首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eight hours after intracerebral injection of a double-labeled 3-ketoceramide4, [1-14C]lignoceroyl 3-keto [1-3H]sphingosine, various brain sphingolipids were isolated. Free ceramide and the ceramide portions of nonhydroxy cerebroside and sphingomyelin were further fractionated into subgroups containing longer-chain or shorter-chain fatty acids. Nonhydroxy ceramide, nonhydroxy cerebroside and sphingomyelin containing longer-chain fatty acids had significant quantities of radioactivity with 3H/14C ratios similar to each other but lower than that of the injected material. The sphingolipids containing shorter-chain fatty acids were also significantly labeled; however, the 3H/14C ratios were much higher than that of the injected material. Hydroxy-ceramide and sulfatides contained very little radioactivity. However, hydroxy-cerebroside contained an amount of radioactivity comparable to that of the longer-chain nonhydroxy cerebroside with a similar 3H/14C ratio. It is proposed that the injected 3-ketoceramide was converted into ceramide, cerebroside, and sphingomyelin and that the fatty acids of these lipids were partly replaced by other fatty acids during the metabolic conversions.  相似文献   

2.
Mixed rumen microorganisms (MRM) or suspensions of rumen Holotrich protozoa obtained from a sheep were incubated anaerobically with [1-(14)C]linoleic acid, [U-(14)C]glucose, or [1-(14)C]acetate. With MRM, the total amount of fatty acids present did not change after incubation. An increase in fatty acids esterified into sterolesters (SE) and polar lipids at the expense of free fatty acids was observed. This effect was intensified by the addition of fermentable carbohydrate to the incubations. Radioactivity from [1-(14)C]linoleic acid was incorporated into SE and polar lipids with both MRM and Holotrich protozoa. With MRM the order of incorporation of radioactivity was as follows: SE > phosphatidylethanolamine > phosphatidylcholine. With Holotrich protozoa, the order of incorporation was phosphatidylcholine > phosphatidylethanolamine > SE. With MRM the radioactivity remaining in the free fatty acids and that incorporated into SE was mainly associated with saturated fatty acids, but a considerable part of the radioactivity in the polar lipids was associated with dienoic fatty acids. This effect of hydrogenation prior to incorporation was also noted with Holotrich protozoa but to a much lesser extent. Small amounts of radioactivity from [U-(14)C]glucose and [1-(14)C]acetate were incorporated into rumen microbial lipids. With protozoa incubated with [U-(14)C]glucose, the major part of incorporated radioactivity was present in the glycerol moiety of the lipids. From the amounts of lipid classes present, their radioactivity, and fatty acid composition, estimates were made of the amounts of higher fatty acids directly incorporated into microbial lipids and the amounts synthesized de novo from glucose or acetate. It is concluded that the amounts directly incorporated may be greater than the amounts synthesized de novo.  相似文献   

3.
The metabolism of sphingomyelins and ceramides with defined labeled fatty acids was compared after injection in vivo or incubation with cultured cells. The liver was the major site of uptake of sphingomyelins and ceramides with 18:2 or 16:0 fatty acids, but with both sphingolipids a higher recovery of radioactivity was found with 16:0 species. The distribution of radioactivity among liver lipids showed that 1.5 h after injection of 18:2 sphingomyelin, only 21% of the label was found as sphingomyelin, and this value was 37% in the case of 16:0 sphingomyelin. There was a very marked difference in the metabolism of 18:2 and 16:0 ceramides. After injection of 18:2 ceramide only 14% of the radioactivity was recovered as sphingomyelin, and this value was more than 50% with 16:0 ceramide. [14C]18:2 ceramide was converted also to glucoceramide and hydrolyzed more extensively than 16:0 ceramide. These observations were extended to sphingomyelins and ceramides with other fatty acids, using Hep-G2 cells in culture. Significantly more radioactivity was recovered as labeled sphingomyelin after incubation with 16:0, 18:0, 20:0 and 24:0 sphingomyelins than with 18:1 and 18:2 sphingomyelins, while more labeled phosphatidylcholine and phosphatidylethanolamine were found with the unsaturated sphingomyelins. In analogy to the findings in vivo, in the Hep-G2 cells more 16:0, 18:0 and 24:0 ceramides were converted to sphingomyelin than 18:1 or 18:2 ceramides. These differences were also seen with cultured macrophages, in which a more marked reutilization for sphingomyelin formation was found with the saturated ceramide series. The sphingomyelin liposomes were tested also for their capacity to mobilize cholesterol, and a rise in plasma unesterified cholesterol occurred after injection of 18:2 sphingomyelin. Marked enhancement of cholesterol efflux from cholesterol ester-loaded macrophages was also seen with 18:1 and 18:2, 20:0 sphingomyelin in the presence of delipidated high-density lipoprotein. The present results demonstrate that the metabolic fate of sphingolipids is related to their fatty acid composition. While ceramides with saturated fatty acids are predominantly reutilized for sphingomyelin formation, those with unsaturated fatty acids undergo probably more rapid hydrolysis with liberation of fatty acids and channeling into glycerolipids.  相似文献   

