首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The maximal growth rate of the marine cyanobacterium Oscillatoria brevis was reached at 200–400 mM NaCl and pH 9.0–9.6. NaCl was found (i) to stimulate the rate of the light-supported generation across the cytoplasmic membrane of the cells and (ii) to decrease the sensitivity of level and motility of the O. brevis trichomes to protonophorous uncouplers. The Na+/H+ antiporter, monensin, increased both and the uncoupler sensitivity of the cells. The data obtained agree with the assumption that O. brevis possesses a primary Na+ pump in its cytoplasmic membrane.Abbreviations ATP adenosine-5-triphosphate - TTFB tetrachlortrifluoromethylimidazol - CCCP carbonyl cyanide m-chlorophenylhydrazone - Na+ transmembrane electrochemical potential differences of Na+ - transmembrane electric potential difference - pNa transmembrane pNa difference  相似文献   

2.
Clostridium sporogenes MD1 grew rapidly with peptides and amino acids as an energy source at pH 6.7. However, the proton motive force (p) was only –25 mV, and protonophores did not inhibit growth. When extracellular pH was decreased with HCl, the chemical gradient of protons (ZpH) and the electrical membrane potential () increased. The p was –125 mV at pH 4.7, even though growth was not observed. At pH 6.7, glucose addition did not cause an increase in growth rate, but increased to –70 mV. Protein synthesis inhibitors also significantly increased . Non-growing, arginine-energized cells had a of –80 mV at pH 6.7 or pH 4.7, but was not detected if the F1F0 ATPase was inhibited. Arginine-energized cells initiated growth if other amino acids were added at pH 6.7, and and ATP declined. At pH 4.7, ATP production remained high. However, growth could not be initiated, and neither nor the intracellular ATP concentration declined. Based on these results, it appears that C. sporogenes MD1 does not need a large p to grow, and p appears to serve as a mechanism of ATP dissipation or energy spilling.Mandatory disclaimer: Proprietary or brand names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product, and exclusion of others that may be suitable.  相似文献   

3.
Summary Measurements were made of the difference in the electrochemical potential of protons ( ) across the membrane of vesicles reconstituted from the ATPase complex (TF 0 ·F 1) purified from a thermophilic bacterium and P-lipids. Two fluorescent dyes, anilinonaphthalene sulfonate (ANS) and 9-aminoacridine (9AA) were used as probes for measuring the membrane potential () and pH difference across the membrane ( pH), respectively.In the presence of Tris buffer the maximal and no pH were produced, while in the presence of the permeant anion NO 3 the maximal pH and a low were produced by the addition of ATP. When the ATP concentration was 0.24mm, the was 140–150 mV (positive inside) in Tris buffer, and the pH was 2.9–3.5 units (acidic inside) in the presence of NO 3 . Addition of a saturating amount of ATP produced somewhat larger and pH values, and the attained was about 310 mV.By trapping pH indicators in the vesicles during their reconstitution it was found that the pH inside the vesicles was pH 4–5 during ATP hydrolysis.The effects of energy transfer inhibitors, uncouplers, ionophores, and permeant anions on these vesicles were studied.  相似文献   

