首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 342 毫秒
1.
The parameters of the electrode region of an electrode microwave discharge in nitrogen are studied by emission spectroscopy. The radial and axial distributions of the intensities of the bands of the second (N2(C 3Π u B 3Π g )) and first (N2(B 3Π g A 3Σ u + )) positive systems of molecular nitrogen and the first negative system of nitrogen ions (N 2 + (B 2Σ u + X 2Σ g + )), the radial profiles of the electric field E and the electron density N e , and the absolute populations of the vibrational levels v C = 0–4 of the C 3Π u excited state of N2 and the vibrational level v Bi = 0 of the B 2Σ u + excited state of a molecular nitrogen ion are determined. The population temperature of the first vibrational level T V of the ground electronic state X 1Σ g + of N2 and the excitation temperature T C of the C 3Π u state in the electrode region of the discharge are measured. The radius of the spherical region and the spatially integrated plasma emission spectra are studied as functions of the incident microwave power and gas pressure. A method for determining the electron density and the microwave field strength from the plasma emission characteristics is described in detail.  相似文献   

2.
In a single-barrier discharge with voltage sharpening and low gas consumption (up to 1 L/min), plane atmospheric pressure plasma jets with a width of up to 3 cm and length of up to 4 cm in air are formed in the slit geometry of the discharge zone. The energy, temperature, and spectral characteristics of the obtained jets have been measured. The radiation spectrum contains intense maxima corresponding to vibrational transitions of the second positive system of molecular nitrogen N2 (C3Π u B3Π g ) and comparatively weak transition lines of the first positive system of the N 2 + ion (B2Σ u + X2Σ g ). By an example of inactivation of the Staphylococcus aureus culture (strain ATCC 209), it is shown that plasma is a source of chemically active particles providing the inactivation of microorganisms.  相似文献   

3.
The applicability of emission of the N 3Λσ triplet states of molecular hydrogen for spectral diagnostics of the positive column of a dc glow discharge in hydrogen at translational gas temperatures of 360–600 K, specific absorbed powers of 0.8–4.25 W/cm, gas pressures of p = 0.3–15.0 Torr, reduced fields of E/N = 30–130 Td, and electron densities of n e = 4.0 × 109–6.5 × 1010 cm–3 is analyzed by using an advanced level-based semi-empirical collisional?radiative model. It is found that secondary processes make the main contribution to the population and decay of the N 3Λσ = a 3Σ+ g , c 3Π u , g 3Σ+ g , h 3Σ+ g , and i 3Π g triplet states. The dipole-allowed transitions e 3Σ+ g a 3Σ+ g , f 3Σ+ g a 3Σ+ g , g 3Σ+ g and k 3Π u a 3Σ+ g can be used for spectral diagnostics of a dc discharge within a simplified coronal model.  相似文献   

4.
The reduction kinetics of the photo-oxidized primary electron donor P700 in photosystem I (PS I) complexes from cyanobacteria Synechocystis sp. PCC 6803 were analyzed within the kinetic model, which considers electron transfer (ET) reactions between P700, secondary quinone acceptor A1, iron-sulfur clusters and external electron donor and acceptors – methylviologen (MV), 2,3-dichloro-naphthoquinone (Cl2NQ) and oxygen. PS I complexes containing various quinones in the A1-binding site (phylloquinone PhQ, plastoquinone-9 PQ and Cl2NQ) as well as F X-core complexes, depleted of terminal iron–sulfur F A/F B clusters, were studied. The acceleration of charge recombination in F X-core complexes by PhQ/PQ substitution indicates that backward ET from the iron–sulfur clusters involves quinone in the A1-binding site. The kinetic parameters of ET reactions were obtained by global fitting of the P700 + reduction with the kinetic model. The free energy gap ΔG 0 between F X and F A/F B clusters was estimated as ?130 meV. The driving force of ET from A1 to F X was determined as ?50 and ?220 meV for PhQ in the A and B cofactor branches, respectively. For PQ in A1A-site, this reaction was found to be endergonic (ΔG 0?=?+75 meV). The interaction of PS I with external acceptors was quantitatively described in terms of Michaelis–Menten kinetics. The second-order rate constants of ET from F A/F B, F X and Cl2NQ in the A1-site of PS I to external acceptors were estimated. The side production of superoxide radical in the A1-site by oxygen reduction via the Mehler reaction might comprise ≥0.3% of the total electron flow in PS I.  相似文献   