4.
Metabolic Turnover of Fatty Acids and Acylglycerols in Rat Sciatic Nerve   总被引:3,自引:3,他引:0  
To explain the discrepancy between the low level and high metabolic activity of endoneurial free fatty acids (FFAs) and triacylglycerol (TG), levels of de novo synthesized FFA and acylglycerols were measured in rat sciatic endoneurium at various intervals after endoneurial microinjection of [14C]acetate. Soon after injection (less than 10 min), the [14C]acetate was metabolized to FFA and incorporated into diacylglycerol (DG), TG, sterols, ceramides, and various phospholipids. The proportions of 14C-labeled FFA, DG, TG, and ceramides to total 14C-labeled lipids decreased, whereas those of phospholipids and cerebrosides increased with time after injection. These findings suggest that rapid turnover of FFA and TG may contribute to their low level in sciatic endoneurium. The de novo synthesized fatty acids were largely incorporated into phosphatidylcholine (approximately 50% of total 14C-labeled phospholipids), probably via the cytidine nucleotide pathway using 1,2-DG as a metabolic intermediate. Hydrolysis of [14C]phosphatidylcholine revealed that fatty acids were labeled at both the C-1 (approximately 43%) and C-2 (approximately 57%) positions. On the other hand, a temporal association between decreased amounts of 14C-label in ceramides and increased amounts of 14C-label in sphingomyelin and galactocerebrosides supports the hypothesis that peripheral nerve galactocerebroside is derived, in vivo, from ceramide via acylation of sphingosine. This exclusive labeling of endoneurial lipids by endoneurial microinjection of labeled precursor provides a unique model for studying synthesis and metabolic turnover of membrane lipids in experimental neuropathies.  相似文献   

5.
The influence of peroxisomal dysfunction on glycosphingolipid metabolism was investigated using mutant Chinese hamster ovary (CHO) cells (Z65) with defective assembly of the peroxisomal membranes. In accordance with previous observations, the concentration of very long chain fatty acid (C24:0) was shown to be higher in Z65 cells than in control cells. We then compared the composition of glycolipids in Z65 cells with that in CHO-K1 cells, which are wild-type Chinese hamster ovary cells with intact peroxisomes, and found significantly increased concentrations of ceramide monohexoside (CMH) and ganglioside GM3 in Z65 cells. However, there were no differences in the concentrations of glycerophospholipids, triglycerides, free fatty acids and cholesterol between Z65 and CHO-K1 cells. Further, to investigate the metabolic rate of the major lipids, Z65 and CHO-K1 cells were pulse-labeled with [3-14C]serine. [3-14C]Serine was incorporated into phosphatidylserine, phosphatidylethanolamine and sphingomyelin more quickly in CHO-K1 than in Z65 cells. However, after 48 h, the radioactivity incorporated into those lipids, including CMH, was greater in Z65 cells than in CHO-K1 cells. Thus, the altered metabolism of glycosphingolipids, probably due to peroxisomal dysfunction, was thought to be responsible for the change in glycosphingolipid composition in Z65 cells.  相似文献   

