首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transforming growth factor beta (TGFbeta) plays an important role in cell growth and differentiation. However, the intracellular signaling pathways through which TGFbeta inhibits skeletal myogenesis remain largely undefined. By measuring GTP-loading of Rho GTPases and the organization of the F-actin cytoskeleton and the plasma membrane, we analyzed the effect of TGFbeta addition on the activity of three GTPases, Rac1, Cdc42Hs and RhoA. We report that TGFbeta activates Rac1 and Cdc42Hs in skeletal muscle cells, two GTPases previously described to inhibit skeletal muscle cell differentiation whereas it inactivates RhoA, a positive regulator of myogenesis. We further show that TGFbeta activates the C-jun N-terminal kinases (JNK) pathway in myoblastic cells through Rac1 and Cdc42Hs GTPases. We propose that the activation of Rho family proteins Rac1 and Cdc42Hs which subsequently regulate JNK activity participates in the inhibition of myogenesis by TGFbeta.  相似文献   

2.
Integrin-mediated adhesion is a critical regulator of cell migration. Here we demonstrate that integrin-mediated adhesion to high fibronectin concentrations induces a stop signal for cell migration by inhibiting cell polarization and protrusion. On fibronectin, the stop signal is generated through alpha 5 beta 1 integrin-mediated signaling to the Rho family of GTPases. Specifically, Cdc42 and Rac1 activation exhibits a biphasic dependence on fibronectin concentration that parallels optimum cell polarization and protrusion. In contrast, RhoA activity increases with increasing substratum concentration. We find that cross talk between Cdc42 and Rac1 is required for substratum-stimulated protrusion, whereas RhoA activity is inhibitory. We also show that Cdc42 activity is inhibited by Rac1 activation, suggesting that Rac1 activity may down-regulate Cdc42 activity and promote the formation of stabilized rather than transient protrusion. Furthermore, expression of RhoA down-regulates Cdc42 and Rac1 activity, providing a mechanism whereby RhoA may inhibit cell polarization and protrusion. These findings implicate adhesion-dependent signaling as a mechanism to stop cell migration by regulating cell polarity and protrusion via the Rho family of GTPases.  相似文献   

3.
The Rho family of GTP-binding proteins plays a critical role in a variety of cellular processes, including cytoskeletal reorganization and activation of kinases such as p38 and C-jun N-terminal kinase (JNK) MAPKs. We report here that dominant negative forms of Rac1 and Cdc42Hs inhibit the expression of the muscle-specific genes myogenin, troponin T, and myosin heavy chain in L6 and C2 myoblasts. Such inhibition correlates with decreased p38 activity. Active RhoA, RhoG, Rac1, and Cdc42Hs also prevent myoblast-to-myotube transition but affect distinct stages: RhoG, Rac1, and Cdc42Hs inhibit the expression of all muscle-specific genes analyzed, whereas active RhoA potentiates their expression but prevents the myoblast fusion process. We further show by two different approaches that the inhibitory effects of active Rac1 and Cdc42Hs are independent of their morphogenic activities. Rather, myogenesis inhibition is mediated by the JNK pathway, which also leads to a cytoplasmic redistribution of Myf5. We propose that although Rho proteins are required for the commitment of myogenesis, they differentially influence this process, positively for RhoA and Rac1/Cdc42Hs through the activation of the SRF and p38 pathways, respectively, and negatively for Rac1/Cdc42Hs through the activation of the JNK pathway.  相似文献   

