首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 433 毫秒
1.
2.
3.
4.
5.
6.
7.
Bacterially-expressed fusion proteins containing the DNA-(region C) or hormone-binding (region E) domains of the chicken progesterone receptor (cPR) fused to the C terminus of Escherichia coli beta-galactosidase were analysed for the specificity of interaction with natural and synthetic hormone-responsive elements (HREs) and progestins, respectively. The purified fusion protein containing the progestin-binding domain bound progesterone with an apparent Kd of 1.0-1.5 nM and was specifically photocross-linked with the synthetic progestin R5020 in crude bacterial lysates. Labelling of intact bacterial cells with [3H]R5020 revealed that the majority, if not all, of the bacterially produced hormone-binding domain was active. No differences in the binding to a synthetic palindromic glucocorticoid/progestin-responsive element (GRE/PRE) were found when the bacterially produced cPR DNA-binding domain was compared in methylation interference assays with the full-length chicken progesterone receptor form A expressed in eukaryotic cells. The study of dissociation kinetics, however, revealed differences in the half-life of the complexes formed between the palindromic GRE/PRE and either the receptor form A or the fusion protein containing the cPR DNA-binding domain. DNase I protection experiments demonstrated that the bacterially produced region C of the cPR generated specific 'footprints' on the mouse mammary tumour virus long terminal repeat (MMTV-LTR) which were nearly identical to those previously reported for the rat glucocorticoid receptor.  相似文献   

8.
Using a novel Escherichia coli system we have successfully overexpressed a region of the chicken progesterone receptor which encodes both the DNA- and hormone-binding domains. The expression system produces the truncated receptor fragment as an in-frame fusion with ubiquitin. This strategy greatly enhances both the solubility and stability of fusion proteins expressed in E. coli. Synthesis has been further improved by induction of the lambda PL promoter with nalidixic acid at low growth temperatures (less than or equal to 30 degrees C) rather than use of conventional heat induction protocols. We can produce 10 mg of receptor fragment/liter of cells using this system, and we estimate that at least 0.3 mg of this receptor material is biologically active, as assessed by DNA-binding and hormone-binding assays. Receptor produced in this manner is almost indistinguishable from authentic oviduct progesterone receptor using the criteria of hormone-binding specificity and affinity and binding to a progesterone response element. This expression system offers a cheap convenient method for the production of mg amounts of biologically active derivatives of progesterone receptor for biochemical studies.  相似文献   

9.
10.
11.
12.
13.
Genomic and cDNA clones that code for a protein with structural and biochemical properties similar to the receptor protein kinases from animals were obtained from Arabidopsis. Structural features of the predicted polypeptide include an amino-terminal membrane targeting signal sequence, a region containing blocks of leucine-rich repeat elements, a single putative membrane spanning domain, and a characteristic serine/threonine-specific protein kinase domain. The gene coding for this receptor-like transmembrane kinase was designated TMK1. Portions of the TMK1 gene were expressed in Escherichia coli, and antibodies were raised against the recombinant polypeptides. These antibodies immunodecorated a 120-kD polypeptide present in crude extracts and membrane preparations. The immunodetectable band was present in extracts from leaf, stem, root, and floral tissues. The kinase domain of TMK1 was expressed as a fusion protein in E. coli, and the purified fusion protein was found capable of autophosphorylation on serine and threonine residues. The possible role of the TMK1 gene product in transmembrane signaling is discussed.  相似文献   

14.
15.
K Weis  U Ryder    A I Lamond 《The EMBO journal》1996,15(8):1818-1825
Nuclear proteins are targeted through the nuclear pore complex (NPC) in an energy-dependent reaction. The import reaction is mediated by nuclear localization sequences (NLS) in the substrate which are recognized by heterodimeric cytoplasmic receptors. hSRP1 alpha is an NLS-binding subunit of the human NLS receptor complex and is complexed in vivo with a second subunit of 97 kDa (p97). We show here that a short amino-terminal domain in hSRP1 alpha is necessary and sufficient for its interaction with p97. This domain is conserved in other SRP1-like proteins and its fusion to a cytoplasmic reporter protein is sufficient to promote complete nuclear import, circumventing the usual requirement for an NLS receptor interaction. The same amino-terminal domain inhibits import of NLS-containing proteins when added to an in vitro nuclear transport assay. While full-length hSRP alpha is able to leave the nucleus, the amino-terminal domain alone is not sufficient to promote exit. We conclude that hSRP1 alpha functions as an adaptor to tether NLS-containing substrates to the protein import machinery.  相似文献   

16.
delta-Aminolevulinate synthase, the first enzyme in the heme biosynthetic pathway, is encoded by the nuclear gene HEM1. The enzyme is synthesized as a precursor in the cytoplasm and imported into the matrix of the mitochondria, where it is processed to its mature form. Fusions of beta-galactosidase to various lengths of amino-terminal fragments of delta-aminolevulinate synthase were constructed and transformed into yeast cells. The subcellular location of the fusion proteins was determined by organelle fractionation. Fusion proteins were found to be associated with the mitochondria. Protease protection experiments involving the use of intact mitochondria or mitoplasts localized the fusion proteins to the mitochondrial matrix. This observation was confirmed by fractionation of the mitochondrial compartments and specific activity measurements of beta-galactosidase activity. The shortest fusion protein contains nine amino acid residues of delta-aminolevulinate synthase, indicating that nine amino-terminal residues are sufficient to localize beta-galactosidase to the mitochondrial matrix. The amino acid sequence deduced from the DNA sequence of HEM1 showed that the amino-terminal region of delta-aminolevulinate synthase was largely hydrophobic, with a few basic residues interspersed.  相似文献   

17.
18.
19.
20.
Progesterone is widely used to prolong gestation in women at risk of preterm labour (PTL), and acts at least in part via the inhibition of inflammatory cytokine-induced prostaglandin synthesis. This study investigates the mechanisms responsible for this inhibition in human myometrial cells. We used reporter constructs to demonstrate that interleukin 1beta (IL-1β) inhibits progesterone driven PRE activation via p65 activation and that IL-1β reduced progesterone driven gene expression (FKBP5). Conversely, we found that the activity of a p65-driven NFκB reporter construct was reduced by overexpression of progesterone receptor B (PRB) alone and that this was enhanced by the addition of MPA and that both MPA and progesterone suppressed IL-1β-driven cyclo-oxygenase-2 (COX-2) expression. We found that over-expressed Halo-tagged PRB, but not PRA, bound to p65 and that in IL-1β-treated cells, with no overexpression of either PR or p65, activated p65 bound to PR. However, we found that the ability of MPA to repress IL-1β-driven COX-2 expression was not enhanced by overexpression of either PRB or PRA and that although the combined PR and GR antagonist Ru486 blocked the effects of progesterone and MPA, the specific PR antagonist, Org31710, did not, suggesting that progesterone and MPA act via GR and not PR. Knockdown using siRNA confirmed that both MPA and progesterone acted via GR and not PR or AR to repress IL-1β-driven COX-2 expression. We conclude that progesterone acts via GR to repress IL-1β-driven COX-2 activation and that although the interaction between p65 and PRB may be involved in the repression of progesterone driven gene expression it does not seem to be responsible for progesterone repression of IL-1β-induced COX-2 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号