首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Caribbean, the fungus Aspergillus sydowii is currently causing an epizootic among sea fan corals (Gorgonia spp.). To elucidate potential factors that may have facilitated the emergence of this disease, we characterized and compared temperature requirements, susceptibility to coral crude extracts, and metabolic profiles of pathogenic (marine) and non-pathogenic (terrestrial) strains of A. sydowii. Growth of all A. sydowii strains were observed at all temperatures tested (22–36 °C) with an optimum of approximately 30 °C. Sea fan crude extracts inhibited growth of A. sydowii but were less effective at higher temperatures. Thus, temperature is likely to have a strong influence on the dynamics of the Gorgonia–Aspergillus interaction by promoting the growth of the pathogen while reducing the efficacy of host resistance. Metabolically, marine A. sydowii strains pathogenic to sea fans were distinct from non-pathogenic terrestrial strains.  相似文献   

2.
Caribbean corals, including sea fans (Gorgonia spp.), are being affected by severe and apparently new diseases. In the case of sea fans, the pathogen is reported to be the fungus Aspergillus sydowii, and the disease is named aspergillosis. In order to understand coral diseases and pathogens, knowledge of the microbes associated with healthy corals is also necessary. In this study the fungal community of healthy Gorgonia ventalina colonies was contrasted with that of diseased colonies. In addition, the fungal community of healthy and diseased tissue within colonies with aspergillosis was contrasted. Fungi were isolated from healthy and diseased fans from 15 reefs around Puerto Rico, and identified by sequencing the nuclear ribosomal ITS region and by morphology. Thirty fungal species belonging to 15 genera were isolated from 203 G. ventalina colonies. Penicillum and Aspergillus were the most common genera isolated from both healthy and diseased fans. However, the fungal community of healthy fans was distinct and more diverse than that of diseased ones. Within diseased fans, fungal communities from diseased tissues were distinct and more diverse than from healthy tissue. The reduction of fungi in diseased colonies may occur prior to infection due to environmental changes affecting the host, or after infection due to increase in dominance of the pathogen, or because of host responses to infection. Data also indicate that the fungal community of an entire sea fan colony is affected even when only a small portion of the colony suffers from aspergillosis. An unexpected result was that A. sydowii was found in healthy sea fans but never in diseased ones. This result suggests that A. sydowii is not the pathogen causing aspergillosis in the studied colonies, and suggests several fungi common to healthy and diseased colonies as opportunistic pathogens. Given that it is not clear that Aspergillus is the sole pathogen, calling this disease aspergillosis is an oversimplification at best. Communicated by Biology Editor Dr Michael Lesser  相似文献   

3.
Nosema ceranae is a recently described pathogen of Apis mellifera and Apis cerana. Relatively little is known about the distribution or prevalence of N. ceranae in the United States. To determine the prevalence and potential impact of this new pathogen on honey bee colonies in Virginia, over 300 hives were sampled across the state. The samples were analyzed microscopically for Nosema spores and for the presence of the pathogen using real-time PCR. Our studies indicate that N. ceranae is the dominant species in Virginia with an estimated 69.3% of hives infected. Nosema apis infections were only observed at very low levels (2.7%), and occurred only as co-infections with N. ceranae. Traditional diagnoses based on spore counts alone do not provide an accurate indication of colony infections. We found that 51.1% of colonies that did not have spores present in the sample were infected with N. ceranae when analyzed by real-time PCR. In hives that tested positive for N. ceranae, average CT values were used to diagnose a hive as having a low, moderate, or a heavy infection intensity. Most infected colonies had low-level infections (73%), but 11% of colonies had high levels of infection and 16% had moderate level infections. The prevalence and mean levels of infection were similar in different regions of the state.  相似文献   

