首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Summary Six primary triticale lines were produced from two advanced breeding lines of Triticum durum and three inbred genotypes of Secale cereale. The wheat and rye parents and the triticale derivatives were crossed in all possible combinations within each species group. Chiasma and univalent frequency of parents and hybrids were determined. The primary triticale lines had more univalents and less chiasmata per pollen mother cell than the corresponding wheat and rye parents together. The parental wheat F1 exhibited negative heterosis for chiasma frequency whereas all rye hybrids had much higher chiasma frequencies than their inbred parents. Triticale F1s generally showed lower chiasma frequencies and more univalents than their parents, but the degree of pairing failure was dependent upon which of the parental species within the triticale, wheat or rye, was in the heterozygous state. F1s with heterozygous wheat genome only showed the least reduction in chiasma number (presumably caused by gene actions within the wheat genome), while F1s with heterozygous rye genome showed high reduction in chiasma frequency and an increase in pairing failure (induced by negative interactions between the heterozygous rye and the wheat genome in triticale). A high correlation was found between the frequency of undisturbed pollen mother cells and the frequency of aneuploids in the subsequent generation. A higher number of aneuploids occurred in those populations which were heterozygous for the rye genome.  相似文献   

2.
The meiotic behavior of pollen mother cells (PMCs) of the F2 and F3 progeny from Triticum timopheevii × hexaploid wild oat was investigated by cytological analysis and sequential C-banding-genomic in situ hybridization (GISH) in the present study. A cytological analysis showed that the chromosome numbers of the F2 and F3 progeny ranged from 28 to 41. A large number of univalents, lagging chromosomes, chromosome bridges and micronuclei were found at the metaphase I, anaphase I, anaphase II and tetrad stages in the F2 and F3 progeny. The averages of univalents were 3.50 and 2.73 per cell, and those of lagging chromosomes were 3.37 and 1.87 in the F2 and F3 progeny, respectively. The PMC meiotic indices of the F2 and F3 progeny were 12.22 and 20.34, respectively, indicating considerable genetic instability. A sequential C-banding-GISH analysis revealed that some chromosomes and fragments from the hexaploid wild oat were detected at metaphase I and anaphase I in the progeny, showing that the progeny were of true intergeneric hybrid origin. The alien chromosomes 6A, 7A, 3C and 2D were lost during transmission from F2 to F3. In addition, partial T. timopheevii chromosomes appeared in the form of univalents or lagging chromosomes, which might result from large genome differences between the parents, and the wild oat chromosome introgression interfered with the wheat homologues’ normally pairing.  相似文献   

3.
Summary Nine Triticum durumT. monococcum amphiploids (AABBAmAm) were synthesized by chromosome doubling of sterile triploid F1 hybrids involving nine T. durum (AABB) cultivars and a T. monococcum (AmAm) line. The triploid F1 hybrids had a range of 4–7 bivalents and 7–13 univalents per PMC. The synthetic amphiploids, however, showed a high degree of preferential pairing of chromosomes of the A genomes of diploid and tetraploid wheats. The amphiploids were meiotically stable and fully fertile. Superiority of four amphiploids for tiller number per plant, 100-grain weight, protein content and resistance to Karnal bunt demonstrated that these could either be commercially exploited as such after overcoming certain inherent defects or used to introgress desirable genes into durum and bread wheat cultivars. Methods for improvement of these amphiploids are discussed.  相似文献   

4.
To explore the cytogenetical relationships ofElymus andAgropyron of the tribe Triticeae, Gramineae, two species of AsiaticElymus, E. sibiricus (2n=28) andE. dahuricus (2n=42), and a JapaneseAgropyron, A. tsukushiense (2n=42) were crossed. Pentaploid and hexaploid F1 hybrids were vigorous. All pollen grains were aborted and none of the hybrids produced seed. For the crossE. sibiricus × A. tsukushiense, the average chromosome pairing per cell at the MI of the PMCs in the F1 was 16.38 univalents, 8.93 bivalents, 0.25 trivalents and 0.01 quadrivalents; for the crossE. dahuricus × A. tsukushiense, it was 4.41 univalents, 17.67 bivalents, 0.32 trivalents, 0.28 quadrivalents and 0.04 quinquevalents; and for the crossE. dahuricus × E. sibiricus, it was 17.11 univalents, 8.74 bivalents, 0.04 trivalents and 0.07 quadrivalents. From the present results, it is concluded thatE. sibiricus contains one genome andE. dahuricus contains two genomes, which are homologous to those ofA. tsukushiense, and that the third genome ofE. dahuricus might be partially homologous to the remaining genome ofA. tsukushiense. This conclusion is also supported by the cytogenetical analysis ofE. dahuricus × E. sibiricus. Contribution No. 27 from the Plant Germ-plasm Institute, Faculty of Agriculture, Kyoto University, Kyoto, Japan.  相似文献   

