首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α-Glucosidase (AG) play crucial roles in the digestion of carbohydrates. Inhibitors of α-glucosidase (AGIs) are promising candidates for the development of anti-diabetic drugs. Here, five series of apigenin and chrysin nitric oxide (NO)-donating derivatives were synthesised and evaluated for their AG inhibitory activity and NO releasing capacity in vitro. Except for 9ac, twelve compounds showed remarkable inhibitory activity against α-glucosidase, with potency being better than that of acarbose and 1-deoxynojirimycin. All organic nitrate derivatives released low concentrations of NO in the presence of l-cysteine. Structure activity relationship studies indicated that 5-OH, hydrophobic coupling chain, and carbonyl groups of the coupling chain could enhance the inhibitory activity. Apigenin and chrysin derivatives therefore represents a new class of promising compounds that can inhibit α-glucosidase activity and supply moderate NO for preventing the development of diabetic complications.  相似文献   

2.
3.
In the present work, we tested known nitric oxide (NO) modulators generating the NO+ (sodium nitroprusside, SNP) and NO˙ forms (S-nitroso-N-acetyl-D-penicillamine, SNAP and nitrosoglutathione, GSNO). This allowed us to compare downstream NO-related physiological effects on proteins found in leaves of pelargonium (Pelargonium peltatum L.). Protein modification via NO donors generally affects plant metabolism in a distinct manner, manifested by a lower thiobarbituric acid reactive substance (TBARS) content and lipoxygenase (LOX) activity in response to SNAP and GSNO. This is in contrast to the response observed for SNP treatment. Most changes in enzyme activity (GR, glutathione reductase; GST, glutathione-S-transferase; GPX, glutathione peroxidase) are most spectacular and repeatable during the first 8 h of incubation, which is explained by the half-life of the applied donors. In particular, a close dependence was found between the time-course of NO emission from the applied donors and the temporary inhibition of antioxidant enzymes, such as catalase (CAT) and ascorbate peroxidase (APX). The observed changes were accompanied by time-dependent alterations in protein accumulation as analysed by two-dimensional gel electrophoresis (2-DE) in pelargonium leaves treated with NO donors (SNP, SNAP and GSNO). Using proteomics, different proteins were found to be down- and up-regulated. However, no new protein spots characteristic of all three donors were found. These results indicate that the form of NO emitted from the donor structure plays a key role in switching on appropriate metabolic modifications. It has been noted that several NO-affected metabolomic changes induced by the used donors were not comparable, which confirms the need to maintain caution when interpreting results obtained using the pharmacological approach with different NO modulator compounds.  相似文献   

4.
《Life sciences》1996,58(25):PL373-PL377
In previous experiments we have shown the role of nitric oxide (NO) in basal and interleukin-1β (IL-1β)-induced CRH and ACTH release in vitro. Now, we have studied the possible production of NO from hypothalamic cell cultures, particularly after IL-1β stimulation or L-NOArg inhibition, by high performance liquid Chromatographie (HPLC) assay of L-citrulline production, adding further evidence for a role of NO in IL-1β activity in the hypothalamus.  相似文献   

5.
Aldosterone, a mineralocorticoid hormone mainly synthesized in the adrenal cortex, has been recognized to be a regulator of cell mechanics. Recent data from a number of laboratories implicate that, besides kidney, the cardiovascular system is an important target for aldosterone. In the endothelium, it promotes the expression of epithelial sodium channels (ENaC) and modifies the morphology of cells in terms of mechanical stiffness, surface area and volume. Additionally, it renders the cells highly sensitive to small changes in extracellular sodium and potassium. In this context, the time course of aldosterone action is pivotal. In the fast (seconds to minutes), non-genomic signalling pathway vascular endothelial cells respond to aldosterone with transient swelling, softening and insertion of ENaC in the apical plasma membrane. In parallel, nitric oxide (NO) is released from the cells. In the long-term (hours), aldosterone has opposite effects: The mechanical stiffness increases, the cells shrink and NO production decreases. This leads to the conclusion that both the physiology and pathophysiology of aldosterone action in the vascular endothelium are closely related. Aldosterone, at concentrations in the physiological range and over limited time periods can stabilize blood pressure and regulate tissue perfusion while chronically high concentrations of this hormone over extended time periods impair sodium homeostasis promoting endothelial dysfunction and the development of tissue fibrosis.  相似文献   