6.
Uptake of Tween-fatty acid esters and incorporation of the fatty acids into lipids by soybean (Glycine max [L.] Merr.) suspension cultures was investigated, together with subsequent turnover of the incorporated fatty acids and associated changes in endogenous fatty acid synthesis. Tween uptake was saturable, and fatty acids were rapidly transferred from Tweens to all acylated lipids. Patterns of incorporation into glycerolipids were similar in cells treated with Tweens carrying [1-14C]-fatty acids and in cells treated with [1-14C]acetate, indicating that exogenous fatty acids were used for glycerolipid synthesis essentially as if they had been made by the cell. In Tween-treated cells neutral lipids (which include Tweens) initially accounted for the majority of lipid radioactivity. Radioactivity was then rapidly transferred to glycerolipids. A transient pool of free fatty acids accounting for up to 10% of lipid radioactivity was observed. This was consistent with the hypothesis that fatty acids are transferred from Tweens to lipids by deacylation of the Tweens, creating a pool of free fatty acids which are then used for lipid synthesis. Sterols were only slightly labeled in cells treated with Tweens, but accounted for nearly 50% of lipid radioactivity in cells treated with acetate. This suggested very little degradation and reutilization of the radioactive fatty acids in cells treated with Tweens. In cells treated with either [1-14C]acetate or Tween-[1-14C]-18:1, 70% of the initial fatty acid radioactivity remained in fatty acids after a 100 hour chase. By contrast, fatty acids not normally present disappeared more rapidly, suggesting differential treatment of such fatty acids compared with those normally present. Cells which had incorporated large amounts of exogenous fatty acids altered fatty acid synthesis in three distinct ways: (a) amounts of [1-14C]acetate incorporated into fatty acids were reduced; (b) cells incorporating exogenous unsaturated fatty acids increased the proportion of [1-14C]acetate partitioned into saturated fatty acids, while the converse was true of cells which had incorporated exogenous saturated fatty acids; (c) desaturation of 18:1 to 18:2 and 18:3 was reduced in cells which had incorporated unsaturated fatty acids. These results suggest that Tween-fatty acid esters will be useful for supplying fatty acids to cells for a variety of studies related to fatty acid or membrane metabolism.  相似文献   

7.
Utilization of stearic and lignoceric acids supplied by high-density lipoprotein (HDL) sphingomyelin to different tissues was followed for 24 h after rats were injected with HDL containing [[1-14C]stearic (18:0) or [1-14C]lignoceric (24:0) acid [Me-3H]choline]sphingomyelin. Both isotopes reached a maximum in tissue lipids 3-12 h after injection and were recovered mainly in the liver (30%) and small intestine (3%), whereas the other tissues contained approx. 1% or less of the injected dose. All the tissues were able to take up some intact sphingomyelin from HDL and hydrolyze it. In the lung and erythrocytes, the 3H:14C ratio of sphingomyelin remained unchanged throughout the studied period, while an increase in the isotopic ratio was observed in the kidney due to the 3H choline moiety re-used for synthesis of new sphingomyelin. Conversely, the isotopic ratio of sphingomyelin decreased in the liver, indicating a saving of the 14C-labelled fatty acids, especially 24:0. Furthermore, [24:0]ceramide in the liver remained at a high level (6% of the injected dose), whereas [18:0]ceramide decreased to 1%. When the tissues were examined 24 h after injection, the proportion of the 14C linked to sphingomyelin in the total 14C was always higher for both kinds of sphingomyelin than the molar proportion of sphingomyelin in the whole of lipid classes. However, in the majority of the extra-hepatic tissues, more [14C]18:0 than [14C]24:0 was recovered in sphingomyelin, and more 14C radioactivity from 18:0 than from 24:0 was redistributed in the other lipids. The choline moiety from both kinds of sphingomyelin was re-used to synthesize phosphatidylcholine, especially in the liver (up to 20% of the injected dose). All these results show that utilization of sphingomyelin from HDL by tissues normally occurs in vivo and that this phenomenon should be taken into account in the study of the phospholipid turnover of cell membranes. They also show that metabolism of sphingomyelin from HDL in the liver and other tissues is dependent on the sphingomyelin acyl moiety.  相似文献   