4.
5.
BACKGROUND: The ability of a cell to polarize and move is governed by remodeling of the cellular adhesion/cytoskeletal network that is in turn controlled by the Rho family of small GTPases. However, it is not known what signals lie downstream of Rac1 and Cdc42 during peripheral actin and adhesion remodeling that is required for directional migration. RESULTS: We show here that individual members of the Rho family, RhoA, Rac1, and Cdc42, direct the specific intracellular targeting of c-Src tyrosine kinase to focal adhesions, lamellipodia, or filopodia, respectively, and that the adaptor function of c-Src (the combined SH3/SH2 domains coupled to green fluorescent protein) is sufficient for targeting. Furthermore, Src's catalytic activity is absolutely required at these peripheral cell-matrix attachment sites for remodeling that converts RhoA-dependent focal adhesions into smaller focal complexes along Rac1-induced lamellipodia (or Cdc42-induced filopodia). Consequently, cells in which kinase-deficient c-Src occupies peripheral adhesion sites exhibit impaired polarization toward migratory stimuli and reduced motility. Furthermore, phosphorylation of FAK, an Src adhesion substrate, is suppressed under these conditions. CONCLUSIONS: Our findings demonstrate that individual Rho GTPases specify Src's exact peripheral localization and that Rac1- and Cdc42-induced adhesion remodeling and directed cell migration require Src activity at peripheral adhesion sites.  相似文献   

6.
7.
Both amidated gastrin (Gamide) and glycine-extended gastrin (Ggly) stimulate gastrointestinal cell proliferation and migration. Binding of Gamide to the cholecystokinin-2 receptor activates small GTP-binding proteins of the Rho family (Rho, Rac, and Cdc42), and dominant-negative mutants of Rho or Cdc42 block Gamide-stimulated cell proliferation and survival. In comparison, little is known about the Ggly signaling transduction pathway leading to cell proliferation and migration. The present study examined the roles of the small G proteins Rho, Rac, and Cdc42 in Ggly-induced proliferation and migration of the mouse gastric epithelial cell line IMGE-5. Ggly stimulated the activation of Rho and its downstream effector protein ROCK. The activation of Rho and ROCK mediated Ggly-induced cell proliferation and migration as inhibition of Rho by C3, or ROCK by Y-27632, completely blocked these effects of Ggly. Ggly also stimulated tyrosine phosphorylation of focal adhesion kinase, and stimulation was reversed by addition of C3 and Y-27632. In contrast to the effects of Rho and ROCK, inhibition of the Rac or Cdc42 pathways by expression of dominant-negative mutants of Rac or Cdc42 did not affect Ggly-induced cell proliferation and migration. These results demonstrate that Ggly stimulates IMGE-5 cell proliferation and migration through a Rho/ROCK-dependent pathway but not via Rac- or Cdc42-dependent pathways.  相似文献   

8.
9.
Involvement of Cdc42 signaling in apoA-I-induced cholesterol efflux   总被引:2,自引:0,他引:2  
Cholesterol efflux, an important mechanism by which high density lipoproteins (HDL) protect against atherosclerosis, is initiated by docking of apolipoprotein A-I (apoA-I), a major HDL protein, to specific binding sites followed by activation of ATP-binding cassette transporter A1 (ABCA1) and translocation of cholesterol from intracellular compartments to the exofacial monolayer of the plasma membrane where it is accessible to HDL. In this report, we investigated potential signal transduction pathways that may link apoA-I binding to cholesterol translocation to the plasma membrane and cholesterol efflux. By using pull-down assays we found that apoA-I substantially increased the amount of activated Cdc42, Rac1, and Rho in human fibroblasts. Moreover, apoA-I induced actin polymerization, which is known to be controlled by Rho family G proteins. Inhibition of Cdc42 and Rac1 with Clostridium difficile toxin B inhibited apoA-I-induced cholesterol efflux, whereas inhibition of Rho with Clostridium botulinum C3-exoenzyme exerted opposite effects. Adenoviral expression of a Cdc42(T17N) dominant negative mutant substantially reduced apoA-I-induced cholesterol efflux, whereas dominant negative Rac1(T17N) had no effect. We further found that two downstream effectors of Cdc42/Rac1 signaling, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), are activated by apoA-I. Pharmacological inhibition of JNK but not p38 MAPK decreased apoA-I-induced cholesterol efflux, whereas anisomycin and hydrogen peroxide, two direct JNK activators, could partially substitute for apoA-I in its ability to induce cholesterol efflux. These results for the first time demonstrate activation of Rho family G proteins and stress kinases by apoA-I and implicate the involvement of Cdc42 and JNK in the apoA-I-induced cholesterol efflux.  相似文献   