5.
An atmospheric-pressure dc discharge in air (i = 10–50 mA) with metal and liquid electrolyte electrodes was studied experimentally. An aqueous solution of sodium chloride (0.5 mol/L) was used as the cathode or anode. The electric field strength in the plasma and the cathode (anode) voltage drops were obtained from the measured dependences of the discharge voltage on the electrode gap length. The gas temperature was deduced from the spectral distribution of nitrogen emission in the band N2(C3Π u B3Π g , 0–2). The time dependences of the temperatures of the liquid electrolyte electrodes during the discharge and in its afterglow, as well as the evaporation rate of the solution, were determined experimentally. The contributions of ion bombardment and heat flux from the plasma to the heating of the liquid electrode and transfer of solvent (water) into the gas phase are discussed using the experimental data obtained.  相似文献   

6.
The characteristics of a dc discharge excited between a metal anode and a water cathode in argon were studied experimentally. The dimensions of the positive column and the electric field in it were measured, and the vibrational temperature in the positive column was determined from the N2 C 3ΠuB 3Πg (0–2) emission band. It is shown that the power deposited in the positive column is almost entirely spent on gas heating. The obtained dependence of the reduced electric field on the gas pressure and the ionization frequencies calculated by solving the Boltzmann equation indicate that electrons are lost diffusively, whereas ionization proceeds in a stepwise manner via the lower metastable states of argon atoms.  相似文献   

7.
The parameters of the photosynthetic activity per unit of the phytoplankton biomass have been studied for the reservoirs of the Volga River. The wide range of variability is accompanied by most of the values of A/B ratio laying within 0.5–3 mg O2/(mg · day); the P/B ratio in the photic layer varies as 0.5–3 day–1 and in the whole water column varies as 1 day-1. The maximal values have been observed for the reservoirs located in the Upper Volga River. The turnover period of the phytoplankton biomass in the photic zone of the studied reservoirs was 0.2–1.6 day, or in2.1–3.8 times higher than for the whole water column from the surface down to the bottom. The seasonal variability of the A/B and P/B ratios in each reservoir had more pronounced individual variability than the variability observed for the whole cascade during the summer season. The A/B and P/B ratios decrease significantly in the oligotrophic waters to the eutrophic; these ratios have an indicator value.  相似文献   

8.
The emission spectroscopy technique is used to analyze a cathode-directed streamer discharge in air at atmospheric pressure in point-plane geometry at interelectrode distances of up to 100 mm and a high-voltage pulse amplitude of 18 kV. The densities of molecules in the N2(C 3Πu, v=0), N 2 + (B 2Σ u + , v=0) and NO(A 2Σ+, v=0) states are determined, and the reduced electric field in the streamer head is estimated. It is shown that the increase in the average electric field in the discharge gap substantially intensifies the production of active particles in the discharge plasma and makes the plasma more homogeneous. This effect is only related to the increase in the fraction of regions with a high electric field in the discharge gap and, as a result, the reduction of the discharge energy losses via rapidly thermalized degrees of freedom. The active particles are only produced in the streamer head, including the case in which the interelectrode gap is bridged by the streamer channel.  相似文献   

