首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The O2 uptake through water has been measured in case of Heteropneustes fossilis during development and growth and its relationship to body size established. A higher rate of O2 uptake during the early phase of ontogenesis is related to intense growth of the respiratory surface area and increasing metabolic demand of the fish.The logarithmic plot of data for O2 uptake in relation to body size shows a statistically significant two-component curve; one related to the fish when it is a fully aquatic breather and the other when it changes to bimodal gas exchange. The onset of the air breathing habit brings about a 40% drop in O2 uptake through water, which is made good through the newly developed air breathing organ.  相似文献   

2.
Synopsis Aquatic and aerial oxygen uptake (̇O2), ventilation frequency, and oxygen transport properties of the blood were determined for the intertidal fish Helcogramma medium. Ventilation frequency increased in response to decreased environmental PO2 and aquatic ̇O2 was maintained down to a critical PO2 of 30–40 mm Hg. Below PO2 30 mm Hg fish intermittently gulped air and finally emerged into air at PO2 18 mm Hg. After 1 h exposure to air ̇O2 decreased to 60% of the aquatic rate and this was accompanied by an increase in blood lactate. Aerobic expansibility was reduced in air (×1.2) compared to water (× 5.5). The Hb concentration was 0.47 ± 0.13 mmol 1–1 and hematocrit 11.55 ± 3.61% indicating a moderate O2-carrying capacity. Oxygen affinity was not especially high (P50 = 19 mm Hg at pH 7.7 and 15°C) and ATP was the predominant acid-soluble phosphate regulating P50. The equilibrium curve was essentially hyperbolic (Hill's n = 1.2) with a marked Bohr effect = –1.06) and Root effect (saturation depressed by 50% at pH7.1). The pattern of respiration and the respiratory properties of the blood together with observations of the behaviour of the fish during aerial exposure indicated that Helcogramma is adapted to living in a well-aerated environment yet can adequately tolerate short term exposure to low aquatic PO2 or air.  相似文献   

3.
The Pacific tarpon is an elopomorph teleost fish with an air-breathing organ (ABO) derived from a physostomous gas bladder. Oxygen partial pressure (PO2) in the ABO was measured on juveniles (238 g) with fiber-optic sensors during exposure to selected aquatic PO2 and swimming speeds. At slow speed (0.65 BL s−1), progressive aquatic hypoxia triggered the first breath at a mean PO2 of 8.3 kPa. Below this, opercular movements declined sharply and visibly ceased in most fish below 6 kPa. At aquatic PO2 of 6.1 kPa and swimming slowly, mean air-breathing frequency was 0.73 min−1, ABO PO2 was 10.9 kPa, breath volume was 23.8 ml kg−1, rate of oxygen uptake from the ABO was 1.19 ml kg−1 min−1, and oxygen uptake per breath was 2.32 ml kg−1. At the fastest experimental speed (2.4 BL s−1) at 6.1 kPa, ABO oxygen uptake increased to about 1.90 ml kg−1 min−1, through a variable combination of breathing frequency and oxygen uptake per breath. In normoxic water, tarpon rarely breathed air and apparently closed down ABO perfusion, indicated by a drop in ABO oxygen uptake rate to about 1% of that in hypoxic water. This occurred at a wide range of ABO PO2 (1.7–26.4 kPa), suggesting that oxygen level in the ABO was not regulated by intrinsic receptors.  相似文献   

4.
Measurements of bimodal oxygen uptake have been made in a freshwater air-breathing fish,Notopterus chitala at 29.0±1(S.D.)°C. xhe mean oxygen uptake from continuously flowing water without any access to air, was found to be 3.58±0.37 (S.E.) ml O2 · h?1 and 56.84+4.29 (S.E.) ml O2 · kg?1 · h?1 for a fish weighing 66.92 + 11.27 (S.E.) g body weight. In still water with access to air, the mean oxygen uptake through the gills were recorded to be 2.49 ± 0.31 (S.E.) ml O2 · h?1 and 38.78 ± 1.92 (S.E.) ml O2 · kg?1 · h?1 and through the accessory respiratory organs (swim-bladder) 6.04±0.87 (S.E.) ml O2 · h?1 and 92.32±2.91 (S.E.) ml O2 · kg?1 · h?1 for a fish averaging 66.92±11.27 (S.E.) g. Out of the total oxygen uptake (131.10 ml O2 · kg?1 · h?1), about 70% was obtained through the aerial route and the remainder 30% through the gills.  相似文献   