4.
5.
Both field and laboratory studies were used to investigate the effects of temperature limitation and nutrient availability on seasonal growth dynamics of Laurencia papillosa and Gracilaria coronopifolia from a nearshore coral reef in the southern tip of Taiwan during 1999-2000. L. papillosa was a summer blooming alga abundant in August-November and G. coronopifolia was abundant year round except April-May. L. papillosa blooms in the summer were attributed to its preference for high temperatures and highly sensitivity to low temperatures. A wider temperature range and a significant stimulation of growth by high N inputs can explain the appearance of G. coronopifolia year round and also its maximum growth in November-March. Levels of dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus (SRP) in water column were extremely high, but the growth of these two rhodophytes still suffered nutrient limitation that the type and severity of nutrient limitation were variable over time and also between two species. The growth of L. papillosa was limited by P in the early growth stage (August-September) as indicated by decreased tissue P contents, increased C/P and N/P molar ratios and increased alkaline phosphatase activity (APA) and in the later growth stage, it was subjected to N-limitation, evidenced by decreased tissue N contents and C/P and N/P molar ratios and increased tissue P contents. The growth of G. coronopifolia was also P-limited as indicated by increased tissue N contents and concomitantly decreased tissue P contents, while marked drops in tissue P contents below the subsistence level in mid September and December 1999 reveal severe P limitation, which was supported by increased alkaline phosphatase activity. Higher critical nutrient contents and nutrient thresholds for maximum growth of G. coronopifolia suggest that G. coronopifolia faced more frequent nutrient limitation compared to L. papillosa. In conclusion, the results from these laboratory and field studies provide evidence that the seasonal abundance of L. papillosa and G. coronopifolia from southern Taiwan was determined by seasonal variations in seawater temperatures and nutrient concentrations as well as different physiological growth strategies. Seawater temperature and nutrient availability were important determinants of seasonal abundance of L. papillosa while the seasonal abundance of G. coronopifolia was influenced by nutrient availability.  相似文献   

6.
In addition to experimental studies, computational models provide valuable information about colony development in scleractinian corals. Using our simulation model, we show how environmental factors such as nutrient distribution and light availability affect growth patterns of coral colonies. To compare the simulated coral growth forms with those of real coral colonies, we quantitatively compared our modelling results with coral colonies of the morphologically variable Caribbean coral genus Madracis. Madracis species encompass a relatively large morphological variation in colony morphology and hence represent a suitable genus to compare, for the first time, simulated and real coral growth forms in three dimensions using a quantitative approach. This quantitative analysis of three-dimensional growth forms is based on a number of morphometric parameters (such as branch thickness, branch spacing, etc.). Our results show that simulated coral morphologies share several morphological features with real coral colonies (M. mirabilis, M. decactis, M. formosa and M. carmabi). A significant correlation was found between branch thickness and branch spacing for both real and simulated growth forms. Our present model is able to partly capture the morphological variation in closely related and morphologically variable coral species of the genus Madracis.  相似文献   

7.
Porites cylindrica and Porites lutea fragments of colonies were inflicted with five different injury types: chisel, file, Water Pik, osmotic and cement injuries. The fragments were maintained in outdoor aquaria for a period of 240 days under light intensities varying from 2-5% to 70-90% of incident surface photosynthetic active radiation (PAR0). During the exposure, changes in weight of the fragments, the rates of regeneration of the injuries, abundance of algae and animals settled onto injured areas were monitored. The regeneration rate of the injuries depended on interspecific differences in corals, injury types, number and composition of algae and animals settled onto the lesions, and light and temperature conditions. Competitive interactions between polyps and settlers occurred after colonizers settled onto the damaged surface or the live tissue. It is noteworthy that recovered coral tissue generally overgrew about 100 algal species with or without inhibition of coral growth by algae. In the summer period, the cyanobacterium Lyngbya majuscula covered some lesions (osmotic and cement) by 100%, thus reducing dramatically the regeneration rate of the inflicted injuries and also caused coral bleaching when in direct contact.  相似文献   

8.
Coral disease outbreaks have increased over the last three decades, but their causal agents remain mostly unclear (e.g., bacteria, viruses, fungi, protists). This study details a 14‐month‐long survey of coral colonies in which observations of the development of disease was observed in nearly half of the sampled colonies. A bimonthly qPCR method was used to quantitatively and qualitatively evaluate Symbiodinium assemblages of tagged colonies, and to detect the presence of Vibrio spp. Firstly, our data showed that predisposition to disease development in general, and, more specifically, infection by Vibrio spp. in Acropora cytherea depended on which clades of Symbiodinium were harbored. In both cases, harboring clade D rather than A was beneficial to the coral host. Secondly, the detection of Vibrio spp. in only colonies that developed disease strongly suggests opportunistic traits of the bacteria. Finally, even if sporadic cases of switching and probably shuffling were observed, this long‐term survey does not suggest specific‐clade recruitment in response to stressors. Altogether, our results demonstrate that the fitness of the coral holobiont depends on its initial consortium of Symbiodinium, which is distinct among colonies, rather than a temporary adaptation achieved through acquiring different Symbiodinium clades.  相似文献   