6.
Tissue lipogenesis is variably controlled by substrate supply and hormones. The possibility that nitric oxide (NO) might regulate lipogenesis derives from the action of NO on coenzyme A (CoA) to produce metabolically inactive S-nitrosoCoA. The effect of the nitric oxide donor S-nitrosoglutathione (GSNO) on long chain fatty acid and cholesterol synthesis was measured in isolated cultured rat hepatocytes. [1-14C] Butyrate was used as substrate to measure 14C incorporation into lipids as butyrate is twice as effective as acetate in hepatic lipogenesis and is ketogenic via the Lynen cycle. NO very significantly (P < 0.01) impaired long chain fatty acid and cholesterol synthesis an observation dependent upon time of exposure (3 h pre-incubation or 6 h continuous exposure) and concentration of GSNO (500 microM to 2.0 mM). Decrease in hepatic lipogenesis was paralleled by decrease in ketogenesis. ATP levels remained unchanged following short-term exposure to GSNO. Exposure of hepatocytes to GSNO together with 2.0 mM glutathione significantly diminished the inhibition of lipogenesis induced by GSNO alone. Impairment of lipogenesis by GSNO appears not to be limited by energy supply and now adduced, but not proven, to be operative via the degree of inactivation of cytosolic CoA. NO control of lipogenesis could be clinically important where NO production is increased as in demyelinating diseases, chronic arthritis or colitis and in wasting diseases such as AIDS.  相似文献   

7.
Do nitric oxide donors mimic endogenous NO-related response in plants?   总被引:1,自引:0,他引:1  
Huge advances achieved recently in elucidating the role of NO in plants have been made possible by the application of NO donors. However, the application of NO to plants in various forms and doses should be subjected to detailed verification criteria. Not all metabolic responses induced by NO donors are reliable and reproducible in other experimental designs. The aim of the presented studies was to investigate the half-life of the most frequently applied donors (SNP, SNAP and GSNO), the rate of NO release under the influence of light and reducing agents. At a comparable donor concentration (500 μM) and under light conditions the highest rate of NO generation was found for SNAP, followed by GSNO and SNP. The measured half-life of the donor in the solution was 3 h for SNAP, 7 h for GSNO and 12 h for SNP. A temporary lack of light inhibited NO release from SNP, both in the solution and SNP-treated leaf tissue, which was measured by the electrochemical method. Also a NO, selective fluorescence indicator DAF-2DA in leaves supplied with different donors showed green fluorescence spots in the epidermal cells mainly in the light. SNP as a NO donor was the most photosensitive. The activity of PAL, which plays an important role in plant defence, was also activated by SNP in the light, not in the dark. S-nitrosothiols (SNAP and GSNO) also underwent photodegradation, although to a lesser degree than SNP. Additionally, NO generation capacity from S-nitrosothiols was shown in the presence of reducing agents, i.e. ascorbic acid and GSH, and the absence of light. The authors of this paper would like to polemicize with the commonly cited statement that “donors are compounds that spontaneously break down to release NO” and wish to point out the fact that the process of donor decomposition depends on the numerous external factors. It may be additionally stimulated or inhibited by live plant tissue, thus it is necessary to take into consideration these aspects and monitor the amount of NO released by the donor.  相似文献   

8.
Nitric oxide (NO) has been reported to act both as a destructive and a protective agent in the pathogenesis of the injuries that occur during hypoxia/reoxygenation (H/R). It has been suggested that this dual role of NO depends directly on the isoform of NO synthase (NOS) involved. In this work, we investigate the role that NO derived from endothelial NOS (eNOS) plays in cardiac H/R-induced injury. Wistar rats were submitted to H/R (hypoxia for 30 min; reoxygenation of 0 h, 12 h and 5 days), with or without prior treatment using the selective eNOS inhibitor l-NIO (20 mg/kg). Lipid peroxidation, apoptosis and protein nitration, as well as NO production (NOx), were analysed. The results showed that l-NIO administration lowered NOx levels in all the experimental groups. However, no change was found in the lipid peroxidation level, the percentage of apoptotic cells or nitrated protein expression, implying that eNOS-derived NO may not be involved in the injuries occurring during H/R in the heart. We conclude that l-NIO would not be useful in alleviating the adverse effects of cardiac H/R.  相似文献   

