) and repair of a subset of these DSBs as inter-homolog crossovers (COs). However, timing and levels of DSB formation must be tightly controlled to avoid jeopardizing genome integrity. Here we identify the DSB-2 protein, which is required for efficient DSB formation during C. elegans meiosis but is dispensable for later steps of meiotic recombination. DSB-2 localizes to chromatin during the time of DSB formation, and its disappearance coincides with a decline in RAD-51 foci marking early recombination intermediates and precedes appearance of COSA-1 foci marking CO-designated sites. These and other data suggest that DSB-2 and its paralog DSB-1 promote competence for DSB formation. Further, immunofluorescence analyses of wild-type gonads and various meiotic mutants reveal that association of DSB-2 with chromatin is coordinated with multiple distinct aspects of the meiotic program, including the phosphorylation state of nuclear envelope protein SUN-1 and dependence on RAD-50 to load the RAD-51 recombinase at DSB sites. Moreover, association of DSB-2 with chromatin is prolonged in mutants impaired for either DSB formation or formation of downstream CO intermediates. These and other data suggest that association of DSB-2 with chromatin is an indicator of competence for DSB formation, and that cells respond to a deficit of CO-competent recombination intermediates by prolonging the DSB-competent state. In the context of this model, we propose that formation of sufficient CO-competent intermediates engages a negative feedback response that leads to cessation of DSB formation as part of a major coordinated transition in meiotic prophase progression. The proposed negative feedback regulation of DSB formation simultaneously (1) ensures that sufficient DSBs are made to guarantee CO formation and (2) prevents excessive DSB levels that could have deleterious effects.  相似文献   

17.
Meiotic recombination is initiated by large numbers of developmentally programmed DNA double-strand breaks (DSBs), ranging from dozens to hundreds per cell depending on the organism. DSBs formed in single-copy sequences provoke recombination between allelic positions on homologous chromosomes, but DSBs can also form in and near repetitive elements such as retrotransposons. When they do, they create a risk for deleterious genome rearrangements in the germ line via recombination between non-allelic repeats. A prior study in budding yeast demonstrated that insertion of a Ty retrotransposon into a DSB hotspot can suppress meiotic break formation, but properties of Ty elements in their most common physiological contexts have not been addressed. Here we compile a comprehensive, high resolution map of all Ty elements in the rapidly and efficiently sporulating S. cerevisiae strain SK1 and examine DSB formation in and near these endogenous retrotransposable elements. SK1 has 30 Tys, all but one distinct from the 50 Tys in S288C, the source strain for the yeast reference genome. From whole-genome DSB maps and direct molecular assays, we find that DSB levels and chromatin structure within and near Tys vary widely between different elements and that local DSB suppression is not a universal feature of Ty presence. Surprisingly, deletion of two Ty elements weakened adjacent DSB hotspots, revealing that at least some Ty insertions promote rather than suppress nearby DSB formation. Given high strain-to-strain variability in Ty location and the high aggregate burden of Ty-proximal DSBs, we propose that meiotic recombination is an important component of host-Ty interactions and that Tys play critical roles in genome instability and evolution in both inbred and outcrossed sexual cycles.  相似文献   

18.
During the first meiotic division, crossovers (COs) between homologous chromosomes ensure their correct segregation. COs are produced by homologous recombination (HR)-mediated repair of programmed DNA double strand breaks (DSBs). As more DSBs are induced than COs, mechanisms are required to establish a regulated number of COs and to repair remaining intermediates as non-crossovers (NCOs). We show that the Caenorhabditis elegans RMI1 homolog-1 (RMH-1) functions during meiosis to promote both CO and NCO HR at appropriate chromosomal sites. RMH-1 accumulates at CO sites, dependent on known pro-CO factors, and acts to promote CO designation and enforce the CO outcome of HR-intermediate resolution. RMH-1 also localizes at NCO sites and functions in parallel with SMC-5 to antagonize excess HR-based connections between chromosomes. Moreover, RMH-1 also has a major role in channeling DSBs into an NCO HR outcome near the centers of chromosomes, thereby ensuring that COs form predominantly at off-center positions.  相似文献   

19.
Meiotic recombination is initiated by the formation of programmed DNA double-strand breaks (DSBs) catalyzed by the Spo11 protein. DSBs are not randomly distributed along chromosomes. To better understand factors that control the distribution of DSBs in budding yeast, we have examined the genome-wide binding and cleavage properties of the Gal4 DNA binding domain (Gal4BD)-Spo11 fusion protein. We found that Gal4BD-Spo11 cleaves only a subset of its binding sites, indicating that the association of Spo11 with chromatin is not sufficient for DSB formation. In centromere-associated regions, the centromere itself prevents DSB cleavage by tethered Gal4BD-Spo11 since its displacement restores targeted DSB formation. In addition, we observed that new DSBs introduced by Gal4BD-Spo11 inhibit surrounding DSB formation over long distances (up to 60 kb), keeping constant the number of DSBs per chromosomal region. Together, these results demonstrate that the targeting of Spo11 to new chromosomal locations leads to both local stimulation and genome-wide redistribution of recombination initiation and that some chromosomal regions are inherently cold regardless of the presence of Spo11.  相似文献   

20.
Haring SJ  Halley GR  Jones AJ  Malone RE 《Genetics》2003,165(1):101-114
This study addresses three questions about the properties of recombination hotspots in Saccharomyces cerevisiae: How much DNA is required for double-strand-break (DSB) site recognition? Do naturally occurring DSB sites compete with each other in meiotic recombination? What role does the sequence located at the sites of DSBs play? In S. cerevisiae, the HIS2 meiotic recombination hotspot displays a high level of gene conversion, a 3''-to-5'' conversion gradient, and two DSB sites located approximately 550 bp apart. Previous studies of hotspots, including HIS2, suggest that global chromosome structure plays a significant role in recombination activity, raising the question of how much DNA is sufficient for hotspot activity. We find that 11.5 kbp of the HIS2 region is sufficient to partially restore gene conversion and both DSBs when moved to another yeast chromosome. Using a variety of different constructs, studies of hotspots have indicated that DSB sites compete with one another for DSB formation. The two naturally occurring DSBs at HIS2 afforded us the opportunity to examine whether or not competition occurs between these native DSB sites. Small deletions of DNA at each DSB site affect only that site; analyses of these deletions show no competition occurring in cis or in trans, indicating that DSB formation at each site at HIS2 is independent. These small deletions significantly affect the frequency of DSB formation at the sites, indicating that the DNA sequence located at a DSB site can play an important role in recombination initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号