9.
Many shallow water subtidal habitats in Massachusetts, USA have recently been invaded by five non-indigenous ascidian species: Ascidiella aspersa, Botrylloides violaceus, Didemnum sp., Diplosoma listerianum and Styela clava. This study examined the effects of seawater temperature, as a proxy for climate change, on B. violaceus and D. listerianum and the impact these ascidians have on native sessile fouling communities. Field experiments were conducted over a four month period at two locations (Lynn and Woods Hole, MA) to examine growth dynamics over regional thermal and geographic ranges. Invasive ascidians occupied as much as 80% of the primary substratum and accounted for the majority of species richness. B. violaceus and D. listerianum growth were similar at both study sites, but initial colony growth of D. listerianum was positively affected by temperature. B. violaceus and D. listerianum exhibited rapid two-week growth rates during the summer months with more rapid growth at the warmer Woods Hole site. Competition for space between B. violaceus and D. listerianum typically resulted in neutral borders between colonies. Overgrowth occurred if the colony of one species was disproportionably larger than the colony of the other species. Recruitment and growth of native species influenced the long-term composition of experimental communities more than the pre-seeding with B. violaceus or D. listerianum colonies. Elevated temperatures, however, increased initial growth of B. violaceus and D. listerianum and may have facilitated the species success to invade the communities during crucial periods of introduction. With projected global climate change, a rise in sea surface temperatures may exacerbate the cumulative impacts of invasions on benthic communities and facilitate the invasion of other non-native ascidian species.  相似文献   

10.
During an infection locusts behaviourally fever by seeking out higher environmental temperatures. This behaviour places the pathogen at sub-optimal growth temperatures while improving the efficiency of the immune system, thereby prolonging the lifespan of the host. It is therefore in the interest of the pathogen to either adapt to fever-like temperatures or to evolve mechanisms to interfere with, or inhibit fever. We investigated the behavioural fever response of desert locusts to two fungal pathogens. A prolonged fever was observed in locusts infected with Metarhizium acridum. However, fever was comparatively short-lived during infection with Metarhizium robertsii. In both cases restriction of thermoregulation reduced lifespan. Destruxin A (dtx A) produced by M. robertsii, but not M. acridum has previously been associated with the inhibition of the insect immune system. Injection of dtx A during infection with the fever-causing M. acridum inhibited fever and was particularly effective when administered early on in infection. Furthermore, locusts injected with dtx A were more susceptible to M. acridum infection. Therefore engineering M. acridum isolates currently used for locust biocontrol, to express dtx A may improve efficiency of control by interfering with fever.  相似文献   

11.
Predicting species'' fates following the introduction of a novel pathogen is a significant and growing problem in conservation. Comparing disease dynamics between introduced and endemic regions can offer insight into which naive hosts will persist or go extinct, with disease acting as a filter on host communities. We examined four hypothesized mechanisms for host–pathogen persistence by comparing host infection patterns and environmental reservoirs for Pseudogymnoascus destructans (the causative agent of white-nose syndrome) in Asia, an endemic region, and North America, where the pathogen has recently invaded. Although colony sizes of bats and hibernacula temperatures were very similar, both infection prevalence and fungal loads were much lower on bats and in the environment in Asia than North America. These results indicate that transmission intensity and pathogen growth are lower in Asia, likely due to higher host resistance to pathogen growth in this endemic region, and not due to host tolerance, lower transmission due to smaller populations, or lower environmentally driven pathogen growth rate. Disease filtering also appears to be favouring initially resistant species in North America. More broadly, determining the mechanisms allowing species persistence in endemic regions can help identify species at greater risk of extinction in introduced regions, and determine the consequences for disease dynamics and host–pathogen coevolution.  相似文献   

12.
Nutrient enrichment can increase the severity of coral diseases   总被引:15,自引:0,他引:15  
The prevalence and severity of marine diseases have increased over the last 20 years, significantly impacting a variety of foundation and keystone species. One explanation is that changes in the environment caused by human activities have impaired host resistance and/or have increased pathogen virulence. Here, we report evidence from field experiments that nutrient enrichment can significantly increase the severity of two important Caribbean coral epizootics: aspergillosis of the common gorgonian sea fan Gorgonia ventalina and yellow band disease of the reef‐building corals Montastraea annularis and M. franksii. Experimentally increasing nutrient concentrations by 2–5× nearly doubled host tissue loss caused by yellow band disease. In a separate experiment, nutrient enrichment significantly increased two measures of sea fan aspergillosis severity. Our results may help explain the conspicuous patchiness of coral disease severity, besides suggesting that minimizing nutrient pollution could be an important management tool for controlling coral epizootics.  相似文献   