9.
Interaction of photosystem I (PS I) complexes from cyanobacteria Synechocystis sp. PCC 6803 containing various quinones in the A1-site (phylloquinone PhQ in the wild-type strain (WT), and plastoquinone PQ or 2,3-dichloronaphthoquinone Cl 2 NQ in the menB deletion strain) and different numbers of Fe4S4 clusters (intact WT and FX-core complexes depleted of FA/FB centers) with external acceptors has been studied. The efficiency of interaction was estimated by measuring the light-induced absorption changes at 820 nm due to the reduction of the special pair of chlorophylls (P700 +) by an external acceptor(s). It was shown that externally added Cl 2 NQ is able to effectively accept electrons from the terminal iron-sulfur clusters of PS I. Moreover, the efficiency of Cl 2 NQ as external acceptor was higher than the efficiency of the commonly used artificial electron acceptor, methylviologen (MV) for both the intact WT PS I and for the FX-core complexes. The comparison of the efficiency of MV interaction with different types of PS I complexes revealed gradual decrease in the following order: intact WT?>?menB?>?FX-core. The effect of MV on the recombination kinetics in menB complexes of PS I with Cl 2 NQ in the A1-site differed significantly from all other PS I samples. The obtained effects are considered in terms of kinetic efficiency of electron acceptors in relation to thermodynamic and structural characteristics of PS I complexes.  相似文献   

10.
11.
Nitrogen (N) is the key factor limiting photosynthetic processes and crop yield. Little is known about the response of leaf gas exchange of spring triticale (Triticosecale Wittm.) to N supply. The effect of N fertilizers on different gas exchange variables, i.e., photosynthetic rate (A), transpiration rate (E), stomatal conductance (g s), instantaneous water use efficiency (WUE) and maximum quantum yield of photosystem II (PSII) (F v/F m), chlorophyll index (SPAD, soil–plant analysis development), and the relationship of these variables with yield were studied in spring triticale grown under field conditions. Six treatments of N—0, 90, 180, 90 + 30, 90 + 30 + 30 kg ha?1 (applied as ammonium nitrate, AN) and one treatment of N 90 + 30 + 30 kg ha?1 (applied as urea ammonium nitrate solution, UAN) were compared. The analysis of variance showed that throughout the triticale growing season, N fertilization had significant effects on A, WUE, g s and SPAD. On average, N fertilizer application increased A values by 14–70%. E and F v/F m values were not influenced by N fertilization levels. The effect of growth stage and year on gas exchange variables and F v/F m and SPAD was found to be significant. At different growth stages, A values varied and maximum ones were reached at BBCH 31–33 (decimal code system of growth stages) and BBCH 59. With aging, values of A decreased independently of N fertilization level. The gas exchange variables were equally affected by both fertilizer forms. The interplay among grain yield, leaf gas exchange variables, F v/F m and SPAD of spring triticale was estimated. The statistical analysis showed that grain yield positively and significantly correlated with A and SPAD values throughout the growing season.  相似文献   

12.
The expressions of Wolfet al. (1951) and Renkin (1956) for the kinetics of artificial kidneys are generalized to include the effects of filtration. IfB is the bath volume,b the relevant volume of distribution,f the filtration rate,t the time, andA 0,B 0,b 0 representA, B, andb at timet=0, then the plasma concentrationA is given by
$$\frac{A}{{A_0 }} = \frac{{B_0 }}{{B_0 + b_0 }}e^{ - \frac{{\left( {B_0 + b_0 } \right)}}{{B_0 }}\frac{{D_f }}{{b_0 }}K\left( {ft} \right)t} + \frac{{b_0 }}{{B_0 + b_0 }}$$  相似文献   

13.
The potential energy curves of the 19 lowest-lying singlet and triplet electronic states in the 2S+1Λ(+/?) representation of the AsCl molecule have been investigated using the complete active space self-consistent field (CASSCF) with multireference configuration interaction (MRCI+Q) method including single and double excitations and with the Davidson correction. The harmonic frequency ω e, the internuclear distance R e, the dipole moment, and the electronic energy with respect to the ground state T e were calculated for the electronic states considered. By using the canonical functions approach, the eigenvalue E v, the rotational constant B v, and the abscissae of the turning points R min and R max were calculated for the electronic states up to the vibrational level v?=?60. The values obtained in the present work agree well with corresponding values available in the literature for several electronic states. Fifteen new electronic states were investigated here for the first time.  相似文献   