5.
1.  Gas exchange and blood gas transport has been studied in the amphibious teleost,Amphipnous cuchia. A. cuchia is a bimodal breather. Respiratory gas exchange takes place in a pair of specialized air sacs extending from the pharyngeal cavity. Aquatic and aerial gas exchange also takes place in vestigial gills, across buccopharyngeal surfaces and in the skin. All blood draining the air sacs is returned via systemic veins to the heart before systemic distribution.
2.  Oxygen uptake in fish kept in water with access to air was 33.3±8.0 ml O2STP·kg–1·h–1. About 65% of this uptake resulted from air breathing. Upon removal from water the O2 uptake rose to 44.6±15.7 ml O2· kg–1·h–1, while confinement to water breathing reduced the O2 uptake to 16.4±2.7 ml O2·kg–1·h–1. The latter value was 50% higher than aquatic O2 uptake when air breathing was available.
3.  Amphipnous practices periodic breathing and normal breathhold periods last 8–10 min. In the early phase of breathholding the gas exchange ratio (RE) was close to 0.7 but declined to low levels with breathholding. Mean RE for an average breathhold was 0.2. The low RE of the air sacs results from a high cutaneous CO2 elimination in water as well as in moist air. Estimated blood flows to the air sacs indicate flow of about 20 ml min–1 shortly after an air breath declining to 5 ml·min–1 late in a breath-hold period.
4.  Due to the shunting of air sac blood to systemic venous (jugular vein) blood, the jugular vein P\textO2 P_{{\text{O}}_2 } carried the most oxygenated blood averaging 35.2 mm Hg, the dorsal aorta 23.4 mm Hg and the hepatic vein 18.6 mm Hg.
5.  A. cuchia blood has a very high Hb concentration and O2 capacity reaching 15.5 gram % and 22 vol%, respectively. TheP 50 value was 7.9 mm Hg at pH 7.6. The Bohr factor, was –0.57, then-value 2.05 and the temperature sensitivity of the O2-Hb binding expressed by H=–13.1 Kcal·mole Hb–1. Buffering capacity was high: 34.1 mM HCO3 ·1–1.
6.  The vascular configuration inA. cuchia suggests a low efficiency of gas transport. A high blood O2 capacity and O2 affinity and a high cardiac output reduce the efficiency loss and permit the fish to suspend with air breathing for up to 30 min with a modest reduction in arterial O2 saturation from near 90% to 60%. The high blood O2 affinity allows breathholding to occur at reduced rates of systemic blood flow due to the large O2 stores available in venous blood during normal breathing.
7.  Ventral aortic blood pressure fell from about 60 mm Hg systolic value to 40 mm Hg in the dorsal aorta indicating considerable vascular resistance in the shunt connecting these vessels. The pressure gradient across the shunt remained unchanged with the breathhold cycle and is thus not part of the vasomotor activity controlling blood flow to the aerial gas exchanger.
8.  The data are discussed in relation to other air breathing fishes, notably the electric eel,Electrophorus electricus, and the African lungfish,Protopterus aethiopicus.
  相似文献   

