首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
NaCl-induced changes in the accumulation of message for the 70 kDa subunit of the tonoplast H+-ATPase and plasma membrane H+-ATPase were studied in hydroponically grown plants of Lycopersicon esculentum Mill. cv. Large Cherry Red. There was increased accumulation of message for the 70 kDa (catalytic) subunit of the tonoplast H+-ATPase in expanded leaves of tomato plants 24 h after final NaCl concentrations were attained. This was a tissue-specific response; levels of this message were not elevated in roots or in young, unexpanded leaves. The NaCl-induced accumulation of this message was transient in the expanded leaves and returned to control levels within 7 days. The temporal and spatial patterns of NaCl-induced accumulation of message for the plasma membrane H+-ATPase differed from the patterns associated with the 70 kDa subunit of the tonoplast H+-ATPase. NaCl-induced accumulation of the plasma membrane H+-ATPase message occurred in both roots and expanded leaves. Initially accumulation of the plasma membrane H+-ATPase message was greater in root tissue than in expanded leaves, but increased to higher levels in expanded leaves after 7 days. These results suggest that increased expression of the tonoplast H+-ATPase is an early response to salinity stress and may be associated with survival mechanisms, rather than with long-term adaptive processes.  相似文献   

2.
Effects of salinity and phosphate on ion distribution in lupin leaflets   总被引:1,自引:0,他引:1  
Lupin ( Lupinus luteus L. cv. Weiko III) were grown in nutrient solution over a range of inorganic phosphate (Pi) concentrations, with or without 50 m M NaCl. Plants with high Pi (2 m M ) and salt showed progressive leaf necrosis and had higher concentrations of total phosphate than plants grown with high Pi alone. Most of the extra total phosphate in salt treated plants was in the Pi form. Pi supply did not influence Na+, K+ or Cl concentrations in epidermal vacuoles or mesophyll cells. However, epidermal vacuoles accumulated more monovalent cations (Na+ and K+) than Cl, and in vacuoles of plants grown with 0.1 m M Pi additional Pi was accumulated, possibly to maintain charge balance. Plants grown with 2 m M Pi did not accumulate additional Pi in epidermal vacuoles, but showed higher phosphorus levels in cell walls. It is suggested that at moderate phosphorus concentrations Pi plays a role in epidermal osmotic adjustment, possibly explaining the beneficial role of additional phosphorus on salt stressed plants. At high Pi supply with salt, Pi does not contribute to osmotic adjustment and instead accumulates in cell walls. However, the cause of leaf damage under conditions of high phosphorus supply and salinity is still not entirely clear.  相似文献   

3.
4.
We investigated (1) the effect of constant and altered inorganic phosphate (Pi) supply (1–100 mmol m–3) on proteoid root production by white lupin ( Lupinus albus L.); and (2) the variation in citrate efflux, enzyme activity and phosphate uptake along the proteoid root axis in solution culture. Proteoid root formation was greatest at Pi solution concentrations of 1–10 mmol m–3 and was suppressed at 25 mmol m–3 Pi and higher. Except at 1 mmol m–3 Pi, the formation of proteoid roots did not affect plant dry matter yields or shoot to root dry matter ratios, indicating that proteoid roots can form under conditions of adequate P supply and not at the expense of dry matter production. Plants with over 50% of the root system as proteoid roots had tissue P concentrations considered adequate for maximum growth, providing additional evidence that proteoid roots can form on P-sufficient plants. There was an inverse relationship between the Pi concentration in the youngest mature leaf and proteoid root formation. Citrate efflux and the activities of enzymes associated with citric acid synthesis (phosphoenolpyruvate carboxylase and malate dehydrogenase) varied along the proteoid root axis, being greatest in young proteoid rootlets of the 1–3 cm region from the root tip. Citrate release from the 0–1 and 5–9 cm regions of the proteoid root was only 7% (per unit root length) of that from the 1–3 cm segment. Electrical potential and 32Pi uptake measurements showed that Pi uptake was more uniform along the proteoid root than citrate efflux.  相似文献   

5.
Treeby, M. T. and van Steveninck, R. F. M. 1988. The influence of salinity on phosphate uptake and distribution in lupin roots. - Physiol. Plant. 72: 617–622.
The uptake and distribution of phosphate in lupin ( Lupinus luteus L. cv. Weiko III) roots under moderate salt (NaCl) stress was studied. Vacuolar inorganic phosphate (PJ concentrations in high phosphate plants were decreased by salt, although whole root P| was unaffected. In low phosphate plants, vacuolar Pi was unaffected by salt while whole root Pi was increased. Phosphate uptake was not altered by salt in high phosphate plants, but was depressed in low phosphate plants. These observations lead to the conclusion that in high phosphate plants Pi accumulates in cytoplasm and/or stele, ultimately giving rise to phosphate toxicity in shoots. Increasing phosphate supply had no effect on Na+ accumulation in root cell vacuoles in the epidermis or cortex, but the concentration of Cl in endodermal vacuoles was lowered.  相似文献   