9.
Nitric oxide (NO) has been reported to be luteolytic based on treatment of cows in vivo with an inhibitor of nitric oxide synthase (NOS-produces NO), which delayed the decline in progesterone by two to three days [Jaroszewki J, Hansel, W. Intraluteal administration of a nitric oxide synthase blocker stimulates progesterone, oxytocin secretion and prolongs the life span of the bovine corpus luteum. Proc Soc Exptl Biol Med 2000;224:50-5; Skarzynski D, Jaroszewki J, Bah, M, et al. Administration of nitric oxide synthase inhibitor counteracts prostaglandin F(2alpha)-induced luteolysis in cattle. Biol Reprod 2003;68:1674-81]. The objective of this experiment was to determine the effect of a long acting NO donor or a NOS inhibitor infused chronically into the interstitial tissue of the ovarian vascular pedicle adjacent to the ovary with a corpus luteum on secretion of progesterone during the ovine estrous cycle. Ewes were treated either with Vehicle (N=5); Diethylenetriamine (DETA-control for DETA-NONOate; N=5); (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl) amino]diazen-1-ium-1,2-diolate (DETA-NONOate-long acting NO donor; N=6); or l-nitro-arginine methyl ester (l-NAME-NOS inhibitor; N=6) every 6 h from 24:00 h (0 h) on day 8 through 18:00 h on day 18 of the estrous cycle. Jugular venous blood was collected every 6h for analysis for progesterone and corpora lutea were collected at 18:00 h on day 18 and weighed. Weights of corpora lutea were heavier (P< or =0.05) in DETA-NONOate-treated ewes when compared to Vehicle, DETA, or l-NAME-treated ewes, which did not differ amongst each other (P> or =0.05). Profiles of progesterone in jugular venous blood on days 8-18 differed (P< or =0.05) in DETA-NONOate-treated ewes when compared to Vehicle, DETA, or l-NAME-treated ewes did not differ (P> or =0.05) amongst each other. It is concluded that NO is not luteolytic during the ovine estrous cycle, but may instead be antiluteolytic and prevent luteolysis.  相似文献   

10.
The anti-inflammatory properties of soyasaponins (especially soyasaponins with different chemical structures) have scarcely been investigated. We investigated the inhibitory effects of five structural types of soyasaponins (soyasaponin A1, A2, I and soyasapogenol A, B) on the induction of nitric oxide (NO) and inducible NO synthase (iNOS) in murine RAW 264.7 cells activated with lipopolysaccharide (LPS). Soyasaponin A1, A2 and I (25-200 μg/mL) dose-dependently inhibited the production of NO and tumor necrosis factor α (TNF-α) in LPS-activated macrophages, whereas soyasapogenol A and B did not. Furthermore, soyasaponin A1, A2 and I suppressed the iNOS enzyme activity and down-regulated the iNOS mRNA expression both in a dose-dependent manner. The reporter gene assay revealed that soyasaponin A1, A2 and I decreased LPS-induced nuclear factor kappa B (NF-κB) activity. Soyasaponin A1, A2 and I exhibit anti-inflammatory properties by suppressing NO production in LPS-stimulated RAW 264.7 cells through attenuation of NF-κB-mediated iNOS expression. It is proposed that the sugar chains present in the structures of soyasaponins are important for their anti-inflammatory activities. These results have important implication for using selected soyasaponins towards the development of effective chemopreventive and anti-inflammatory agents.  相似文献   