4.
The magnitude of the proton motive force (p) and its constituents, the electrical () and chemical potential (-ZpH), were established for chemostat cultures of a protease-producing, relaxed (rel ) variant and a not protease-producing, stringent (rel +) variant of an industrial strain ofBacillus licheniformis (respectively referred to as the A- and the B-type). For both types, an inverse relation of p with the specific growth rate was found. The calculated intracellular pH (pHin) was not constant but inversely related to . This change in pHin might be related to regulatory functions of metabolism but a regulatory role for pHin itself could not be envisaged. Measurement of the adenylate energy charge (EC) showed a direct relation with for glucose-limited chemostat cultures; in nitrogen-limited chemostat cultures, the EC showed an approximately constant value at low and an increased value at higher . For both limitations, the ATP/ADP ratio was directly related to .The phosphorylation potential (G'p) was invariant with . From the values for G'p and p, a variable H+/ATP-stoichiometry was inferred: H+/ATP=1.83+0.52µ, so that at a given H+/O-ratio of four (4), the apparent P/O-ratio (inferred from regression analysis) showed a decline of 2.16 to 1.87 for =0 to max (we discuss how more than half of this decline will be independent of any change in internal cell-volume). We propose that the constancy of G'p and the decrease in the efficiency of energy-conservation (P/O-value) with increasing are a way in which the cells try to cope with an apparent less than perfect coordination between anabolism and catabolism to keep up the highest possible with a minimum loss of growth-efficiency. Protease production in nitrogen-limited cultures as compared to glucose-limited cultures, and the difference between the A- and B-type, could not be explained by a different energy-status of the cells.Abbreviations CCCP carbonylcyanide-p-trichloromethoxyphenylhydrazone - DW dry weight of biomass - F Faraday's constant, 96.6 J/(mV × mol) - Fo chemostat outflow-rate (ml/h) - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - G'p phosphorylation potential, the Gibbs energy change for ATP-synthesis from ADP and Pi - G'0p standard Gibbs energy change at specified conditions - H+/ATP number of protons translocated through - ATP synthase in synthesis of one ATP - H+/O protons translocated during transfer of 2 electrons from substrate to oxygen - specific growth rate (1/h) - H+ transmembrane electrochemical proton potential, J/mol - Mb molar weight (147.6 g/mol) of bacteria with general cell formula C6.0H10.8O3.0N1.2 - pHout,in extracellular, intracellular pH - Pi (intracellular) inorganic phosphate - p proton motive force, mV - pH transmembrane pH-difference - transmembrane electrical potential, mV - P/O number of ADP phosphorylated to ATP upon reduction of one O2– to H2O by two electrons transferred through the electron transfer chain - P/O (H+/O) × (H+/ATP)–1 - P/OF, P/ON P/O with the two electrons donated by resp. (NADH + H+) and FADH - q specific rate of consumption or production (mol/g DW × h) - rel +,rel stringent, relaxed genotype - R universal gas constant, 8.36 J/(mol × degree) - T absolute temperature - TPMP+ triphenylmethylphosphonium ion - TPP+ tetraphenyl phosphonium ion - Y growth yield, g DW/mol - Z conversion constant=61.8 mV for 310 K (37 °C) - ZpH transmembrane proton potential or chemical potential, mV  相似文献   

5.
The suitability of conductivity measurement for monitoring growth in plant cell culture has been tested using suspended cells and genetically-transformed hairy roots of Atropa belladonna, and aggregated cells of Solanum aviculare. Other researchers have proposed that a constant ratio exists between increase in cell concentration (x) and decrease in medium conductivity (C). In all cases studied in this work, x/C was not constant over a wide range of cell densities tested in batch culture. With cell suspensions, x/C decreased continuously during the growth phase from 3.4 to 2.5 g cm l–1 mS–1. For the hairy roots, the ratio between x and C varied by as much as 4-fold during growth. The relationship between conductivity and growth for S. aviculare aggregates was found to vary depending on inoculum density. No simple correlation between conductivity change and cell growth was apparent for the plant-cell systems studied.  相似文献   