8.
After incubation of L929 cells with [14C]serine and various effectors an inverse correlation between label in ceramide and phosphatidylserine (PS) was displayed. This surprising behavior of the two metabolites prompted us to check whether serine of PS could be a source for ceramide synthesis. We therefore incubated L929 cells for 30 min in serum-free medium with L-phosphatidyl-L-[3-14C]serine in the presence or in the absence of cycloserine, an established inhibitor of serine palmitoyltransferase. During this short period L-phosphatidyl-L-[3-14C]serine labeled ceramide and this label was suppressed by cycloserine. Then L929 cells were grown for 16-18 h in the presence of L-phosphatidyl-L-[3-14C]serine. After this period the label was seen in sphingomyelin. Labeling of ceramide and sphingomyelin by serine from PS provides evidence for a new metabolic relationship between glycerophospholipids and sphingolipids.  相似文献   

9.
1. The relationship between the rate of [1-14C] acetate incorporation into the fatty acids of renal papillary lipids and the acetate concentration in the medium has been measured. 2. [1-14C] acetate was incorporated mainly into fatty acids of phospholipids and triacylglycerols. Only a few per cent of the radioactivity was found in the free fatty acid fraction. 3. The major part of the [1-14C] acetate was found to be incorporated by a chain elongation of prevalent fatty acids. The major component of the poly-unsaturated fatty acids in triacylglycerols and the major product of fatty acid synthesis from [1-14C] acetate in vitro was demonstrated by mass spectrometry to be docosa-7,10,13,16-tetraenoic acid. 4. The radioactivity of docosa-7,10,13,16-tetraenoic acid accounted for 40% of total radioactivity in triacylglycerol fatty acids (lipid droplet fraction) and 20% of total radioactivity in membrane phospholipid fatty acids.  相似文献   

10.
Lipid composition of Mycoplasma orale was examined and compared with that of horse serum added to the growth medium. Ratios of cholesterol/cholesterol ester and sphingomyelin/phosphatidylcholine were much higher in M. orale than in the horse serum, indicating the organism incorporates selectively cholesterol and sphingomyelin. A distinct difference between the lipids from the two sources was that in phospholipids of M. orale almost all (greater than 95%) of the fatty acyl residues were saturated whereas nearly half of the residues were unsaturated in horse serum phospholipids. Approximately one third of M. orale phospholipids was phosphatidylglycerol, which was synthesized by the organism as was demonstrated by 32P-labeling experiment. Its acyl residues consisted mainly of C16:0 and were efficiently labeled with 14C-palmitate but not with 14C-acetate. These results clearly indicate the de novo synthesis of phosphatidylglycerol by M. orale is through acylation with exogenous saturated fatty acids. On the other hand, all the phosphatidylcholine and sphingomyelin of M. orale were derived from the medium. The 14C-labeling experiment demonstrates that no fatty acid synthesis takes place nor exogenous fatty acid can be incorporated so efficiently as phosphatidylglycerol, suggesting that extremely high proportion of saturated fatty acyl residues in these phospholipids is the consequence of saturation directed to the acyl chains of the incorporated phospholipids.  相似文献   

11.
This study examined the effects of retinoic acid (RA) on [14C]acetate incorporation and fatty acid composition of hamster embryo fibroblasts (HEF) and two cell lines derived from the same inbred strain but transformed by herpes simplex-2 virus (HSV) or polyoma virus (HFT). Cells were exposed to all trans RA, or dimethylsulfoxide (DMSO), the vehicle for RA, and the lipids labeled with [14C]acetate. Lipids were extracted from the cells, separated by paper chromatography, located by autoradiography, and acetate incorporation determined by liquid scintillation spectrometry. The distribution of fatty acids in total cell lipids was examined by gas chromatography. HEF cells incorporated more acetate into cholesterol than either transformed cell type. The HFT line incorporated more acetate into triglycerides and less into total phospholipids than either the HSV line or the HEF line. RA caused a significant decrease in incorporation of acetate into cholesterol and sphingomyelin in all three cell lines. HEF and HSV cells had decreased incorporation into phosphatidyl inositol-phosphatidyl serine and increased incorporation into triglycerides, changes not evident in the HFT cell. The control fatty acid profiles of the HEF and HSV cells were similar, while the HFT cells had a larger proportion of C16:0 and 18:1 fatty acids. Following treatment with RA all three cell types showed an increase in palmitic and a decrease in oleic acids. The three related cell types showed different [14C]acetate labeling patterns which did not respond uniformly to RA. On the other hand, exposure elicited some like responses in all cell types.  相似文献   