5.
Summary Tetraploid F1 hybrids between Ipomoea batatas, sweet potato (2n = 6x = ca. 90), and diploid (2n = 2x = 30) I. trifida (H. B. K.) Don. showed various degrees of fertility reduction. The present study aimed to clarify its causes by cytological analysis of meiotic chromosome behavior in the diploid and sweet potato parents and their tetraploid hybrids. The diploid parents showed exclusively 15 bivalents, and the sweet potato parents exhibited almost perfect chromosome pairing along with predominant multivalent formation. Their hybrids (2n = 4x= 57–63) formed 2.6–5.0 quadrivalents per cell, supporting the autotetraploid nature. The meiotic aberratios of the hybrids were characterized by the formation of univalents, micronuclei, and abnormal sporads (monad, dyad, triad, and polyad). The causes underlying these aberrations were attributed in part to the multivalent formation, and in part to a disturbance in the spindle function. Three hybrids showing serious meiotic aberrations were very low in fertility. The utilization of the sweet potato-diploid I. trifida hybrids for sweet potato improvement is described and, further, the role of interploidy hybridization in the study of the sweet potato evolution is discussed.  相似文献   

6.
Dwarfing polish wheat is a dwarfing accession of Triticum polonicum L. from Xinjiang of China. In the present study, the artificial hybridization between dwarfing polish wheat and two accessions of Aegilops tauschii Cosson. (AS60 and AS65) was carried out, and the F1 hybrids were obtained successfully without using embryo rescue techniques for the first time. The crossabilities of hybrids T. polonicum × Ae. tauschii (AS60) and T. polonicum × Ae. tauschii (AS65) were 1.67% and 0.60% respectively. Only the hybrids of T. polonicum × Ae. tauschii (AS60) germinated well, and 24 F1 hybrid plants were obtained. All the F1 hybrid plants grew vigorously, and the morphological traits were similar to bread wheat. The F1 plants had some obvious traits inherited from T. polonicum and Ae. tauschii and were completely sterile. Chromosome pairing in the hybrid was characterized by a large number of univalents, with an average of 20.56 and 0.22 bivalents per PMC, and no ring bivalents and multivalents were observed. Furthermore, the potential value of the F1 hybrids between T. polonicum and Ae. tauschii for studying wheat origin and breeding are discussed. The article is published in the original.  相似文献   

7.
Summary Intergeneric hybrids of Triticum aestivum (2n=42,AABBDD) with Agropyron ciliare (2n= 28,SSYY), A. trachycaulum (2n=28,SSHH), A. yezoense (2n=28,SSYY) and A. scirpeum (2n=28) are reported for the first time. F1 hybrids of T. aestivum were also produced with A. intermedium (2n=42,E1E1E2E2Z1Z1) and A. junceum (2n=14,JuJu). All wheat-Agropyron hybrids were obtained by embryo rescue technique. Cultivars and reciprocal crosses differed for seed set, seed development and F1 plant production. The F1 hybrids were sterile. Attempts to obtain amphiploids were unsuccessful. However, backcross derivatives were obtained with wheat as the recurrent parent.The level of chromosome pairing in A. trachycaulum x wheat, A. yezoense x wheat and wheat x A. junceum hybrids provided no evidence of homologous or homoeologous pairing. Mean pairing frequencies in A. ciliare x wheat, wheat x A. scirpeum and wheat x A. intermedium hybrids indicated homoeologous or autosyndetic pairing. Ph gene was more effective in regulating homoeologous pairing in A. yezoense x wheat hybrids than in A. ciliare x wheat hybrid. Chromosome pairing data of BC1 derivatives indicated that either some of the wheat chromosomes were eliminated or Agropyron chromosomes caused reduced pairing of wheat homologues.Contribution No. 82-653-J, Department of Plant Pathology, Kansas State Agricultural Experiment Station, Manhattan, Kan, USA  相似文献   