10.
Fibroblast proliferation and migration play important roles in wound healing. bFGF is known to promote both fibroblast proliferation and migration during the process of wound healing. However, the signal transduction of bFGF-induced fibroblast migration is still unclear, because bFGF can affect both proliferation and migration. Herein, we investigated the effect of bFGF on fibroblast migration regardless of its effect on fibroblast proliferation. We noticed involvement of the small GTPases of the Rho family, PI3-kinase, and JNK. bFGF activated RhoA, Rac1, PI3-kinase, and JNK in cultured fibroblasts. Inhibition of RhoA did not block bFGF-induced fibroblast migration, whereas inhibition of Rac1, PI3-kinase, or JNK blocked the fibroblast migration significantly. PI3-kinase-inhibited cells down-regulated the activities of Rac1 and JNK, and Rac1-inhibited cells down-regulated JNK activity, suggesting that PI3-kinase is upstream of Rac1 and that JNK is downstream of Rac1. Thus, we concluded that PI3-kinase, Rac1, and JNK were essential for bFGF-induced fibroblast migration, which is a novel pathway of bFGF-induced cell migration.  相似文献   

11.
Rho GTPases参与调控细胞的多种关键生物学行为,特别是细胞的生长、细胞骨架的形成、转录调节等生物学过程. 在肿瘤的发生发展中Rho GTPases也扮演了重要的角色.本文将回顾Rho GTPases的调控(包括经典及非经典调控方式)及其关键成员(RhoA、Cdc42及Rac1)与临床肿瘤的研究进展,特别是它们参与调控肿瘤的增殖、迁移、侵袭、凋亡等恶性生物学行为,从而为研发靶向Rho GTPases的小分子/基因药物了奠定基础.  相似文献   

12.
N-cadherin, a member of the Ca(2+)-dependent cell-cell adhesion molecule family, plays an essential role in skeletal muscle cell differentiation. We show that inhibition of N-cadherin-dependent adhesion impairs the upregulation of the two cyclin-dependent kinase inhibitors p21 and p27, the expression of the muscle-specific genes myogenin and troponin T, and C2C12 myoblast fusion. To determine the nature of N-cadherin-mediated signals involved in myogenesis, we investigated whether N-cadherin-dependent adhesion regulates the activity of Rac1, Cdc42Hs, and RhoA. N-cadherin-dependent adhesion decreases Rac1 and Cdc42Hs activity, and as a consequence, c-jun NH2-terminal kinase (JNK) MAPK activity but not that of the p38 MAPK pathway. On the other hand, N-cadherin-mediated adhesion increases RhoA activity and activates three skeletal muscle-specific promoters. Furthermore, RhoA activity is required for beta-catenin accumulation at cell-cell contact sites. We propose that cell-cell contacts formed via N-cadherin trigger signaling events that promote the commitment to myogenesis through the positive regulation of RhoA and negative regulation of Rac1, Cdc42Hs, and JNK activities.  相似文献   

13.
A Role for Cdc42 in Macrophage Chemotaxis   总被引:26,自引:0,他引:26       下载免费PDF全文
Three members of the Rho family, Cdc42, Rac, and Rho are known to regulate the organization of actin-based cytoskeletal structures. In Bac1.2F5 macrophages, we have shown that Rho regulates cell contraction, whereas Rac and Cdc42 regulate the formation of lamellipodia and filopodia, respectively. We have now tested the roles of Cdc42, Rac, and Rho in colony stimulating factor-1 (CSF-1)–induced macrophage migration and chemotaxis using the Dunn chemotaxis chamber. Microinjection of constitutively activated RhoA, Rac1, or Cdc42 inhibited cell migration, presumably because the cells were unable to polarize significantly in response to CSF-1. Both Rho and Rac were required for CSF-1–induced migration, since migration speed was reduced to background levels in cells injected with C3 transferase, an inhibitor of Rho, or with the dominant-negative Rac mutant, N17Rac1. In contrast, cells injected with the dominant-negative Cdc42 mutant, N17Cdc42, were able to migrate but did not polarize in the direction of the gradient, and chemotaxis towards CSF-1 was abolished.