14.
Experimental studies of spatiotemporal characteristics of radiation from a negative corona operating in the Trichel-pulse mode in the point-to-sphere electrode geometry have revealed two emission zones. In addition to the well-known glow near the point electrode, there is also an anode glow, whose intensity depends substantially on the shape of the anode. It is found that the anode glow is delayed with respect to the beginning of the Trichel pulse by a time that depends on the gap length and gap voltage. The emission spectrum of the anode glow in the wavelength range 300–400 nm is identified as the spectrum of the second positive system of nitrogen (the C 3Π u -B 3Π g transition).  相似文献   

15.
Results are presented from experimental studies of the glow dynamics of active nitrogen in the stage of its excitation by a current pulse and during the discharge afterglow. The mechanism is proposed for the generation of a light splash in a highly activated nitrogen after the end of its pulsed excitation. The key role in the generation of this splash is played by the D-V processes, by which the dissociation energy is transferred to the vibrational degrees of freedom in the course of recombination of nitrogen atoms, and the V-E processes, by which the vibrational energy of highly excited molecules N2(X, v ≥ 25–27) is transferred to the emitting electronic states N2(B, v) after the V-V delay. Results of simulations based on the mechanism proposed are also presented.  相似文献   

16.
Heliobacteria contain Type I reaction centers (RCs) and a homodimeric core, but unlike green sulfur bacteria, they do not contain an extended antenna system. Given their simplicity, the heliobacterial RC (HbRC) should be ideal for the study of a prototypical homodimeric RC. However, there exist enormous gaps in our knowledge, particularly with regard to the nature of the secondary and tertiary electron acceptors. To paraphrase S. Neerken and J. Amesz (2001 Biochim Biophys Acta 1507:278–290): with the sole exception of primary charge separation, little progress has been made in recent years on the HbRC, either with respect to the polypeptide composition, or the nature of the electron acceptor chain, or the kinetics of forward and backward electron transfer. This situation, however, has changed. First, the low molecular mass polypeptide that contains the terminal FA and FB iron-sulfur clusters has been identified. The change in the lifetime of the flash-induced kinetics from 75 ms to 15 ms on its removal shows that the former arises from the P798+ [FA/FB]? recombination, and the latter from P798+ FX ? recombination. Second, FX has been identified in HbRC cores by EPR and Mössbauer spectroscopy, and shown to be a [4Fe–4S]1+,2+ cluster with a ground spin state of S = 3/2. Since all of the iron in HbRC cores is in the FX cluster, a ratio of ~22 Bchl g/P798 could be calculated from chemical assays of non-heme iron and Bchl g. Third, the N-terminal amino acid sequence of the FA/FB-containing polypeptide led to the identification and cloning of its gene. The expressed protein can be rebound to isolated HbRC cores, thereby regaining both the 75 ms kinetic phase resulting from P798+ [FA/FB]? recombination and the light-induced EPR resonances of FA ? and FB ?. The gene was named ‘pshB’ and the protein ‘PshB’ in keeping with the accepted nomenclature for Type I RCs. This article reviews the current state of knowledge on the structure and function of the HbRC.  相似文献   

17.
A novel Gram-negative and red-pinkish bacterium designated DG5BT was isolated from a dry soil. Cells were rods that were catalase- and oxidase-positive, and non-motile. The strain was found to grow at temperatures from 10 to 30°C (optimum 25°C) and pH 6.0–8.0, (optimum pH 7) on R2A broth. 16S rRNA gene sequence (1,452 bp) analysis of this strain identified it as a member of the genus Hymenobacter that belongs to the class Cytophagia. The highest gene sequence similarities were with Hymenobacter arizonensis OR362-8T (98.3%), Hymenobacter humi DG31AT (97.6%), and Hymenobacter glaciei VUG-A130T (96.6%). Strain DG5BT exhibited <70% DNA-DNA relatedness with H. arizonensis (34.7 ± 7.0%; reciprocally, 29.7 ± 1.2%) and H. humi (39.4 ± 4.3%; reciprocally, 39.5 ± 3.3%) as a different genomic species, and its genomic DNA G+C content was 59.8%. Strain DG5BT had the following chemotaxonomic characteristics: the major fatty acids are iso-C15:0, anteiso-C15:0, C16:1ω5c, and summed feature 3 (C16:1ω7c / C16:1ω6c); polar lipid profile contained phosphatidylethanolamine (PE), unknown aminophospholipid (APL), unknown glycolipids (GL), unknown phospholipids (PL), and unknown polar lipids (L); the major quinone is MK-7. The absorbance peak of pigment is at 481.0 nm. Strain DG5BT showed low-level resistance to gamma-ray irradiation. Phenotypic, chemotaxonomic, and genotypic properties indicated that isolate DG5BT represents a novel species within the genus Hymenobacter for which the name Hymenobacter sedentarius sp. nov. is proposed. The type strain is DG5BT (=KCTC 32524T =JCM 19636T).  相似文献   

18.