11.
The free radical, nitric oxide (√NO), is responsible for a myriad of physiological functions. The ability to verify and study √NO in vivo is required to provide insight into the events taking place upon its generation and in particular the flux of √NO at relevant cellular sites. With this in mind, several iron-chelates (Fe2+(L)2) have been developed, which have provided a useful tool for the study and identification of √NO through spin-trapping and electron paramagnetic resonance (EPR) spectroscopy. However, the effectiveness of √NO detection is dependent on the Fe2+(L)2 complex. The development of more efficient and stable Fe2+(L)2 chelates may help to better understand the role of √NO in vivo. In this paper, we present data comparing several proline derived iron–dithiocarbamate complexes with the more commonly used spin traps for √NO, Fe2+-di(N-methyl-D-glutamine-dithiocarbamate) (Fe2+(MGD)2) and Fe2+-di(N-(dithiocarboxy)sarcosine) (Fe2+(DTCS)2). We evaluate the apparent rate constant (kapp) for the reaction of √NO with these Fe2+(L)2 complexes and the stability of the corresponding Fe2+(NO)(L)2 in presence of NOS I.  相似文献   

12.
Nitric oxide (NO) is a signaling and defense molecule of major importance. NO endows macrophages with bactericidal, cytostatic as well as cytotoxic activity against various pathogens. Bacillus spores can produce serious diseases, which might be attenuated if macrophages were able to kill the spores on contact. Present research was carried out to study whether glycoconjugates stimulated NO and nitric oxide synthase (NOS2) production during phagocytosis killing of Bacillus spores. Murine macrophages exposed to glycoconjugate-treated spores induced NOS2 and NO production that was correlated with high viability of macrophages and killing rate of bacterial spores. Increased levels of inducible NOS2 and NO production by macrophages in presence of glycoconjugates suggested that the latter provide an activation signal directed to macrophages. Glycoconjugates were shown to exert a protective influence, sparing macrophages from spore-induced cell death. In presence of glycoconjugates, macrophages efficiently kill the organisms. Without glycoconjugate activation, murine macrophages were ineffective at killing Bacillus spores. These results suggest that glycoconjugates promote killing of Bacillus spores by blocking spore-induced macrophage cell death, while increasing their activation level and NO and NOS2 production. Glycoconjugates suggest novel antimicrobial approaches to prevention and treatment of infection caused by bacterial spores.  相似文献   

13.
N-nitro-l-arginine (NG-nitro-l-arginine) is a potent nitric oxide synthase inhibitor which crosses the blood brain barrier and does not undergo extensive metabolism in vivo. In this study, effect of chronic pretreatment of N-nitro-l-arginine (75 mg/kg, i.p., twice daily for 7 days) on the harmaline- (100 mg/kg, s.c.), picrotoxin- (4 mg/kg, s.c.), pentylenetetrazole- (50 mg/kg, i.p.), andl-glutamic acid- (400 g/10 l/mouse, i.c.v.) induced increase in cerebellar cGMP was assessed. All the four drugs produced significant increase in cerebellar cGMP in vehicle pretreated control animals. Cerebellar cGMP increase induced by harmaline, picrotoxin, andl-glutamic acid was attentuated in N-nitro-l-arginine pretreated animals. These results indicate that in vivo cerebellar cGMP levels are increased by the prototype excitatory amino acid receptor agonist,l-glutamic acid and also by the drugs which augment the excitatory amino acid transmission. Furthermore, parenteral chronic administration of N-nitro-l-arginine blocks NO synthase in the brain and hence cerebellar cGMP response in chronic N-nitro-l-arginine treated animals could be used as a tool to assess the physiological functions of nitric oxide in vivo.Part of this work was presented at the Experimental Biology 93 FASEB Meeting at New Orleans, March 1993.  相似文献   

14.
Thalidomide is known as an anti-angiogenic, anti-tumor, and anti-proliferative agent, widely used in the treatment of some immunological disorders and cancers. The effect of thalidomide on interferon (IFN)-γ induced nitric oxide (NO) production in mouse vascular endothelial cells was examined in order to elucidate the anti-angiogenic or anti-inflammatory action. Thalidomide inhibited IFN-γ-induced NO production in mouse END-D cells via reduced expression of an inducible type of NO synthase (iNOS) protein and mRNA. Since thalidomide did not alter the cell surface expression of IFN-γ receptor, the NO inhibition was suggested to be due to the impairment of IFN-γ-induced intracellular event by thalidomide. Thalidomide inhibited the phosphorylation of IRF1, which was required for the iNOS expression. Moreover, it inhibited the phosphorylation of STAT1, an upstream molecule of IRF1, in IFN-γ signaling. Thalidomide did not inhibit the JAK activation in response to IFN-γ. A phosphatase inhibitor, sodium orthovanadate, abolished the inhibitory action of thalidomide. Therefore, thalidomide was suggested to inhibit IFN-γ-induced NO production via impaired STAT1 phosphorylation.  相似文献   