We conclude that Rho and Rac are required for the process of cell migration, whereas Cdc42 is required for cells to respond to a gradient of CSF-1 but is not essential for cell locomotion.

  相似文献   

14.
15.
Rho GTPases are key transducers of integrin/extracellular matrix and growth factor signaling. Although integrin-mediated adhesion and trophic support suppress neuronal apoptosis, the role of Rho GTPases in neuronal survival is unclear. Here, we have identified Rac as a critical pro-survival GTPase in cerebellar granule neurons (CGNs) and elucidated a death pathway triggered by its inactivation. GTP-loading of Rac1 was maintained in CGNs by integrin-mediated (RGD-dependent) cell attachment and trophic support. Clostridium difficile toxin B (ToxB), a specific Rho family inhibitor, induced a selective caspase-mediated degradation of Rac1 without affecting RhoA or Cdc42 protein levels. Both ToxB and dominant-negative N17Rac1 elicited CGN apoptosis, characterized by cytochrome c release and activation of caspase-9 and -3, whereas dominant-negative N19RhoA or N17Cdc42 did not cause significant cell death. ToxB stimulated mitochondrial translocation and conformational activation of Bax, c-Jun activation, and induction of the BH3-only protein Bim. Similarly, c-Jun activation and Bim induction were observed with N17Rac1. A c-jun N-terminal protein kinase (JNK)/p38 inhibitor, SB203580, and a JNK-specific inhibitor, SP600125, significantly decreased ToxB-induced Bim expression and blunted each subsequent step of the apoptotic cascade. These results indicate that Rac acts downstream of integrins and growth factors to promote neuronal survival by repressing c-Jun/Bim-mediated mitochondrial apoptosis.  相似文献   

16.
Mycoplasma fermentans lipoproteins (LAMPf) are capable of activating macrophages and inducing the secretion of proinflammatory cytokines. We have recently reported that mitogen-activated protein kinase (MAPK) pathways and NF-kappaB and activated protein 1 (AP-1) play a crucial role in the activation induced by this bacterial compound. To further elucidate the mechanisms by which LAMPf mediate the activation of macrophages, we assessed the effects of inhibiting small G proteins Rac, Cdc42, and Rho. The Rho-specific inhibitor C3 enzyme completely abolished the secretion of tumor necrosis factor alpha by macrophages stimulated with LAMPf and also inhibited the activation of extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), and p38 kinase. In addition, we have shown that LAMPf stimulate Cdc42 and that inhibition of Cdc42 or Rac by dominant negative mutants abrogates LAMPf-mediated activation of JNK and transactivation of NF-kappaB and AP-1 in the murine macrophage cell line RAW 264.7. These results indicate that small G proteins Rho, Cdc42, and Rac are involved in the cascade of events leading to the macrophage activation by mycoplasma lipoproteins.  相似文献   