8.
Chromosome pairing in tetraploid Secalotriticum was analysed. In the studied plants wheat chromosomes in PMCs during metaphase I showed a higher degree of pairing, in comparison to the rye genome. This is reflected in a very low frequency of univalents and a higher frequency of ring bivalents. The occurrence of wheat univalents was dependent on wheat mixogenome. In plants with an unstabilized fourth homoeologous group, a heteromorphic bivalent 4A-4B was observed in 39.9% of PMCs, whereas in plants with an unstabilized seventh homoeologous group, chromosome 7A-7B pairing was found in all analysed cells. Rye univalents were present in all plants studied. The highest mean frequency of univalents and rod bivalents, both in wheat and in rye genomes, were recorded in plants whose first homoeologous group contained chromosome 1A. The mean number of terminal chiasmata per chromosome amounted to 1.78 in the wheat genome and 1.36 in the rye genome. It may be concluded that the plasmagenes in Secalotriticum did not increase the meiotic stability of the rye genome and also did not stabilize plant fertility.  相似文献   

9.
Investigations on the meiotic behaviour of chromosomes in interspecific hybrids (2n=6x=42) between Hordeum lechleri (6x) and H. procerum (6x) and in their component haploids have been utilized to assess the nature of pairing and the extent of genome homology between the two species. In the F1 hybrids an average of 25 (60%) chromosomes associated at metaphase I, mostly as bivalents. A majority (60%) of the pollen mother cells (PMCs) in H. procerum haploids (2n=3x=21) displayed 21 univalents and even in the remainder, a maximum of two rod bivalents were formed resulting in an average of 0.52 bivalents per cell. In haploids of H. lechleri (2n=3x=21) however, 30% of chromosomes pair. The sum of the chromosomal associations in the component haploids represents only 17% of the complement, far below the observed frequency (60%) in the hybrids. Thus, the pairing displayed in hybrids between H. lechleri and H. procerum was mostly allosyndetic and suggestive of two genomes being common in these species.In haploid H. procerum 1/3 of the PMCs displayed a tripolar organisation of chromosomes leading to triad and hexad formation after divisions I and II respectively. The significance of hexad formation in the trihaploid H. procerum and a possible suppression of homoeologous pairing in H. procerum haploids are discussed.  相似文献   

10.
The breeding value of tetraploid F1 hybrids between tetrasomic tetraploid S. tuberosum and the disomic tetraploid wild species S. acaule was examined. The F1 hybrids showed a tuber yield and appearance comparable to those of their cultivated parent, indicating a potential as acceptable breeding stocks despite the 50% contribution to their pedigree from wild S. acaule. The cytological behavior of the tetraploid F1 hybrids was examined to determine the probability of recombination for the introgression of S. acaule genes. The majority of the meiotic configurations at metaphase I was bivalents and univalents with mean frequencies of 17.6 and 9.9, respectively. Further, a low frequency of trivalents and quadrivalents was observed. An acceptable low level of meiotic irregularities were observed at the later stages of microsporogenesis, and a reasonable level of pollen stainability was obtained. Therefore, these hybrids could likely be employed for further introgression. From the cytological observations, the following speculations were drawn: (1) some genomic differentiation exists between the S. acaule genomes, (2) at least one of the S. acaule genomes may be homoeologous to the S. tuberosum genomes, (3) intergenomic recombination would likely occur due to the nature of the genomic constitution of the hybrids, and (4) the nature of sesquiploidy of the hybrids may facilitate efficient introgression and establishment of unique aneuploid and euploid recombinant genetic stocks.  相似文献   

11.
A. Bernardo  N. Jouve 《Genetica》1988,77(2):85-88
In a cytological analysis of the meiotic behaviour in PMCs of five hybrids between hexaploid triticale and durum wheat, Triticum turgidum L., chromosome association at meiotic first metaphase and the behaviour of rye univalents at first anaphase were analyzed. The chromosomes of the B genome, chromosomes 4A and 7A (disomic condition), and the seven rye chromosomes, could be distinguished by their C-banding pattern. No wheat-rye paring was detected at metaphase I. Rye univalents were observed as laggards which disjoined either predominantly equationaly (2R, 3R, 4R, 5R and 7R) or predominantly reductionaly (1R and 6R). Misdivision occurred in up to 3% of rye univalents.  相似文献   

12.
Metaphase-I chromosome association in PMCs of five F1 hybrids 6x-triticale x T. turgidum (2n=5x=35 and genomes AABBR), and 13 plants from their backross or self offspring is reported. In wheat 18 chromosome arms and in rye 14 arms were recognized after C-banding and individually studied. Plants of backcross and F2 showed variability for number and type of rye chromosomes, having in common the 28 durum wheat chromosomes (AABB). By testing meiotic association in plants with different rye chromosome constitutions, significant negative correlations were found. A clear negative effect of rye heterochromatin on pairing in wheat chromosomes is observed, the influence being more pronounced for large arms than for the short ones.  相似文献   