6.
Nicki Engeseth  Sten Stymne 《Planta》1996,198(2):238-245
Species of the genus Lesquerella, within the Brassicaceae family, have seed oils containing hydroxy fatty acids. In most Lesquerella species, either lesquerolic (14-hydroxy-eicosa-11-enoic), auricolic (14-hydroxy-eicosa-11,17-dienoic) or densipolic (12-hydroxy-octadeca-9,15-dienoic) acid dominates in the seed oils. Incubations of developing seed from Lesquerella species with 1-14C-fatty acids were conducted in order to study the biosynthetic pathways of these hydroxylated fatty acids. [14C]Oleic (octadeca-9-enoic) acid, but not [14C]linoleic (octadeca-9,12-dienoic) acid, was converted into the hydroxy fatty acid, ricinoleic (12-hydroxy-octadeca-9-enoic) acid, which was rapidly desaturated to densipolic (12-hydroxy-octadeca-9,15-dienoic) acid. In addition, [14C] ricinoleic acid added to Lesquerella seeds was efficiently desaturated at the 15 carbon. A pathway for the biosynthesis of the various hydroxylated fatty acids in Lesquerella seeds is proposed. The demonstration of desaturation at position 15 of a fatty acid with a hydroxy group at position 12 in Lesquerella prompted a comparison of the substrate recognition of the desaturases from Lesquerella and linseed. It was demonstrated that developing linseed also was able to desaturate ricinoleate at position 15 into densipolic acid. In addition, the linseed 15 desaturase was able to desaturate vernolic (12,13-epoxy-octadeca-9-enoic) acid and safflower microsomal 12 desaturase was able to desaturate 9-hydroxy-stearate. Thus, hydroxy and epoxy groups may substitute for double bonds in substrate recognition for oil-seed 12 and 15 desaturases.Abbreviations GLC gas-liquid chromatography - lysoPC palmitoyl-lysophosphatidylcholine - PC phosphatidylcholine This work was supported by grants from Stifteisen Svensk Oljeväxtforskning, Skanska Lantmännen Foundation, Swedish Farmers Foundation for Agricultural research, The Swedish Natural Science Research Council and The Swedish Council for Forestry and Agricultural Research. Nicki Engeseth was supported by the National Science Foundation under a grant award in 1992.  相似文献   

7.
The chlorophyll a-binding protein CP47 directs excitation energy to the reaction center of photosystem II (PSII) during oxygenic photosynthesis and has additional structural and functional roles associated with the PSII water-oxidizing complex. Oligonucleotide-directed mutagenesis was employed to study loop C of CP47 (approximately Trp-162 to Gly-197) which faces the thylakoid lumen. Five short amino acid deletion strains, (S169–P171), (Y172–G176), (G176–P180), (E184–A188) and (F190–N194), were created that span this domain. The deletion between Gly-176 and Pro-180, located around the middle of loop C, produced an obligate photoheterotroph that could not assemble functional PSII centers. The deletions in mutants (S169–P171) and (Y172–G176) reduced PSII levels to 20% of the control and thus impaired photoautotrophic growth. In contrast, mutants (E184-A188) and (F190–N194) were photoautotrophic even though the number of photosystems was decreased by 50%. All PSII complexes assembled in the deletion strains had an increased susceptibility to photoinactivation and deletion of Glu-184 to Ala-188 prevented photoautotrophic growth under chloride-limiting conditions. Furthermore, the removal of the extrinsic PSII-O, PSII-U and PSII-V proteins from mutants (E184–A188) and (F190–N194) reduced the rates of oxygen evolution and, in the strains lacking either the PSII-O or PSII-V proteins, also increased the photoautotrophic doubling times. These effects were greater in mutant (E184–A188) than in mutant (F190–N194) and the order of importance for the removal of the extrinsic proteins was found to be PSII-V PSII-O > PSII-U.  相似文献   

8.
In washed cells of cadmium-sensitive Staphylococcus aureus 17810S oxidizing glutamate, initial Cd2+++ influx via the Mn2+ porter down membrane potential () was fast due to involvement of energy generated by two proton pumps—the respiratory chain and the ATP synthetase complex working in the hydrolytic direction. Such an unusual energy drain for rapid initial Cd2+ influx is suggested to be due to a series of toxic events elicited by Cd2+ accumulation down generated via the redox proton pump: (i) strong inhibition of glutamate oxidation accompanied by a decrease of electrochemical proton gradient ( H +) formation via the respiratory chain, (ii) automatic reversal of ATP synthetase from biosynthetic to hydrolytic mode, which was monitored by a decrease of H +-dependent ATP synthesis, (iii) acceleration of the initial Cd2+ influx down generated the reversed ATP synthetase, the alternative proton pump hydrolyzing endogenous ATP. The primary, cadmium-sensitive targets in strain 17810S seem to be dithiols located in the cytoplasmic glutamate oxidizing system, prior to the membrane-embedded NADH oxidation system. Inhibition by Cd2+ of H +-dependent ATP synthesis and of pH gradient (pH)-linked [14C]glutamate transport is a secondary effect due to cadmium-mediated inhibition of H + generation at the cytoplasmic level. In washed cells of cadmium-resistant S. aureus 17810R oxidizing glutamate, Cd2+ accumulation was prevented due to activity of the plasmid-coded Cd2+ efflux system. Consequently, H +-producing and -requiring processes were not affected by Cd2+.  相似文献   