12.
We have studied the lipid composition of brain (optic and cerebral lobes), stellate ganglia and fin nerves of the squid. Cholesterol, phosphatidylethanolamine and phosphatidylcholine were the major lipids in these nervous tissues. Phosphatidylethanolamine contained about 3% of its amount in [corrected] plasmalogen form. Phosphatidylserine and -inositol, sphingomyelin and ceramide 2-aminoethylphosphonate were also present in significant amounts. In addition, cardiolipin and free fatty acids were detected in brain (each 2-3% of total lipids) and stellate ganglia (about 1% each), but not in fin nerves. Phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol from brain contained large amounts of polyunsaturated fatty acids, namely 20:4, 20:5 and 22:6 in the n-3 family. On the other hand, phosphatidylcholine, cardiolipin, and sphingomyelin, and ceramide 2-aminoethylphosphonate contained only saturated or monounsaturated C16-C18 fatty acids. The aldehyde moieties of ethanolamine plasmalogen were also C16-C18 saturated or monounsaturated. These lipid compositions are compared with those in other invertebrate nervous systems.  相似文献   

13.
Phosphatidylglycerol was pulse-labeled with radioactive lipid precursors in a serine auxotroph of Escherichia coli. Most of the radioactivity of phosphatidylglycerol labeled in a serine-depleted medium was transferred to phosphatidylethanolamine during a chase in the presence of L-serine, but not in its absence. Metabolism of fatty acyl moieties labeled with [1-14C]acetate, acylated glycerol moieties labeled with [2-3H]glycerol, and phosphate moieties labeled with 32Pi, followed by a chase in the presence of cerulenin, showed that the intact phosphatidyl moiety of phosphatidylglycerol was transferred to phosphatidylethanolamine. The composition of phosphatidylethanolamine molecular species was unaltered and not perturbed by the transfer of the phosphatidyl moiety of phosphatidylglycerol. The increase of phosphatidylethanolamine with a concomitant decrease of phosphatidylglycerol was not coupled with the postulated turnover of phosphatidylglycerol to membrane-derived oligosaccharides and lipoprotein. It is suggested that phosphatidylglycerol is capable of providing its phosphatidyl moiety for the production of phosphatidylethanolamine in response to the relief of serine limitation by addition of L-serine.  相似文献   

14.
Intensity of fatty acids and separate classes of lipids synthesis was studied in vitro in the liver of white rats at loading by cholesterol in the dose of 300 mg/kg once a day during 30 days by incubation of organ homogenate with [6-(14)C] glucose, [2-(14)C] lysine, [1-(14)C] palmitic acid with following determination of radioactivity of fatty acids, phospholipids, cholesterol, acylglycerols radioactivity was investigated. The inhibition of fatty acids and separate classes of lipids synthesis in vitro in the liver of white rats at loading by cholesterol at the use of [6-(14)C] of glucose and [2-(14)C] lysine, as predecessors of fatty acids and lipids and stimulation of lipids synthesis at the use of [1-(14)C] palmitic acid as the predecessor was established. The loading of white rats by cholesterol results in its synthesis inhibition in the liver during incubation of its homogenates with [6-(14)C] glucose and does not influence the cholesterol synthesis during incubation of homogenates with [2-(14)C] lysine and [1-(14)C] palmitic acid. Thus synthesis of fatty acids and their use in the phospholipids and acylglycerols synthesis in the liver of white rats with hypercholesterolemia sharply decreases during incubation of their homogenates with [6-(14)C] glucose and [2-(14)C] lysine, and the synthesis of cholesterol, phospholipids and acylglycerols - increases during incubation with [1-(14)C] palmitic acid.  相似文献   