6.
7.
White lupin ( Lupinus albus L.) is able to grow on soils with sparingly available phosphate (P) by producing specialized structures called cluster roots. To mobilize sparingly soluble P forms in soils, cluster roots release substantial amounts of carboxylates and concomitantly acidify the rhizosphere. The relationship between acidification and carboxylate exudation is still largely unknown. In the present work, we studied the linkage between organic acids (malate and citrate) and proton exudations in cluster roots of P-deficient white lupin. After the illumination started, citrate exudation increased transiently and reached a maximum after 5 h. This effect was accompanied by a strong acidification of the external medium and alkalinization of the cytosol, as evidenced by in vivo nuclear magnetic resonance (NMR) analysis. Fusicoccin, an activator of the plasma membrane (PM) H+-ATPase, stimulated citrate exudation, whereas vanadate, an inhibitor of the H+-ATPase, reduced citrate exudation. The burst of citrate exudation was associated with an increase in expression of the LHA1 PM H+-ATPase gene, an increased amount of H+-ATPase protein, a shift in pH optimum of the enzyme and post-translational modification of an H+-ATPase protein involving binding of activating 14-3-3 protein. Taken together, our results indicate a close link in cluster roots of P-deficient white lupin between the burst of citrate exudation and PM H+-ATPase-catalysed proton efflux.  相似文献   

8.
Abstract: Inorganic phosphate (Pi) plays a vital role in intracellular energy metabolism. Its many effects include stimulation of glucose use, enhancement of high-energy phosphate concentrations, and modulation of cytosolic free [Ca2+]. Cultured fetal rat cortical neurons constitutively import Pi, and cytosolic levels positively correlate with [ATP], [NADPH], and energy charge. In the present study, we demonstrate that the concentration of intracellular Pi is an important determinant of acute neuronal survival after an excitotoxic or oxidative insult to cultured fetal rat cortical neurons. Extracellular Pi dose-dependently enhanced survival of cortical neurons after exposure to NMDA at early (≤6 h) time points after termination of the insult. Pi similarly increased neuronal survival after exposure to kainic acid or H2O2. Pi-exposed neurons had higher basal intracellular [Pi], [ATP], and [GSH], and slightly lower cytosolic free [Ca2+], compared with Pi-deprived neurons. Pi-exposed neurons maintained increased [ATP] after exposure to NMDA and displayed reduced formation of reactive oxygen species after exposure to kainic acid or H2O2, compared with Pi-deprived neurons. These findings demonstrate that changes in extracellular and intracellular Pi can affect neuronal survival after excitotoxic or oxidative insults.  相似文献   

9.
10.
Bean ( Phaseolus vulgaris L.) seedlings were cultured on complete or phosphate-deficient nutrient medium. After 14 days of culture on phosphate-deficient medium the visible symptoms of Pi deficiency were observed only in the shoot, the fresh and dry weights of the roots were slightly higher than in control plants. The decreased Pi content in the roots had little effect on total respiration rate but had an effect on the level of inhibition of respiration by cyanide. The high resistance of respiration to cyanide observed in Pi-deficient roots was the result of the suppression of cytochrome path activity and an increased participation of the alternative, cyanide-resistant pathway. The cytochrome pathway activity increased when inorganic phosphate was supplied to Pi-deficient roots for 1 or 3.5 h. It is speculated that the suppression of cytochrome pathway in Pi-deficient roots may result from restriction of the phosphorylating capacity or a partial inhibition of cytochrome oxidase activity.  相似文献   

11.
The preference of paddy rice for NH4+ rather than NO3- is associated with its tolerance to low pH since a rhizosphere acidification occurs during NH4+ absorption. However, the adaptation of rice root to low pH has not been fully elucidated. This study investigated the acclimation of plasma membrane H+-ATPase of rice root to low pH. Rice seedlings were grown either with NH4+ or NO3-. For both nitrogen forms, the pH value of nutrient solutions was gradually adjusted to pH 6.5 or 3.0. After 4 d cultivation, hydrolytic H+-ATPase activity, V max, K m, H+-pumping activity, H+ permeability and pH gradient across the plasma membrane were significantly higher in rice roots grown at pH 3.0 than at 6.5, irrespective of the nitrogen forms supplied. The higher activity of plasma membrane H+-ATPase of adapted rice roots was attributed to the increase in expression of OSA1, OSA3, OSA7, OSA8 and OSA9 genes, which resulted in an increase of H+-ATPase protein concentration. In conclusion, a high regulation of various plasma membrane H+-ATPase genes is responsible for the adaptation of rice roots to low pH. This mechanism may be partly responsible for the preference of rice plants to NH4+ nutrition.  相似文献   