9.
We have taken a systematic genetic approach to study the potential role of glutathione metabolism in aluminum (Al) toxicity and resistance, using disruption mutants available in Saccharomyces cerevisiae. Yeast disruption mutants defective in phospholipid hydroperoxide glutathione peroxidases (PHGPX; phgpx1 , phgpx2 , and phgpx3), were tested for their sensitivity to Al. The triple mutant, phgpx1 /2/3, was more sensitive to Al (55% reduction in growth at 300 M Al) than any single phgpx mutant, indicating that the PHGPX genes may collectively contribute to Al resistance. The hypersensitivity of phgpx3 to Al was overcome by complementation with PHGPX3, and all PHGPX genes showed increased expression in response to Al in the wild-type strain (YPH250), with maximum induction of approximately 2.5-fold for PHGPX3. Both phgpx3 and phgpx1/2/3 mutants were sensitive to oxidative stress (exposure to H2O2 or diamide). Lipid peroxidation was also increased in the phgpx1/2/3 mutant compared to the parental strain. Disruption mutants defective in genes for glutathione S-transferases (GSTs) (gtt1 and gtt2), glutathione biosynthesis (gsh1 and gsh2), glutathione reductase (glr1) and a glutathione transporter (opt1) did not show hypersensitivity to Al relative to the parental strain BY4741. Interestingly, a strain deleted for URE2, a gene which encodes a prion precursor with homology to GSTs, also showed hypersensitivity to Al. The hypersensitivity of the ure2 mutant could be overcome by complementation with URE2. Expression of URE2 in the parental strain increased approximately 2-fold in response to exposure to 100 M Al. Intracellular oxidation levels in the ure2 mutant showed a 2-fold (non-stressed) and 3-fold (when exposed-to 2 mM H2O2) increase compared to BY4741; however, the ure2 mutant showed no change in lipid peroxidation compared to the control. The phgpx1/2/3 and ure2 mutants both showed increased accumulation of Al. These findings suggest the involvement of PHGPX genes and a novel role of URE2 in Al toxicity/resistance in S. cerevisiae.Communicated by D.Y. Thomas  相似文献   

10.
The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update   总被引:14,自引:0,他引:14  
Mitochondrial dysfunction has been shown to participate in the induction of apoptosis and has even been suggested to be central to the apoptotic pathway. Indeed, opening of the mitochondrial permeability transition pore has been demonstrated to induce depolarization of the transmembrane potential (m), release of apoptogenic factors and loss of oxidative phosphorylation. In some apoptotic systems, loss of m may be an early event in the apoptotic process. However, there are emerging data suggesting that, depending on the model of apoptosis, the loss of m may not be an early requirement for apoptosis, but on the contrary may be a consequence of the apoptotic-signaling pathway. Furthermore, to add to these conflicting data, loss of m has been demonstrated to not be required for cytochrome c release, whereas release of apoptosis inducing factor AIF is dependent upon disruption of m early in the apoptotic pathway. Together, the existing literature suggests that depending on the cell system under investigation and the apoptotic stimuli used, dissipation of m may or may not be an early event in the apoptotic pathway. Discrepancies in this area of apoptosis research may be attributed to the fluorochromes used to detect m. Differential degrees of sensitivity of these fluorochromes exist, and there are also important factors that contribute to their ability to accurately discriminate changes in m.  相似文献   