15.
Female rats were injected i.v. with comparable trace amounts of [U-14C] glycerol, [2-3H] glycerol, [U-14C] glucose, or [1-14C] palmitate, and killed 30 min afterwards. The radioactivity remaining in plasma at that time was maximal in animals receiving [U-14C] glucose while the appearance of radioactive lipids was higher in the [U-14C] glycerol animals than in other groups receiving hydrosoluble substrates. The carcass, more than the liver, was the tissue where the greatest proportion of radioactivity was recovered, while the greatest percentage of radioactivity appeared in the liver in the form of lipids. The values of total radioactivity found in different tissues were very similar when using either labelled glucose or glycerol but the amount recovered as lipids was much greater in the latter. The maximal proportion of radioactive lipids appeared in the fatty-acid form in the liver, carcass, and lumbar fat pads when using [U-14C] glycerol as a hydrosoluble substrate, and the highest lipidic fraction appeared in adipose tissue as labelled, esterified fatty acids. In the spleen, heart, and kidney, most of the lipidic radioactivity from any of the hydrosoluble substrates appeared as glyceride glycerol. The highest proportion of radioactivity from [1-14C] palmitate appeared in the esterified fatty acid in adipose tissue, being followed in decreasing proportion by the heart, carcass, liver, kidney, and spleen. Thus at least in part, both labelled glucose and glycerol are used throughout different routes for their conversion in vivo to lipids. A certain proportion of glycerol is directly utilized by adipose tissue. The fatty acids esterification ability differs among the tissues and does not correspond directly with the reported activities of glycerokinase, suggesting that the alpha-glycerophosphate for esterification comes mainly from glucose and not from glycerol.  相似文献   

16.
Abstract— The incorporation in vivo of l -[14C]serine into ceramide and cerebroside of young rat brain has been studied. Acid hydrolysis of labelled ceramide and galactosyl-ceramide followed by selective partitioning of the resulting components indicated that 88 per cent of the radioactivity was present in the long-chain base portion. At early time points (10 min, 20 min) the precursor was incorporated into ceramide and to a lesser degree into glucosyl-ceramide. During time intervals of 5 and 10 h, the specific activity values (d.p.m./μmol) for ceramide and glucosyl-ceramide decreased, while values for galactosyl-ceramide, containing either unsubstituted fatty acids (NFA) or α-hydroxy fatty acids (HFA), increased 50 and 30 per cent, respectively. Analysis of labelled ceramide at all time points studied (10 min-10 h) indicated that l -[14C]serine was incorporated onto the NFA type. This observation suggests that HFA-ceramide may not be the physiological precursor of HFA-galactosyl-ceramide. In this context, the postulated precursor roles of both ceramide and psychosine in the biosynthesis of brain cerebrosides are discussed.  相似文献   

17.
Saturated phosphatidylcholine and phosphatidylglycerol are important components of pulmonary surface active material, but the relative contributions of different pathways for the synthesis of these two classes of phospholipids by alveolar type II cells are not established. We purified freshly isolated rat type II cells by centrifugal elutriation and incubated them with [1-14C]palmitate as the sole exogenous fatty acid in one series of experiments or with [9,10-3H]palmitate, mixed fatty acids (16:0, 18:1 and 18:2), and [U-14C]glucose in another series of experiments. Type II cells readily incorporated [1-14C]palmitate into saturated phosphatidic acid (55-59% of total phosphatidic acid), saturated diacylglycerol (82-87% of total diacylglycerol), saturated phosphatidylcholine (69-76% of total phosphatidylcholine), and saturated phosphatidylglycerol (55-59% of total phosphatidylglycerol). Saturated phosphatidic acid, diacylglycerol and phosphatidylglycerol were nearly equally labeled in the sn-1 and sn-2 positions, whereas saturated phosphatidylcholine was preferentially labeled in the sn-2 position. With [9,10-3H]palmitate and [U-14C]glucose, the labeling patterns of phosphatidic acid, diacylglycerol and phosphatidylglycerol were similar to each other but different from that of phosphatidylcholine. The glucose label was found predominantly in the unsaturated phosphatidylcholines at early times (3-10 min) and in the saturated phosphatidylcholines at later times (30-90 min). Similarly, the 3H/14C ratio was very high in saturated phosphatidylcholine and always above that in saturated diacylglycerol. We conclude that freshly isolated type II cells synthesize saturated phosphatidic acid, diacylglycerol, phosphatidylcholine and phosphatidylglycerol and that under our in vitro conditions the deacylation-reacylation pathway is important for the synthesis of saturated phosphatidylcholine but is less important for the synthesis of saturated phosphatidylglycerol. By the assumptions stated in the text during the pulse chase experiment de novo synthesis of saturated phosphatidylcholine from saturated diacylglycerol accounted for 25% of the total synthesis of saturated phosphatidylcholine.  相似文献   