6.
Summary Cutaneous aquatic gas exchange and pulmonary gas exchange have been compared in an aquatic snakeAchrochordus javanicus and the terrestrial snakeConstrictor constrictor.Gas exchange was measured by closed respirometry with the snakes in air and in water with access to air. Frequency of air breathing, tidal volumes and total lung volumes were also compared in the two species. All measurements were done at 20–22 ° C.The aquaticAchrochordus showed long periods of apnea in submerged condition interrupted by short periods of breathing activity at the surface. Average frequency of air breathing activity was 2.6 times per hour. Breathing in constrictor was more frequent but irregular with an average frequency of 143 breaths per hour.Total lung volume was 66±31 ml/kg body weight and 72.5±59 ml/kg body weight inAchrochordus andConstrictor, respectively. Tidal volumes were 41.5±4.4 ml/kg body weight and 29.5±14.8 ml/kg body weight, largest inAchrochordus. Constrictor had the highest total O2 uptake ( ) correlating with a higher activity. Total gas exchange ratio (R E ) was 0.69 forConstrictor and 0.77 forAchrochordus. InConstrictor air breathing accounted for 97% of the total whereas 21% of the CO2 exchange was aquatic. Corresponding figures forAchrochordus were 92% of total by air breathing with as much as 33% of the CO2 elimination as aquatic gas exchange.The results demonstrate that the trend among early air breathing vertebrates (fishes and amphibians) of a conservative evolution of CO2 elimination by air breathing also extends to snakes.Significantly the cutaneous exchange component was highest in the more aquatic species.The results are discussed in relation to recent reports of a higher than alleged role of the skin of reptiles in evaporative water loss.This study was supported by grant HE 12071 from the National Institutes of Health in the U. S. A.  相似文献   

7.
Respiratory gas exchange in the airbreathing fish,Synbranchus marmoratus   总被引:1,自引:0,他引:1  
Synopsis The partitioning of O2 uptake between aquatic and aerial gas exchange and its dependence on ambient water PO2 was studied in the facultative air breathing teleost Synbranchus marmoratus, after acclimation to well aerated water and after acute and chronic exposure to hypoxic water. O2 uptake was also studied following acute air exposure and after prolonged entrapment in soil. Breathing rates during water and air breathing in response to reduced water PO2 and tidal volume during air breathing were also studied. S. marmoratus satisfies its O2 requirement by water breathing alone until water PO2 falls below 30–50 mm Hg (switching PO2) depending on the acclimation history. Below the switching PO2, air breathing is adopted while active water breathing stops. The O2 uptake varied little for all groups when the principal mode of gas exchange changed at the switching PO2. The highest O2 uptake prevailed when the fish employed the mode of gas exchange in operation during the acclimation period (i.e. water breathing for normoxia-acclimated, air breathing for hypoxic-acclimated).Acclimation to chronic hypoxia gave a much higher switching PO2 55 mm Hg) than for the other groups (about 30 mm Hg). S. marmoratus maintained its O2 uptake when acutely exposed to air. When entrapped in soil in an aestivating state, the O2 uptake was reduced to 25% of that in water or during acute air exposure. The overall gas exchange ratio for air breathing was very low (RE 0.1).Branchial water pumping increased with lowering of water PO2. The rate of air breathing was independent of water PO2.The findings are discussed in the light of the ecophysiological conditions confronting S. marmoratus.  相似文献   

8.

Background

The prognostic role of the arterial blood gas tension of carbon dioxide (PaCO2) in severe Chronic Obstructive Pulmonary Disease (COPD) remains unknown. The aim of this study was to estimate the association between PaCO2 and mortality in oxygen-dependent COPD.

Methods

National prospective study of patients starting long-term oxygen therapy (LTOT) for COPD in Sweden between October 1, 2005 and June 30, 2009, with all-cause mortality as endpoint. The association between PaCO2 while breathing air, PaCO2 (air), and mortality was estimated using Cox regression adjusted for age, sex, arterial blood gas tension of oxygen (PaO2), World Health Organization performance status, body mass index, comorbidity, and medications.

Results

Of 2,249 patients included, 1,129 (50%) died during a median 1.1 years (IQR 0.6-2.0 years) of observation. No patient was lost to follow-up. PaCO2 (air) independently predicted adjusted mortality (p < 0.001). The association with mortality was U-shaped, with the lowest mortality at approximately PaCO2 (air) 6.5 kPa and increased mortality at PaCO2 (air) below 5.0 kPa and above 7.0 kPa.

Conclusion

In oxygen-dependent COPD, PaCO2 (air) is an independent prognostic factor with a U-shaped association with mortality.  相似文献   

9.