11.
The concentration of guanosine 3,5-bispyrophosphate (ppGpp) increases in bacteria in response to amino acid or carbon/energy source starvation. An Escherichia coli K12 relAspoT mutant lacking the ability to synthesize ppGpp lost viability at an increased rate during both glucose and seryl-tRNA starvation. Also, the deleterious effect of chloramphenicol on starved wild-type cells could be overcome by inducing expression of RelA from a plasmid carrying the relA gene transcribed from a tac promoter, prior to starvation and chloramphenicol treatment. As demonstrated by two dimensional gel electrophoresis, this induction of the RelA protein resulted in global alterations in gene expression including increased synthesis of some rpoS-dependent proteins. The relAspoT mutant maintained high expression of several ribosomal proteins during starvation and appeared to exhibit significantly decreased translational fidelity, as demonstrated by an unusual heterogeneity in the isoelectric point of several proteins and the failure to express higher molecular weight proteins during starvation. Moreover, both rpoS-dependent and independent genes failed to exhibit increased expression in the mutant. It is suggested that the deleterious effects on the cells of the relA, spoT deletions are not due solely to the inability of these cells to induce the sigma factor s, but also to deficiencies in translational fidelity and failure to exert classical stringent regulation.  相似文献   

12.
of whole cells of Methanobacterium thermoautotrophicum was estimated under varying conditions using an electrode sensitive to the lipophilic cation tetraphenylphosphonium chloride (TPP+). Since was found to be extremely sensitive to air, a special reaction vessel was developed to maintain strict anaerobiosis. The cells took up TPP+ under energization by H2 and CO2 thus allowing to calculate the from the distribution of TPP+ inside and outside the cells. The unspecific uptake of deenergized cells was around 10% of the total uptake of energized cells. TPP+ itself slightly diminished the , but had no effect on the formation of methane. Typical values of were in the range of-150 to-200 mV. showed a quantitative dependence on both the electron donor H2 and the electron acceptor CO2. NaCl stimulated the extent of the , whereas KCl slightly diminished it. Valinomycin resulted in a linear decline of , whereas the methane production rate was only slightly affected. In contrast, monensin reduced both methanogenesis and .Abbreviations pmf proton motive force - membrane potential - TPP+ tetraphenylphosphonium (chloride salt) - TPMP+ triphenylmethylphosphonium (chloride salt, if not otherwise indicated) - d.w. dry weight - t d doubling time - PVC polyvinylchloride  相似文献   

13.
A semi-nested PCR method for the specific and individual amplification of type II phaC1 and phaC2 subgenomic fragments containing the catalytically important lipase box-like sequence and the phosphopantetheine binding site was developed. Direct sequencing of these phaC1 and phaC2 fragments is possible, thus greatly facilitating the characterization of these genes. The method was used to show that three strains of Pseudomonas oleovorans harbor different pha loci, while five strains of P. corrugata contain identical phaC1 and phaC2 subgenomic fragments.  相似文献   

14.
The mechanism for synthesis of monounsaturated fatty acids under aerobic and anaerobic conditions was studied in the facultative anaerobic cyanobacterium, Oscillatoria limnetica. The hexadecenoic acid (C161) of aerobically grown O. limnetica was shown to contain both the 7 (79%) and 9 (21%) isomers, while the octadecenoic (C181) acid was entirely the 9 acid. Incorporation of [2-14C] acetate into the fatty acids under aerobic conditions resulted in synthesis of the 7 and 9 C161 and the 9 C181. Synthesis of unsaturated fatty acids in the presence of DCMU required sulfide. Anaerobic incubations in the presence of DCMU and sulfide (less than 0.003% atmospheric oxygen) resulted in a two-fold increase in monounsaturated fatty acids of both 7 and 9 C161 and 9 and 11 C181. The synthesis of these isomers is characteristic of a bacterialtype, anaerobic pathway.Abbreviations DCMU 3(3,4-dichlorophenyl)-1,1-dimethylurea - MFA monounsaturated fatty acid  相似文献   