12.
Physiological and biochemical modifications induced by Fe-deficiency have been studied in cucumber ( Cucumis sativus L. cv. Marketer) roots, a Strategy I plant that initiates a rapid acidification of the medium and an increase in the electric potential difference when grown under Fe-deficiency. Using the aqueous two-phase partitioning method, a membrane fraction which has the plasmalemma characteristics was purified from roots of plants grown in the absence and in the presence of iron. The plasma membrane vesicles prepared from Fe-deficient plants showed an H+-ATPase activity (EC 3.6.1.35) that is twice that of the non-deficient control. Furthermore, membranes from Fe-deficient plants showed a higher capacity to reduce Fe3+-chelates. The difference observed in the reductase activity was small with ferricyanide (only 30%) but was much greater with Fe3-EDTA and Fe3-citrate (210 and 250%, respectively). NADH was the preferred electron donor for the reduction of Fe3+ compounds. Fe3+ reduction in plasma membrane from cucumber roots seems to occur with utilisation of superoxide anion, since addition of superoxide dismutase (SOD; EC 1.15.1.1) "in vitro" decreased Fe3+ reduction by 60%.
The response and the difference induced by iron starvation on these two plasma membrane activities together with a possible involvement of O2 in controlling the Fe3+/Fe2+ ratio in the rhizosphere are discussed.  相似文献   

13.
This work tests two models to account for the effects of depletion of stromal inorganic phosphate (Pi), which results in down-regulation of light capture via the exciton quenching (qE) mechanism and has been proposed to act in feedback regulation of the light reactions. In both models, antenna down-regulation is activated by acidification of the lumen, despite the fact that linear electron flow (LEF) (and associated proton flux) is decreased upon Pi depletion. In one model, an imbalance of ATP or NADPH activates cyclic electron transfer around photosystem I (CEF1), increasing proton influx to the lumen. In the second, the effective conductivity of the CFO-CF1 ATP synthase to protons ( g H+) is decreased, retarding proton efflux from the lumen. Sequestering of Pi by mannose infiltration increased sensitivities of qE and pmf to LEF. The effects were attributable to decreases in g H+, but not to CEF1 and were largely reversed by subsequent Pi feeding. Rapid recovery of g H+ in the dark suggested that dark-labile metabolic pools are responsible for regulation of the ATP synthase. Overall, these results support models where accumulation of Benson–Calvin cycle intermediates or lowering of stromal Pi below its K Mat the ATP synthase, retards proton efflux from the lumen, leading to build-up of pmf and subsequent down-regulation of photosynthetic light capture.  相似文献   

14.
The diatom Achnanthes brevipes C.A. Ag. was cultured in the presence of limiting concentrations of nitrogen (N) or inorganic phosphate (Pi). Growth, in terms of final yield, was more affected by N limitation than Pi limitation; N limitation had a greater effect also on protein and chlorophyll content. Carbohydrate concentrations increased under both nutrient starvation treatments, but N or Pi limitation had different effects. Total (intracellular plus extracellular) sugar content increased when cells were exposed to both types of nutrient limitation, but the extracellular polysaccharide fraction increased only in the presence of Pi starvation. Analyses were performed to identify the metabolic changes occurring in cells exposed to low phosphate because this was the main condition that affected carbohydrate extrusion. Activities of several enzymes involved in carbohydrate metabolism showed that under Pi limitation there was no activation of alternative reactions that were found to result in Pi liberation, instead of its consumption, in some higher plants and in the green alga Selenastrum minutum Naeg. Collins. Results showed that activities of pyruvate kinase, phosphorylating NAD-dependent 3-phosphate-glyceraldehyde dehydrogenase, and 3-phospho-glycerate kinase were inhibited under Pi-limited conditions compared with control cells, indicating limited glucose catabolism. Activity of uridine diphosphate glucose pyrophosphorylase, a key enzyme for the biosynthesis of the storage compound crysolaminarin, was also partly inhibited in Pi-stressed cells. Our findings suggest that carbohydrate catabolism in A. brevipes is limited under Pi deficiency, whereas extracellular extrusion of carbohydrate is favored.  相似文献   