The cardiorespiratory and hemolymph acid base status of bimodal breathing crabs, Cardisoma guanhumi, was monitored during the transition from breathing air to breathing water. Upon immersion, oxygen uptake (MO2) decreased by half. Ventilatory frequency (fsc) increased more than 5 fold, causing a decrease in hemolymph carbon dioxide partial pressure (PCO2). This was nearly fully compensated for by a gradual decrease in hemolymph bicarbonate concentration ([HCO3 ]) over 96 hours post‐immersion. After one to two weeks of immersion, when crabs were removed from the water, oxygen uptake initially increased, but eventually returned to the initial immersed value. Heart rate was unchanged but fsc slowed dramatically. The decreased ventilation resulted in a buildup of hemolymph PCO2, causing a respiratory acidosis that was slowly compensated for by increased hemolymph [HCO3 ]. C. guanhumi appears to be a truly amphibious crab with respiratory and acid‐base adaptations found in both fully aquatic and fully terrestrial species.  相似文献   

10.
Predator-prey interaction between sandy shore crab, Matuta lunaris (Forskål, 1775), and juvenile Japanese flounder, Paralichthys olivaceus (Temminck et Schlegel), was investigated under controlled laboratory conditions. Possibility of training and conditioning hatchery-reared flounder to avoid predators was also examined. Crabs took over 75% of their daily ration at night when they were given access to prey 24 h a day. Large (64.8±5.4 g)- and medium (30.68±3.33 g)-sized crabs ate ca. 5.5±1.45 and 3.9±1.99 individuals of flounder (TL=4.96±0.23 cm) a day, respectively. When flounder juveniles that have experienced predation pressure by crabs encountered predators again, they exhibited better survival compared to the naive fish. Flounder juveniles were also conditioned either using small and, thus, benign predators, or large crabs over fence. The conditioned fish with either method were better able to avoid capture by crabs than naive fish, revealing that learning process should play an important role in their predator avoidance. Anti-predator performance was also compared between starved and fed flounder juveniles. Fed fish were rarely eaten by predators after 3 h of exposure, whereas starved fish continued to be eaten. Our results suggest that stock-enhancement program of Japanese flounder can be improved by applying proper feeding protocol and conditioning to avoid predators prior to release. Present research supports the idea that behavioural and ecological consideration for the target species is indispensable for the success of stock enhancement.  相似文献   

11.
Summary The burrow-dwelling woodchuck (Marmota monax) (mean body wt.=4.45±1 kg) was compared to a similar-sized (5.87±1.5 kg) but arboreal rodent, the porcupine (Erithrizon dorsatum), in terms of its ventilatory and heart rate responses to hypoxia and hypercapnia, and its blood characteristics.V T,f,T I andT E were measured by whole-body plethysmography in four awake individuals of each species. The woodchuck has a longerT E/T TOT (0.76±0.03) than the porcupine (0.61±0.03). The woodchuck had a higher threshold and significantly smaller slope to its CO2 ventilatory response compared to the porcupine, but showed no difference in its hypoxic ventilatory response. The woodchuck P50 of 27.8 was hardly different from the porcupine value of 30.7, but the Bohr factor, –0.72, was greater than the porcupine's, –0.413. The woodchuck breathing air has PaCO2=48 (±2) torr, PaO2=72 (±6), pHa=7.357 (±0.01); the porcupine blood gases are PaCO2=34.6 (±2.8), PaO2=94.9 (±5), pHa=7.419 (±0.03), suggesting a difference in PaCO2/pH set points. The woodchuck exhibited no reduction in heart rate with hypoxia, nor did it have the low normoxic heart rate observed in other burrowing mammals.  相似文献   