15.
The and the Gp have been measured in whole cells ofMethylophilus methylotrophus during the oxidation of various respiratory chain substrates. The magnitude of the depended on the external pH and the composition of the assay medium, and varied from-109 to-165 mV. The relative contributions of the and the pH to the were found to vary with the external pH such that the internal pH remained constant; depending on the composition of the assay medium, this value was between 6.6 and 7.0. A Gp of approximately-46 kJ/mol was generated during the oxidation of methanol, and either the or pH alone was fully competent to drive ATP synthesis. Respiration and ATP synthesis were found to be poised far from equilibrium under the conditions of these experiments, and the value of the Gp was thus controlled kinetically. Comparison of the with the Gp yielded an H+/ATP quotient >2.6 g-ion H+/mol ATP.Abbreviations TMPD N,N,N,N-tetramethyl-p-phenylenediamine - FCCP carbonylcyanidep-trifluoromethoxyphenylhydrazone - DMO 5,5-dimethyloxazolidine-2,4-dione - TPMP+ triphenylmethylphosphonium (iodide salt); Tween 20, polyoxyethylenesorbitan monolaurate - TPP+ tetraphenylphosphonium (bromide salt) - bulk phase transmembrane electrochemical potential difference of protons ( ) - pH bulk phase transmembrane pH difference (pHin-pHout) - bulk phase transmembrane electrical potential difference (in-out) - p true protonmotive force (incorporating both bulk phase and localised protons; )  相似文献   

16.
The relationship between the electrochemical proton gradient, H+ , and citrate transport has been studied in tonoplast vesicles from Hevea brasiliensis (the rubber tree). Vesicles were generated from lyophilized samples of fresh vacuoles obtained from the latex sap. Methylamine was used to measure intravesicular pH and lipophilic ions to determine the electrical potential difference () across the tonoplast. When incubated at pH 7.5 in the absence of ATP, the tonoplast vesicles showed a pH of 0.6 units (interior acid) and a of about-100 mV (interior negative). This potential is thought to be made up of contributions from an H+ diffusion potential, diffusion potentials from other cations and a Donnan potential arising from the presence of internal citrate. In the presence of 5 mol m-3 MgATP the pH was increased to about 1.0 unit and the to about-10 mV. Under these conditions the proton-motive force ( p H+ /F) became positive and reached +50 mV. These effects were specific to MgATP (ADP and Mg2+ having no significant effect) and were prevented by the protonophore p-trifluoromethoxycarbonylcyanidephenylhydrazone (FCCP). Citrate uptake by the vesicles was markedly stimulated by MgATP; ADP and Mg2+ again had no effect. Nigericin greatly increased pH and this was associated with a large increase in citrate accumulation. The results indicate that the vesicle membrane possesses a functional H+-translocating ATPase. The H+ generated by this ATPase can be used to drive citrate uptake into the vesicles. The properties of the tonoplast vesicles are compared with those of the fresh latex vacuoles.Abbreviations H+ electrochemical proton gradient - electrical potential difference across membrane - p proton-motive force ( H+ /F) - FCCP p-trifluoromethoxycarbonylcyanidephenylhydrazone - TPMP+ triphenylmethylphosphonium ion  相似文献   

17.
    
,-Dehydroamino acids are useful peptide modifiers. However, their stereoelectronic properties still remain insufficiently recognized. Based on FTIR experiments in the range of s(N-H), AI, AII and s(C=C) and ab initio calculations with B3LYP/6-31G*, we studied the solution conformational preferences and the amide electron density perturbation of Ac-Xaa-NHMe, where Xaa = Ala, (E)-Abu, (Z)-Abu, (Z)-Leu, (Z)-Phe and Val. Each of these dehydroamides adopts a C5 structure, which in Ac-Ala-NHMe is fully extended and accompanied by the strong C5 hydrogen bond. Interaction with bond C=C lessens the amidic resonance within the flanking amide groups. The N-terminal C=O bond is noticeably shorter, both amide bonds are longer than the corresponding bonds in the saturated entities and the N-terminal amide system is distorted. Ac-Ala-NHMe constitutes an exception. Its C-terminal amide bond is shorter than the standard one and both amide systems are ideally planar. Ac-(E)-Abu-NHMe shares stereoelectronic features with both Ac-Ala-NHMe and (Z)-dehydroamides.  相似文献   