18.
Lipid metabolism in brain tissue explants   总被引:2,自引:0,他引:2  
Abstract— Tissue explants from frontal lobes of rat brain were used for the study of cerebral fatty acid metabolism. After tissues had been maintained in serum-supplemented medium, a lipid-free medium was substituted and metabolic studies were carried out. Under these conditions explants continued to take up lipid precursors for at least 48 h, as judged by incorporation of dl -[2-14C]mevalonic acid into cellular lipids. [l-14C]Stearic acid and [l-14C]palmitic acid were bound to cells as the free fatty acids, or incorporated into neutral lipids (particularly triglycerides), glycolipids and phospholipids. In the galactolipid fraction, cerebrosides were the principal radioactive lipids. Choline phosphoglycerides, ethanolamine phosphoglycerides, inositol phosphoglycerides and serine phosphoglycerides were the principal radioactive phospholipids. Fatty acids were incorporated into cellular lipids either unchanged or after desaturation, chain elongation, or both. Maximum incorporation of stearate occurred in tissues derived from 3-day-old animals. With increasing age the uptake of fatty acid dropped sharply. When the labelling of lipids as a function of time was followed in 3-day-old animals, triglycerides and choline phosphoglycerides were the first fractions to take up labelled stearate. Labelling of cerebrosides occurred slowly, only becoming evident after 24 h. These studies exemplify the usefulness of tissue explants for prolonged metabolic studies in normal and pathological specimens of brain.  相似文献   

19.
Exposure of fetal type II pneumocytes to phospholipase A2 inhibitors led to significantly reduced choline uptake and decreased synthesis of total and disaturated phosphatidylcholines from both [methyl-14C]choline and [9,10(n)-3H]palmitate precursors. The percentage of the total synthesized phosphatidylcholine recovered as disaturated phosphatidylcholine was increased when compared to that in control cultures, suggesting that unsaturated phosphatidylcholine synthesis was reduced to a greater extent than that of the disaturated species. Synthesis of sphingomyelin and phosphatidylethanolamine from labeled palmitate was also reduced, whereas that of phosphatidylinositol and phosphatidylglycerol was significantly increased. Addition of phospholipase C resulted in increased synthesis of phosphatidylcholine from both labeled precursors; no significant changes were found in synthesis of most of the other 3H-labeled lipids. Added phospholipase A2 did not lead to any changes in either choline or palmitate incorporation. However, when melittin (a phospholipase A2 activator) was added to the cultures, greater incorporation of both palmitate and choline was observed, along with a significant increase in the percentage of total cellular radioactivity in 14C-labeled lipids, indicating also stimulation of phosphatidylcholine synthesis. A marked increase in CTP: phosphorylcholine cytidylyltransferase activity was found after treatment of the cultures with phospholipase C. Exposure to quinacrine also increased the activity of this enzyme. Addition of phospholipase C and melittin to prelabeled pneumocyte cultures accelerated degradation of cell phospholipids and the release of free fatty acids as the main degradation products. These findings suggest that intracellular phospholipases are regulators of synthesis of surfactant phospholipids in fetal type II pneumocytes, and that activation or inhibition of these phospholipases could represent a mechanism through which hormones and pharmacological agents modify surfactant and other phospholipid synthesis.  相似文献   

20.
1. The influence of pituitary gonadotrophins and of testosterone on the conversion of linoleic acid into other polyunsaturated fatty acids by rat testicular tissue was studied. 2. In immature hypophysectomized rats, follicle-stimulating hormone caused a threefold increase in the incorporation of radioactivity from [1-(14)C]linoleic acid into testicular lipids; the distribution of (14)C in the polyunsaturated fatty acids, however, was not significantly affected. 3. In mature hypophysectomized rats, the hormonal treatments had less pronounced effects on (14)C incorporation into testicular lipids, but caused a significant increase in the percentage of (14)C incorporated into polyunsaturated fatty acids of the omega-6 series, luteinizing hormone and testosterone having the more pronounced influences. 4. A time-course study of the appearance of radioactivity in the ejaculated spermatozoa of rabbits, after they had been given a tracer dose of [1-(14)C]linoleic acid, indicated that incorporation of radioactivity into spermatozoa occurred during all stages of spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号