12.
This study quantified the air-breathing frequency (ABf in breaths h–1) and gill ventilation frequency (Vf in ventilations min–1) of tarpon Megalops atlanticusas a function of PO2, temperature, pH, and sulphide concentration. Ten tarpon held at normoxia at 22–33°C without access to atmospheric oxygen survived for eight days, and seven survived for 14 days (at which point the experiment was terminated) suggesting that the species is a facultative, rather than an obligate, air breather. At temperatures of 29°C and below ABf was highest and Vf was lowest at low oxygen partial pressures. Tarpon appear to switch from aquatic respiration to air breathing at PO2levels of roughly 40 torr. The gills were the primary organ for oxygen uptake in normoxia, and the air-breathing organ the primary mechanism for oxygen uptake in hypoxia. At 33°C, both ABf and Vf were elevated but highly variable, regardless of PO2. There were no mortalities in tarpon exposed to total H2S concentrations of 0–232µM (0–150.9µM H2S); however, high sulfide concentrations resulted in very high ABf and Vf near zero. Vf was reduced when pH was acidic. We conclude that air breathing provides an effective means of coping with the environmental conditions that characterize the eutrophic ponds and sloughs that juvenile tarpon typically inhabit.  相似文献   

13.
The Australian Yabby Cherax destructor voluntarily emerges from water to breathe air with increased frequency as water PO2 decreases. When the water PO2 declined below 2.7 kPa the crayfish spent >50% of time breathing air. The respiratory gas transport, acid-base, ionic and energetic status were quantified in simulations of this emersion behaviour to determine the benefits that the crayfish may gain from switching to air-breathing. C. destructor initially showed an elevated O2 uptake rate on emerging from hypoxic water, but after 1 h the O2 uptake rate was not different from that of crayfish in normoxic water. During 3 h of air breathing, subsequent to 2.7 kPa aquatic hypoxia, the haemolymph PO2 increased while oxygen content was essentially unchanged, although cardiac output increased 5-fold. The haemolymph PCO2 increased from 0.44 to 1.21 kPa after 3 h while the CO2 content increased from 3.47 to 8.66 mmol · l−1 and the pH decreased from 7.73 to 7.57 after 1 h in air. In air C. destructor eventually achieved an O2 uptake rate similar to that achieved in water. A general hyperglycaemia occurred without anaerobiosis. In air-breathing C. destructor, small changes in lactate appear to offset the decrease in haemocyanin-O2 affinity caused by acid Bohr shift. During air-breathing, decreased haemocyanin-O2 affinity assisted in maintaining O2 diffusion into the tissues, but the ATP content of the tail muscle decreased so that after 3 h in air the energy charge was only 0.59. The data are consistent with a specific depression of the Emden-Meyerhof pathway, preventing either lactate formation or oxidative phosphorylation in the tail muscle, despite a concomitant glycogenolysis. Accepted: 26 February 1998  相似文献   

14.
Synopsis Gill ventilation, breathing frequency, breath volume, oxygen extraction from the ventilatory water current and oxygen uptake through the gills were measured in flounder, Platichthys flesus, and plaice, Pleuronectes platessa, at water O2 tensions ranging from 35 to 155 mm Hg at 10° C. Ventilation volumes were similar in the two species at high water O2 tension. Exposure to hypoxic water elicited a larger increase in ventilation in the flounder. The per cent extraction of O2 from water decreased slightly in both species as water O2 tension was lowered. At comparable levels of ventilation O2 extraction was higher in flounder. At the higher levels of water O2 tension, O2 uptake across the gills of flounder was stable, the critical O2 tension being between 60 and 100 mm Hg. The plaice behaved as an oxygen conformer over the entire range of O2 tensions investigated. The superior ability of the flounder in maintaining OZ uptake across the gills during a reduction in water O2 tension may in part explain why the species, unlike plaice, inhabits very shallow waters with large fluctuations in dissolved oxygen.  相似文献   

15.
Oxygen uptake through water during early life of Anabas testudineus (Bloch)   总被引:1,自引:1,他引:0  
The O2 consumption (mg/hr) through water in case of Anabas testudineus during development and growth has been measured and its relationship to body weight or length studied.The logarithmic plot of 02 uptake through water either against body weight or length suggested a statistically significant (P > 3.53) two-component curve, the point of intersection being at 11 mg body weight and 1.78 cm body length. These are the theoretical values of weight or length at which the responsibility of supplementing nearly 40% of the total O2 demand through the newly developed air breathing organ falls in the early life of the fish. One of the impelling causes forcing developing fry of Anabas to adopt a bimodal gas exchange machinery seems to be 4 fold increase in the diffusion distance at the gills.  相似文献   