13.
On Bermuda reefs the brain coral Diploria labyrinthiformis is rarely documented with black band disease (BBD), while BBD-affected colonies of Diploria strigosa are common. D. labyrinthiformis on these reefs may be more resistant to BBD or less affected by prevailing environmental conditions that potentially diminish host defenses. To determine whether light and/or temperature influence BBD differently on these two species, infection experiments were conducted under the following experimental treatments: (1) 26 °C, ambient light; (2) 30 °C, ambient light; (3) 30 °C, low light; and (4) 30 °C, high light. A digital photograph of the affected area of each coral was taken each day for 7 days and analyzed with ImageJ image processing software. The final affected area was not significantly different between species in any of the four treatments. BBD lesions were smaller on both species infected under ambient light at 26 °C versus 30 °C. Low light at 30 °C significantly reduced the lesion size on both species when compared to colonies infected at the same temperature under ambient light. Under high light at 30 °C, BBD lesions were larger on colonies of D. strigosa and smaller on colonies of D. labyrinthiformis when compared to colonies infected under ambient light at the same temperature. The responses of both species suggests that BBD progression on both D. strigosa and D. labyrinthiformis is similarly influenced by a combination of light and temperature and that other factors present before infections become established likely contribute to the difference in BBD prevalence in Bermuda.  相似文献   

14.
Plant cells often use cell surface receptors to sense environmental changes and then transduce external signals via activated signaling pathways to trigger adaptive responses. In Arabidopsis, the receptor-like protein kinase (RLK) gene family contains more than 600 members, and some of these are induced by pathogen infection, suggesting a possible role in plant defense responses. We previously characterized an S-locus RLK (CBRLK1) at the biochemical level. In this study, we examined the physiological function of CBRLK1 in defense responses. CBRLK1 mutant and CBRLK1-overexpressing transgenic plants showed enhanced and reduced resistance against a virulent bacterial pathogen, respectively. The altered pathogen resistances of the mutant and overexpressing transgenic plants were associated with increased and reduced induction of the pathogenesis-related gene PR1, respectively. These results suggest that CBRLK1 plays a negative role in the disease resistance signaling pathway in Arabidopsis.  相似文献   

15.
Computer models of disease take a systems biology approach toward understanding host-pathogen interactions. In particular, data driven computer model calibration is the basis for inference of immunological and pathogen parameters, assessment of model validity, and comparison between alternative models of immune or pathogen behavior. In this paper we describe the calibration and analysis of an agent-based model of Leishmania major infection. A model of macrophage loss following uptake of necrotic tissue is proposed to explain macrophage depletion following peak infection. Using Gaussian processes to approximate the computer code, we perform a sensitivity analysis to identify important parameters and to characterize their influence on the simulated infection. The analysis indicates that increasing growth rate can favor or suppress pathogen loads, depending on the infection stage and the pathogen's ability to avoid detection. Subsequent calibration of the model against previously published biological observations suggests that L. major has a relatively slow growth rate and can replicate for an extended period of time before damaging the host cell.  相似文献   

16.
Diseases are an emerging threat to ocean ecosystems. Coral reefs, in particular, are experiencing a worldwide decline because of disease and bleaching, which have been exacerbated by rising seawater temperatures. Yet, the ecological mechanisms behind most coral diseases remain unidentified. Here, we demonstrate that a coral pathogen, Vibrio coralliilyticus, uses chemotaxis and chemokinesis to target the mucus of its coral host, Pocillopora damicornis. A primary driver of this response is the host metabolite dimethylsulfoniopropionate (DMSP), a key element in the global sulfur cycle and a potent foraging cue throughout the marine food web. Coral mucus is rich in DMSP, and we found that DMSP alone elicits chemotactic responses of comparable intensity to whole mucus. Furthermore, in heat-stressed coral fragments, DMSP concentrations increased fivefold and the pathogen''s chemotactic response was correspondingly enhanced. Intriguingly, despite being a rich source of carbon and sulfur, DMSP is not metabolized by the pathogen, suggesting that it is used purely as an infochemical for host location. These results reveal a new role for DMSP in coral disease, demonstrate the importance of chemical signaling and swimming behavior in the recruitment of pathogens to corals and highlight the impact of increased seawater temperatures on disease pathways.  相似文献   