13.
Summary Intergeneric hybrids were produced between common wheat, Triticum aestivum (2n=6x=42, AABBDD) and wheatgrass, Etymus caninus (Agropyron caninum) (2n=4x=28, SSHH) — the first successful report of this cross. Reciprocal crosses and genotypes differed for percent seed set, seed development and F1 hybrid plant production. With E. caninus as the pollen parent, there was no hybrid seed set. In the reciprocal cross, seed set was 23.1–25.4% depending upon wheat genotype used. Hybrid plants were produced only by rescuing embryos 12–13 days post pollination with cv Chinese Spring as the wheat parent. Kinetin in the medium facilitated embryo germination but inhibited root development and seedling growth. The hybrids were vigorous, self sterile, and intermediate between parents. These had expected chromosome number (2n=5x=35, ABDSH), very little chromosome pairing (0.51 II, 0.04 III) and some secondary associations. The hybrids were successfully backcrossed with wheat. Chromosome number in the BC1 derivatives varied 54–58 with 56 as the modal class. The BC1 derivatives showed unusually high number of rod bivalents or reduced pairing of wheat homologues. These were sterile and BC2 seed was produced using wheat pollen.  相似文献   

14.
Diploid-like chromosome pairing in polyploid wheat is controlled by several Ph (pairing homoeologous) genes with major and minor effects. Homoeologous pairing occurs in either the absence of these genes or their inhibition by genes from other species (Ph I genes). We transferred Ph I genes from Triticum speltoides (syn Aegilops speltoides) to T. aestivum, and on the basis of further analysis it appears that two duplicate and independent Ph I genes were transferred. Since Ph I genes are epistatic to the Ph genes of wheat, homoeologous pairing between the wheat and alien chromosomes occurs in the F1 hybrids. Using the Ph I gene stock, we could demonstrate homoeologous pairing between the wheat and Haynaldia villosa chromosomes. Since homoeologous pairing occurs in F1 hybrids and no cytogenetic manipulation is needed, the Ph I gene stock may be a versatile tool for effecting rapid and efficient alien genetic transfers to wheat.Contribution no. 93-435-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, KS 66506-5502, USA  相似文献   

15.
Summary Combining ability studies for grain yield and its primary component traits in diallel crosses involving seven diverse wheat cultivars of bread wheat (Triticum aestivum L.) over generations F1-F5 are reported. The general and specific combining ability variances were significant in all generations for all the traits except specific combining ability variance for number of spikes per plant in the F5. The ratio of general to specific combining ability variances was significant for all the traits except grain yield in all the generations. This indicated an equal role of additive and non-additive gene effects in the inheritance of grain yield, and the predominance of the former for its component traits. The presence of significant specific combining ability variances in even the advanced generations may be the result of an additive x additive type of epistasis or evolutionary divergence among progenies in the same parental array. The relative breeding values of the parental varieties, as indicated by their general combining ability effects, did not vary much over the generations. The cheap and reliable procedure observed for making the choice of parents, selecting hybrids and predicting advanced generation (F5) bulk hybrid performance was the determination of breeding values of the parents on the relative performance of their F2 progeny bulks.  相似文献   

16.
Cytogenetical studies were carried out on the successive generations of offsprings from the induced tetraploid hybrid (2n = 32) betweenRanunculus silerifolius (2n = 16) andR. chinensis (2n = 16). Aneuploids, 2n = 30 to 35, frequently occurred. In latter subsequent generations the deviation of aneuploids increased, but the proportion of euploids decreased, accompanied by the reduction of fertility of pollen grains and seed sets. F2 and F4 PMCs constantly exhibited meiotic abnormality, i.e. formation of quadrivalents and univalents. The speciation process ofR. cantoniensis (2n = 32), which was presumed to arise from tetraploid hybrids between the above two species, is discussed on the basis of the above evidences.Former contributions of this series areOkada & Tamura (1977) andOkada (1984).  相似文献   

17.
Summary The PMCs of 74 diploid hybrids involving ten H. vulgare varieties and three H. bulbosum lines were analysed at metaphase I and chromosome number and chiasma frequency recorded. There were differences between parental combinations and between plants within those combinations for both chromosome and chiasma number. It is suggested that these characters are controlled by both parents and that differences between plants within families reflect the heterozygosity of the H. bulbosum parents. Chromosomally stable, high pairing lines have been identified for use in a backcrossing programme to introduce H. bulbosum characters to the H. vulgare germplasm.  相似文献   