15.
16.
Does nitric oxide play a role in maternal tolerance towards the foetus?   总被引:3,自引:0,他引:3  
In pregnancy there occurs maternal tolerance to the foetus. Several mechanisms have been proposed to explain this phenomenon. The main immune population in the decidua are macrophages and natural killer cells, but with some "special" suppressor characteristics. There is also a predominant TH2 response. The non classical MCH type I HLA-G is expressed by trophoblasts and can suppress lymphomononuclear cytotoxicity. Other system to avoid the immune system is the expression of indoleamine-2,3-dioxygenase, that suppresses T cell activation by degrading tryptophan. Even though in the placenta there is a high production of nitric oxide, a well-known immune modulator, low attention has been paid to its role in maternal tolerance. There are many data showing that NO affects the IDO, CD95/CD95-L and the balance between TH1/TH2. Maybe NO could interact with several mechanisms at the same time, which could modify the tolerogenic activity depending on the concentration and the presence of other factors in the medium.  相似文献   

17.
Cooper CE 《IUBMB life》2003,55(10-11):591-597
In the mid 1990s a number of research groups recognized that mitochondrial oxygen consumption could be reversibly inhibited by nitric oxide at the level of the enzyme cytochrome c oxidase. The inhibition was apparently competitive with respect to the oxygen concentration. This review critically assesses the present state of knowledge as regards the hypothesis that nitric oxide is a competitive, reversible, physiological inhibitor of cytochrome oxidase.  相似文献   

18.
Polyamines, such as spermine, spermidine and putrescine, are ubiquitous polycationic compounds that are produced by almost all living organisms, including plants, animals, fungi and bacteria. Polyamines are multifunctional and interact with polyanionic biomolecules such as DNA or protein. However, despite their potential significance, the polyamine-dependent signal transduction system has not been revealed yet. Ni Ni Tun and colleagues have recently reported a possible linkage between polyamine and nitric oxide (NO), another ubiquitous signalling molecule.  相似文献   

19.
We are combining stopped-flow, stop-quench, and rapid-freezing kinetic methods to help clarify the unique redox roles of tetrahydrobiopterin (H(4)B) in NO synthesis, which occurs via the consecutive oxidation of L-arginine (Arg) and N-hydroxy-L-arginine (NOHA). In the Arg reaction, H(4)B radical formation is coupled to reduction of a heme Fe(II)O(2) intermediate. The tempo of this electron transfer is important for coupling Fe(II)O(2) formation to Arg hydroxylation. Because H(4)B provides this electron faster than can the NOS reductase domain, H(4)B appears to be a kinetically preferred source of the second electron for oxygen activation during Arg hydroxylation. A conserved Trp (W457 in mouse inducible NOS) has been shown to influence product formation by controlling the kinetics of H(4)B electron transfer to the Fe(II)O(2) intermediate. This shows that the NOS protein tunes H(4)B redox function. In the NOHA reaction the role of H(4)B is more obscure. However, existing evidence suggests that H(4)B may perform consecutive electron donor and acceptor functions to reduce the Fe(II)O(2) intermediate and then ensure that NO is produced from NOHA.  相似文献   

20.
Several papers have claimed that mitochondria contain nitric oxide synthase (NOS) and make nitric oxide (NO*) in amounts sufficient to affect mitochondrial respiration. However, we found that the addition of L-arginine or the NOS inhibitor L-NMMA to intact rat liver mitochondria did not have any effect on the respiratory rate in both State 3 and State 4. We did not detect mitochondrial NO* production by the oxymyoglobin oxidation assay, or electrochemically using an NO* electrode. An apparent NO* production detected by the Griess assay was identified as an artifact. NO* generated by eNOS added to the mitochondria could easily be detected, although succinate-supplemented mitochondria appeared to consume NO*. Our data show that NO* production by normal rat liver mitochondria cannot be detected in our laboratory, even though the levels of production claimed in the literature should easily have been measured by the techniques used. The implications for the putative mitochondrial NOS are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号