Background

Adrenal gland of mice contains a transient zone between the adrenal cortex and the adrenal medulla: the X-zone. There are clear strain differences in terms of X-zone morphology. Nulliparous females of the inbred mouse DDD strain develop adrenal X-zones containing exclusively vacuolated cells, whereas females of the inbred mouse B6 strain develop X-zones containing only non-vacuolated cells. The X-zone vacuolation is a physiologic process associated with the X-zone degeneration and is tightly regulated by genetic factors. Identification of the genetic factors controlling such strain differences should help analyze the X-zone function. In this study, a quantitative trait locus (QTL) analysis for the extent of X-zone vacuolation was performed for two types of F2 female mice: F2A y mice (F2 mice with the A y allele) and F2 non-A y mice (F2 mice without the A y allele). These were produced by crossing B6 females and DDD.Cg-A y males. DDD.Cg-A y is a congenic mouse strain for the A y allele at the agouti locus and is used for this study because a close association between the X-zone morphology and the agouti locus genotype has been suggested. The A y allele is dominant and homozygous lethal; therefore, living A y mice are invariably heterozygotes.

Results

Single QTL scans identified significant QTLs on chromosomes 1, 2, 6, and X for F2 non-A y mice, and on chromosomes 2, 6, and 12 for F2A y mice. The QTL on chromosome 2 was considered to be because of the agouti locus, which has been suggested to be associated with X-zone vacuolation. A significant QTL that interacted with the agouti locus was identified on chromosome 8.

Conclusions

The extent of X-zone vacuolation in DDD females was controlled by multiple genes with complex interactions. The murine X-zone is considered analogous structure to the human fetal zone. Therefore, the results of this study will aid in understanding function of not only of the X-zone but also of the human fetal zone. Identifying the genes responsible for the QTLs will be essential for understanding the molecular basis of X-zone function, which is currently unclear.
  相似文献   

19.
There are two close empirical scalings, namely, the T-11 and neo-Alcator ones, that provide correct estimates for the energy confinement time in tokamaks in ohmic heating regimes in the linear part of the dependence τ E (\(\bar n_e \)) in the range of low values of \(\bar n_e \) and 〈ν e * 〉 ≤ 1. The similar character of electron energy confinement in this range, which expands with increasing magnetic field B 0, has stimulated the search for dimensionless parameters and simple physical models that would explain the experimentally observed dependences χ e ~ 1/n e and τ Ee \(\bar n_e \). In 1987, T. Okhawa showed that the experimental data were satisfactorily described by the formula χe = (c 2 pe 2 )ν e /qR, in deriving of which the random spatial leap along the radius r on the electron trajectory was assumed to be the same as that in the coefficient of the poloidal field diffusion, while the repetition rate of these leaps was assumed to be ν e /qR. In 2004, J. Callen took into account the decrease in the fraction of transient electrons with increasing toroidal ratio ? = r/R and corrected the coefficient c 2 pe 2 in Okhawa equation by the factor σ Sp neo . If one takes into account this correction and assumes that the frequency of the stochastic process is equal to the reciprocal of the half-period of rotation of a trapped electron along its banana trajectory, then the resulting expression for χe will coincide with the T-11 scaling: χ e an ∞ ?1.75(T e /A i )0.5/(n e qR) at A i = 1. If the same stochastic process also involves ions, it may result in the opening of the orbit of a trapped ion at the distance ~(c pe )(m i /m e )1/4. In this case, the calculated coefficient of electron and ion diffusion D is close to D an ≈ χ e an /2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号