15.
Phosphorus-deficient Gracilaria tenuistipitata Zhang et Xia was cultured for 15 days at two different inorganic phosphate (Pi) concentrations: 3 μM (low Pi treatmenl) or 30 μM phosphate (high Pi treatment). The amount of ribulose-l,5-bisphosphate carboxy-lase/oxygenase (Rubisco), phycobiliproteins, Chl a and total soluble proteins were higher in the high Pi than in the low Pi treatment. The total N content of the low Pi plants was lower than in plants grown at high Pi concentrations whereas the amount of total C was highest in low Pi plants. The increase of Rubisco content in the high Pi treatment (3-fold) was parallel to the enhancement of the maximum photosynthetic rate which increased 5-fold. This correspondence was also found in the low Pi treatment in which Rubisco content and maximum photosynthesis did not change significantly from the initial values. The photosynthetic efficiency was also higher at high than at low Pi. The high Pi plants also showed higher dark respiration and growth rates. The data presented here suggest that marine macroalgae submitted to Pi deficiency exhibit a decrease in growth caused not only by Pi implication on energy transfer in photosynthesis and respiration, but also by the diminution of the amount of photosynthetic pigments and Rubisco.  相似文献   

16.
As water and nutrient uptake should be related in the response of plants to salinity, the aim of this paper is to establish whether or not aquaporin functionality is related to H+-ATPase activity in root cells of pepper ( Capsicum annuum L.) plants. Thus, H+-ATPase activity was measured in plasma membrane vesicles isolated from roots and aquaporin functionality was measured using a cell pressure probe in intact roots. Salinity was applied as 60 m M NaCl or 60 m M KCl, to determine which ion (Na+, K+ or Cl) is producing the effects. We also investigated whether the effects of both salts were ameliorated by Ca2+. Similar results were obtained for cell hydraulic conductivity, Lpc, and H+-ATPase activity, large reductions in the presence at NaCl or KCl and an ameliorative effect of Ca2+. However, fusicoccin (an activator of H+-ATPase) did not alter osmotic water permeability of protoplasts isolated from roots. Addition of Hg2+ inhibited both ATPase and aquaporins, but ATPase also contains Hg-binding sites. Therefore, the results indicate that H+-ATPase and aquaporin activities may not be related in pepper plants.  相似文献   

17.
The active endogenous dTph1 system of the Petunia hybrida mutator line W138 has been used in several forward-genetic mutant screens that were based on visible phenotypes such as flower morphology and color. In contrast, defective symbiotic phosphate (Pi) transport in mycorrhizal roots of Petunia is a hidden molecular phenotype as the symbiosis between plant roots and fungi takes place below ground, and, while fungal colonization can be visualized histochemically, Pi transport and the activity of Pi transporter proteins cannot be assessed visually. Here, we report on a molecular approach in which expression of a mycorrhiza-inducible bi-functional reporter transgene and insertional mutagenesis in Petunia are combined. Bi-directionalization of a mycorrhizal Pi transporter promoter controlling the expression of two reporter genes encoding firefly luciferase and GUS allows visualization of mycorrhiza-specific Pi transporter expression. A population of selectable transposon insertion mutants was established by crossing the transgenic reporter line with the mutator W138, from which the P i transporter downregulated ( ptd1 ) mutant was identified, which exhibits strongly reduced expression of mycorrhiza-inducible Pi transporters in mycorrhizal roots.  相似文献   

18.
Four-week-old sunflower plants ( Helianthus annuus L. cv. Halcón), grown in different nutrient solutions, were used to study the effects of gibberellic acid (GA3) on K+ (Rb+) uptake by roots or transport to the shoot. Gibberellic acid application to the nutrient solution did not affect the exudation process of excised roots. When GA3 was sprayed on leaves 2 to 6 days before excising the roots, the rate of exudation and the K+ flux increased. When the exudation study was done keeping the roots in a nutrient solution in which Rb+ replaced K+, the GA3 effects were evident also on Rb+ uptake and transport. In intact plants, GA3 increased the Rb+ transported to the shoot but did not affect Rb+ accumulation in the root. It is suggested that these GA3 effects can be explained if it is assumed that GA3 acts on the transport of ions to the xylem vessels.  相似文献   

19.
磷饥饿条件下番茄幼苗的H+分泌速率明显提高。质膜质子泵专一性抑制剂钒酸盐能显著抑制番茄幼苗的H+分泌,也能显著抑制其Pi吸收。此结果表明,磷饥饿时番茄幼苗Pi吸收速率的变化与H+分泌速率的变化之间可能具有一定的相关性,并进一步暗示质膜H+-ATPase可能参与其中。本文结果还表明,Pi/H+的准量关系约为1:1。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号