17.
The rapid migration of intestinal epithelial cells is important to the healing of mucosal ulcers and wounds. This cell migration requires the presence of polyamines and the activation of RhoA. RhoA activity, however, is not sufficient for migration because polyamine depletion inhibited the migration of IEC-6 cells expressing constitutively active RhoA. The current study examines the role of Rac1 and Cdc42 in cell migration and whether their activities are polyamine-dependent. Polyamine depletion with alpha-difluoromethylornithine inhibited the activities of RhoA, Rac1, and Cdc42. This inhibition was prevented by supplying exogenous putrescine in the presence of alpha-difluoromethylornithine. IEC-6 cells transfected with constitutively active Rac1 and Cdc42 migrated more rapidly than vector-transfected cells, whereas cells expressing dominant negative Rac1 and Cdc42 migrated more slowly. Polyamine depletion had no effect on the migration of cells expressing Rac1 and only partially inhibited the migration of those expressing Cdc42. Although polyamine depletion caused the disappearance of actin stress fibers in cells transfected with empty vector, it had no effect on cells expressing Rac1. Constitutively active Rac1 increased RhoA and Cdc42 activity in both normal and polyamine-depleted cells. These results demonstrate that Rac1, RhoA, and Cdc42 are required for optimal epithelial cell migration and that Rac1 activity is sufficient for cell migration in the absence of polyamines due to its ability to activate RhoA and Cdc42 as well as its own effects on the process of cell migration. These data imply that the involvement of polyamines in cell migration occurs either at Rac1 itself or upstream from Rac1.  相似文献   

18.
The generation, maturation, and function of dendritic cells (DC) have been shown to be markedly compromised in the tumor microenvironment in animals and humans. However, the molecular mechanisms and intracellular pathways involved in the regulation of the DC system in cancer are not yet fully understood. Recently, we have reported on the role of the small Rho GTPase family members Cdc42, Rac1, and RhoA in regulating DC adherence, motility, and Ag presentation. To investigate involvement of small Rho GTPases in dysregulation of DC function by tumors, we next evaluated how Cdc42, Rac1, and RhoA regulated endocytic activity of DC in the tumor microenvironment. We revealed a decreased uptake of dextran 40 and polystyrene beads by DC generated in the presence of different tumor cell lines, including RM1 prostate, MC38 colon, 3LL lung, and B7E3 oral squamous cell carcinomas in vitro and by DC prepared from tumor-bearing mice ex vivo. Impaired endocytic activity of DC cocultured with tumor cells was associated with decreased levels of active Cdc42 and Rac1. Transduction of DC with the dominant negative Cdc42 and Rac1 genes also led to reduced phagocytosis and receptor-mediated endocytosis. Furthermore, transduction of DC with the constitutively active Cdc42 and Rac1 genes restored endocytic activity of DC that was inhibited by the tumors. Thus, our results suggest that tumor-induced dysregulation of endocytic activity of DC is mediated by reduced activity of several members of the small Rho GTPase family, which might serve as new targets for improving the efficacy of DC vaccines.  相似文献   

19.
Cell adhesion to extracellular matrix is an important physiological stimulus for organization of the actin-based cytoskeleton. Adhesion to the matrix glycoprotein thrombospondin-1 (TSP-1) triggers the sustained formation of F-actin microspikes that contain the actin-bundling protein fascin. These structures are also implicated in cell migration, which may be an important function of TSP-1 in tissue remodelling and wound repair. To further understand the function of fascin microspikes, we examined whether their assembly is regulated by Rho family GTPases. We report that expression of constitutively active mutants of Rac or Cdc42 triggered localization of fascin to lamellipodia, filopodia, and cell edges in fibroblasts or myoblasts. Biochemical assays demonstrated prolonged activation of Rac and Cdc42 in C2C12 cells adherent to TSP-1 and activation of the downstream kinase p21-activated kinase (PAK). Expression of dominant-negative Rac or Cdc42 in C2C12 myoblasts blocked spreading and formation of fascin spikes on TSP-1. Spreading and spike assembly were also blocked by pharmacological inhibition of F-actin turnover. Shear-loading of monospecific anti-fascin immunoglobulins, which block the binding of fascin to actin into cytoplasm, strongly inhibited spreading, actin cytoskeletal organization and migration on TSP-1 and also affected the motility of cells on fibronectin. We conclude that fascin is a critical component downstream of Rac and Cdc42 that is needed for actin cytoskeletal organization and cell migration responses to thrombospondin-1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号