18.
Negative-ion fast atom bombardment tandem mass spectrometry has been used in the characterization of non-, mono-, di- and trisulfated disaccharides from heparin and heparan sulfate. The positional isomers of the sulfate group of monosulfated disaccharides were distinguished from each other by negative-ion fast atom bombardment tandem mass spectra, which provide an easy way of identifying the positional isomers. This fast atom bombardment collision induced dissociation mass spectrometry/mass spectrometry technique was also applied successfully to the characterization of di- and trisulfated disaccharides.Abbreviations FABMS fast atom bombardment mass spectrometry - CID collision induced dissociation - MIKE mass analysed ion kinetic energy - MS/MS mass spectrometry/mass spectrometry - HPLC high performance liquid chromatography - UA d-gluco-4-enepyranosyluronic acid - CS chondroitin sulfate - DS dermatan sulfate - HA hyaluronan - Hep heparin - HS heparan sulfate - UA(14) GlcNAc 2-acetamido-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose - UA(14)GlcNAc6S 2-acetamido-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcNAc 2-acetamido-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcNAc6S 2-acetamido-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(14)GlcN6S 2-amino-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcN 2-amino-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcN6S 2-amino-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(14)GlcNS 2-deoxy-2-sulfamino-4-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose - UA(14)GlcNS6S 2-deoxy-2-sulfamino-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcNS 2-deoxy-2-sulfamino-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcNS6S 2-deoxy-2-sulfamino-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(13)GalNAc 2-acetamido-2-deoxy-3-O-(-d-Gluco-4-enepyranosyluronic acid)-d-galatose - UA(13)GalNAc4S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-4-O-sulfo-d-galactose - UA(13)GalNAc6S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-galactose - UA2S(13)GalNAc 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-galactose - UA2S(13)GalNAc4S 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-4-O-sulfo-d-galactose - UA2S(13)GalNAc6S 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-galactose - UA(13)GalNAcDiS 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-4,6-di-O-sulfo-d-galactose - UA(13)GlcNAc 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose.  相似文献   

19.
The response of effective quantum yield of photosystem 2 (F/Fm) to temperature was investigated under field conditions (1 950 m a.s.l.) in three alpine plant species with contrasting leaf temperature climates. The in situ temperature response did not follow an optimum curve but under saturating irradiances [PPFD >800 µìmol(photon) m–2s–1] highest F/Fm occurred at leaf temperatures below 10°C. This was comparable to the temperature response of antarctic vascular plants. Leaf temperatures between 0 and 15°C were the most frequently (41 to 56%) experienced by the investigated species. At these temperatures, F/Fm was highest in all species (data from all irradiation classes included) but the species differed in the temperature at which F/Fm dropped below 50% (Soldanella pusilla >20°C, Loiseleuria procumbens >25°C, and Saxifraga paniculata >40°C). The in situ response of F/Fm showed significantly higher F/Fm values at saturating PPFD for the species growing in full sunlight (S. paniculata and L. procumbens) than for S. pusilla growing under more moderate PPFD. The effect of increasing PPFD on F/Fm, for a given leaf temperature, was most pronounced in S. pusilla. Despite the broad diurnal leaf temperature amplitude of alpine environments, only in S. paniculata did saturating PPFD occur over a broad range of leaf temperatures (43 K). In the other two species it was half of that (around 20 K). This indicates that the setting of environmental scenarios (leaf temperature×PPFD) in laboratory experiments often likely exceeds the actual environmental demand in the field.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

20.
A model of membrane potential-dependent distribution of oxonol VI to estimate the electrical potential difference across Schizosaccharomyces pombe plasma membrane vesicles (PMV) has been developed. was generated by the H+-ATPase reconstituted in the PMV. The model treatment was necessary since the usual calibration of the dye fluorescence changes by diffusion potentials (K+ + valinomycin) failed. The model allows for fitting of fluorescence changes at different vesicle and dye concentrations, yielding in ATP-energized PMV of 80 mV. The described model treatment to estimate may be applicable for other reconstituted membrane systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号