16.
The effect of relative meal size (0.5–24% body mass) on specific dynamic action (SDA) was assessed in Chinese catfish (Silurus asotus Linnaeus) (30.90±1.30 g) at 25.0°C; the cutlets of freshly killed loach without viscera, head and tail were used as a test meal. There was no significant difference in either SDA duration or peak oxygen consumption (VO2) among low meal size ranges. But both increased linearly as meal size increased from 2 to 24% without reaching a plateau. Factorial metabolic scope was 5.92 in fish fed with 24% body mass, the highest documented feeding metabolic scope value in fish till now. The Peak VO2 of satiated meal size groups (175.85±10.55 mg O2 h−1) was above 80% of maximum metabolic rate during locomotion recovery process (215.48±7.07 mg O2 h−1). The relationship between energy expended on SDA (E) and energy ingested (I) was described as: E=0.0000432I 2+0.140I+2.12. The lowest value of SDA coefficient appeared at 2% body mass group.  相似文献   

17.
Tumor hypoxia can be identified by [18F]FAZA positron emission tomography, or invasively using oxygen probes. The impact of anesthetics on tumor hypoxia remains controversial. The aim of this comprehensive study was to investigate the impact of isoflurane and ketamine/xylazine anesthesia on [18F]FAZA uptake and partial oxygen pressure (pO2) in carcinoma and muscle tissue of air- and oxygen-breathing mice.

Methods

CT26 colon carcinoma-bearing mice were anesthetized with isoflurane (IF) or ketamine/xylazine (KX) while breathing air or oxygen (O2). We performed 10 min static PET scans 1 h, 2 h and 3 h after [18F]FAZA injection and calculated the [18F]FAZA-uptake and tumor-to-muscle ratios (T/M). In another experimental group, we placed a pO2 probe in the tumor as well as in the gastrocnemius muscle to measure the pO2 and perfusion.

Results

Ketamine/xylazine-anesthetized mice yielded up to 3.5-fold higher T/M-ratios compared to their isoflurane-anesthetized littermates 1 h, 2 h and 3 h after [18F]FAZA injection regardless of whether the mice breathed air or oxygen (3 h, KX-air: 7.1 vs. IF-air: 1.8, p = 0.0001, KX-O2: 4.4 vs. IF-O2: 1.4, p < 0.0001). The enhanced T/M-ratios in ketamine/xylazine-anesthetized mice were mainly caused by an increased [18F]FAZA uptake in the carcinomas. Invasive pO2 probe measurements yielded enhanced intra-tumoral pO2 values in air- and oxygen-breathing ketamine/xylazine-anesthetized mice compared to isoflurane-anesthetized mice (KX-air: 1.01 mmHg, IF-air: 0.45 mmHg; KX-O2 9.73 mmHg, IF-O2: 6.25 mmHg). Muscle oxygenation was significantly higher in air-breathing isoflurane-anesthetized (56.9 mmHg) than in ketamine/xylazine-anesthetized mice (33.8 mmHg, p = 0.0003).

Conclusion

[18F]FAZA tumor uptake was highest in ketamine/xylazine-anesthetized mice regardless of whether the mice breathed air or oxygen. The generally lower [18F]FAZA whole-body uptake in isoflurane-anesthetized mice could be due to the higher muscle pO2-values in these mice compared to ketamine/xylazine-anesthetized mice. When performing preclinical in vivo hypoxia PET studies, oxygen should be avoided, and ketamine/xylazine-anesthesia might alleviate the identification of tumor hypoxia areals.  相似文献   