18.
A detailed analysis of microsporogenesis was carried out in three diploid lily cultivars (2n=2x=24) and three diploid interspecific hybrids (2n=2x=24) using DNA in situ hybridisation methods (GISH and FISH). In cvs. Gelria (Lilium longiflorum; L genome), Connecticut King and Mont Blanc (both Asiatic hybrids; Agenome) meiosis was regular and only haploid gametes were formed while the three interspecific hybrids between L. longiflorum×Asiatic hybrid (LA) showed a variable frequency of meiotic nuclear restitution and stainable 2n-pollen formation ranging from 3% to 30%. An analysis of meiotic chromosome behaviour of the LA hybrids through GISH and FISH revealed that: (1) the parental chromosomes could be clearly discriminated into univalents, half-bivalents and bivalents in the PMCs; (2) in some of the PMCs the entire complement was present either as univalents or half-bivalents which had the potential to divide equationally (following centromere division) during the first division leading to first division restitution (FDR) gametes; (3) more frequently, however, in one and the same PMC the univalents and half-bivalents divided equationally whereas the bivalents disjoined reductionally at the same time giving rise to 2n-gametes that could vary from the well-known FDR or SDR 2n-gametes. We indicate this novel type of restitution mechanism as Indeterminate Meiotic Restitution (IMR). In order to confirm the occurrence of IMR gametes, the chromosome constitutions of eight triploid BC1 progenies derived from backcrossing the 2n-gamete producing the LAhybrids to the Asiatic hybrid parents were analysed through in situ hybridisation. The results indicated that there were seven BC1 plants in which FDR 2n-gametes, with or without homoeologous recombinations, were functional, whereas in one case the 2n-gamete resulting from IMR was functional. In the latter, there was evidence for the occurrence of genetic recombination through homoeologous crossing-over as well as through the assortment of homoeologous chromosomes. A singular feature of the IMR 2n-gamete was that although it transmitted a euploid number of 24 chromosomes to the BC1 progeny, the number of chromosomes transmitted from the two parental species was dissimilar: 9 L-genome chromosomes and 15 A-genome chromosomes instead of 12 of each. Received: 15 May 2000 / Accepted: 4 December 2000  相似文献   

19.
The normal course of meiosis depends on regular pairing of homologous chromosomes. In intergeneric hybrids, including those of wheat, there is no chromosome pairing because there are no homologs. In F1 wheat/rye hybrids, pairing is largely prevented by the pairing homoeologous1 (Ph1) gene. In its presence, there are only rare instances of pairing; most chromosomes are univalent, and their orientation at metaphase I initiates different pathways of the meiotic cycle. The meiotic-like pathway includes a combination of the reductional and the equational + reductional steps at AI followed by the second division. The resulting gametes are mostly non-functional. The mitotic-like pathway involves equational division of univalents at AI and the absence of the second division. Any fertility of wheat/rye hybrids depends on the production of unreduced gametes arising from meiotic restitution (mitotic-like division). We examined the meiotic pairing in wheat/rye hybrids created from wheat lines with single rye chromosome substitutions and Ph1 present. This guaranteed F1 meiosis with one pair of rye homologs. All hybrids formed bivalents, but proportions of meiocytes with bivalents varied. In the meiocytes where bivalents were present, there was a higher tendency for the meiotic-like pathway, while in meiocytes where bivalent pairing failed, the tendency was stronger for the mitotic-like pathway. Among the equationally dividing cells, we observed more than 90 % of meiocytes without bivalents, where rye homologs did not form bivalents, too. The data indicate a potential application of wheat/rye lines in producing genetic stocks of amphidiploids with designated genomic constitutions.  相似文献   

20.
No interspecific hybrids between C. amoena ssp. huntiana and C. lassenensis were found in a naturally occurring sympatric population. The few F1-diploid hybrids produced experimentally showed a wide range as well as a high degree of meiotic irregularities which are probably the main factors in determining hybrid sterility. In most meiocytes only univalents were present at M1. The majority of M1 associations encountered were non-homologous pseudo-associations, the rest were chiasmate-like and some of these could be homoeologous. Meiotic abnormalities resulted, in part, from such pseudo-associations together with precocious division of univalents and fragmentation prior to A1. Pollen tetrad analysis revealed higher numbers of microspores produced from a single hybrid PMC, apparently as a result of microsporocyte supernumerary divisions. These microspores varied in size and number of nuclei and were virtually all sterile. The magnitude of F1 cytological abnormalities and the extremely well developed reproductive isolation between these two otherwise relatively close species, indicate a karyotype diversity that could happen only if we assume extensive chromosomal rearrangements resulting in profound differences between their respective genomes.Scientific journal series paper 409, contribution from the Department of Biological Sciences, Northern Illinois University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号