17.
A taxonomic assessment of four species of octocorals from the northeastern Pacific Ocean (British Columbia to California) is provided. Included here are a new species of clavulariid stolonifieran Cryptophyton, a new species of the nephtheid soft coral Gersemia, an undetermined species of soft coral in the genus Alcyonium that has been referred in the literature by several other names, and a new genus is named for a plexaurid sea fan originally described in the Indo-Pacific genus Euplexaura. Discussions are included that compare the species to related taxa, or provide revisionary assessments.  相似文献   

18.
Significant progress has been made in elucidating the mechanisms used by plants to recognize pathogens and activate “immune” responses. A “first line” of defense can be triggered through recognition of conserved Pathogen or Microbe Associated Molecular Patterns (PAMPs or MAMPs), resulting in activation of basal (or non-host) plant defenses, referred to as PAMP-triggered immunity (PTI). Disease resistance responses can also subsequently be triggered via gene-for-gene type interactions between pathogen avirulence effector genes and plant disease resistance genes (Avr-R), giving rise to effector triggered immunity (ETI). The majority of the conceptual advances in understanding these systems have been made using model systems, such as Arabidopsis, tobacco, or tomato in combination with biotrophic pathogens that colonize living plant tissues. In contrast, how these disease resistance mechanisms interact with non-biotrophic (hemibiotrophic or necrotrophic) fungal pathogens that thrive on dying host tissue during successful infection, is less clear. Several lines of recent evidence have begun to suggest that these organisms may actually exploit components of plant immunity in order to infect, successfully colonize and reproduce within host tissues. One underlying mechanism for this strategy has been proposed, which has been referred to as effector triggered susceptibility (ETS). This review aims to highlight the complexity of interactions between plant recognition and defense activation towards non-biotrophic pathogens, with particular emphasis on three important fungal diseases of wheat (Triticum aestivum) leaves.  相似文献   

19.
The scleractinian coral Cladocora caespitosa deserves a special place among the major carbonate bioconstructors of the Mediterranean Sea. Annual coral skeleton growth, coral calcification, and skeleton density of the colonial coral C. caespitosa taken from 25 locations in the eastern Adriatic Sea were analyzed and compared with annual sea surface temperatures (SST). The growth rates of the coral C. caespitosa from the 25 stations in the Adriatic Sea ranged from 1.92 to 4.19?mm per year, with higher growth rates of the investigated corallites in the southern part of the Adriatic Sea. These growth rates are similar to those measured in other areas of the Mediterranean Sea. The correlation between coral growth and sea temperatures in the Adriatic Sea is seen as follows: An X-radiograph analysis of coral growth in C. caespitosa colonies that are over 60?years old showed that higher growth rates of this coral coincided with a warmer period in the Mediterranean Sea. A positive significant correlation exists between corallite growth rates and SST and coral calcification and SST. A negative correlation exists between coral density and SST. Coral growth rates also showed a correlation with higher eutrophication caused by nearby fish farms, along with a greater depth of the investigated colonies and high bottom currents.  相似文献   

20.
Despite widespread acceptance of the negative effects of macroalgae on corals, very few studies have experimentally tested the competitive nature of the interaction, and most have ignored the potential effects of corals on algae. We report the effects of herbivory and competition on the growth of the branching scleractinian coral Porites cylindrica Dana and the creeping foliose brown alga Lobophora variegata (Lamouroux) Womersley, on an inshore fringing reef of the central Great Barrier Reef. L. variegata overgrows branches of P. cylindrica from the base up, forming a distinct boundary between the alga and the coral tissue. The experiment used exclusion cages to test for effects of herbivores, and removal of algae and coral tissue, at their interaction boundary, to test for inhibition of the competitors by each other. Comparisons of coral branches with the algae present or removed showed that the presence and overgrowth of the alga caused significant coral tissue mortality. Comparisons of branches with coral tissue unmanipulated or damaged showed that the coral inhibited the overgrowth by L. variegata, but that the algae were markedly superior competitors. Importantly, reduced herbivory resulted in faster algal growth and consequent overgrowth and mortality of coral tissue, demonstrating the critical importance of herbivory to the outcome of the competitive interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号