18.
Presence of an air pocket and its size play an important role in survival of victims buried in the avalanche snow. Even small air pockets facilitate breathing. We hypothesize that the size of the air pocket significantly affects the airflow resistance and work of breathing. The aims of the study are (1) to investigate the effect of the presence of an air pocket on gas exchange and work of breathing in subjects breathing into the simulated avalanche snow and (2) to test whether it is possible to breathe with no air pocket. The prospective interventional double-blinded study involved 12 male volunteers, from which 10 completed the whole protocol. Each volunteer underwent two phases of the experiment in a random order: phase “AP”—breathing into the snow with a one-liter air pocket, and phase “NP”—breathing into the snow with no air pocket. Physiological parameters, fractions of oxygen and carbon dioxide in the airways and work of breathing expressed as pressure-time product were recorded continuously. The main finding of the study is that it is possible to breath in the avalanche snow even with no air pocket (0 L volume), but breathing under this condition is associated with significantly increased work of breathing. The significant differences were initially observed for end-tidal values of the respiratory gases (EtO2 and EtCO2) and peripheral oxygen saturation (SpO2) between AP and NP phases, whereas significant differences in inspiratory fractions occurred much later (for FIO2) or never (for FICO2). The limiting factor in no air pocket conditions is excessive increase in work of breathing that induces increase in metabolism accompanied by higher oxygen consumption and carbon dioxide production. The presence of even a small air pocket reduces significantly the work of breathing.  相似文献   

19.
To explore a potential conflict between air breathing and acid-base regulation in the bowfin (Amia calva), we examined how individuals with access to air differed from fish without air access in their response to acidosis. After exhaustive exercise, bowfin with access to air recovered significantly more slowly from the acidosis than fish without air access. While arterial blood pH (pH(a)) of fish without air access recovered to resting levels by 8 h, pH(a) was still significantly depressed in fish having access to air. In addition, Pco(2) was slightly more elevated in fish having air access than those without it. Fish with access to air still had a significant metabolic acid load after 8-h recovery, while those without air access completely cleared the load within 4 h. These results suggest that bowfin with access to air were breathing air and, consequently, were less able to excrete CO(2) and H(+) and experienced a delayed recovery. In contrast, during exposure to low pH, air breathing seemed to have a protective effect on acid-base status in bowfin. During exposure to low pH water, bowfin with access to air developed a much milder acidosis than bowfin without air access. The more severe acidosis in fish without air access was caused by an increased rate of lactic acid production. It appears that enhanced O(2) delivery allowed air-breathing bowfin to avoid acidosis-induced anaerobic metabolism and lactic acid production. In addition, during low pH exposure, plasma Na(+) and Cl(-) concentrations of fish without air access fell slightly more rapidly than those in fish with air access, indicating that the branchial ventilatory changes associated with air breathing limited, to some degree, ion losses associated with low pH exposure.  相似文献   

20.
Effect of AMPA on Cerebral Cortical Oxygen Balance of Ischemic Rat Brain   总被引:2,自引:0,他引:2  
We tested the hypothesis that the excitatory neurotransmitter receptor agonist, alpha amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), would worsen cerebral cortical oxygen supply/consumption balance during focal ischemia. In this study, we compared regional cerebral blood flow, arterial and venous O2 saturation, O2 extraction and oxygen consumption of ischemic and AMPA treated ischemic and control regions of rat brain. Ischemia was induced by middle cerebral artery (MCA) occlusion in isoflurane (1.4%) anesthetized Wistar rats. Twenty minutes after MCA occlusion, 10–5 M AMPA was applied to the ischemic cortex (IC) for a period of 40 min; the fluid was changed every 10 min. After 1 hr of ischemia, animals were sacrificed and regional cerebral blood flow (rCBF) was determined using the C14-iodoantipyrine autoradiographic technique. Regional arterial and venous oxygen saturation were determined microspectrophotometrically. In control, the cerebral blood flow and oxygen consumption of the IC were significantly lower than the contralateral cortex (rCBF: 46 ± 20 vs. 81 ± 39 ml/min/100g, O2 consumption: 2.8 ± 1.4 vs. 3.6 ± 1.4 ml O2/min/100g). 10–5 M AMPA did not significantly alter regional cerebral blood flow and oxygen consumption of the IC, but did decrease the average venous O2 saturation of the IC from 50.2 ± 3.9% to 46.7 ± 1.6%. AMPA also significantly increased the frequency of small veins with less than 45% O2 saturation in the IC (8 out of 56 veins in IC vs. 18 out of 56 veins in AMPA treated IC). Thus, topical application of 10–5 M AMPA to the ischemic area worsens cerebral O2 balance and suggests that excitatory amino acids contribute to the degree of cerebral ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号