首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Microcystins are waterborne environmental toxins that induce oxidative stress and cause injuries in the heart. On the other hand, many physiological processes, including antioxidant defense, are under precise control by the mammalian circadian clock.

Results

In the present study, we evaluated the effect of microcystin-LR (MC-LR) on the rhythmic expression patterns of circadian and antioxidant genes in rat cardiomyocytes using the serum shock technique. We found that a non-toxic dose (10 μm) of MC-LR decreased the amplitudes of rhythmic patterns of clock genes, while it increased the expression levels of antioxidant genes.

Conclusions

Our results indicate an influence of MC-LR on the circadian clock system and clock-controlled antioxidant genes, which will shed some light on the explanation of heart toxicity induced by MC-LR from the viewpoint of chronobiology.
  相似文献   

2.
3.
4.
Yagita K  Okamura H 《FEBS letters》2000,465(1):79-82
Mammalian culture cells have the potential for periodicity, since high concentrations of serum can elicit the circadian expression of clock genes in rat-1 fibroblasts. However, the mechanism by which serum affects circadian gene expression remains unclear. In the present study, we incubated rat-1 cells with forskolin and successfully induced the rhythmic expression of Per1, Per2 and dbp. In the initial step of the circadian gene expression, a marked transient induction of Per1 was observed accompanied with CREB phosphorylation. Thus the present study strongly suggests that CREB activation through the cAMP/PKA pathway is involved in the generation of circadian rhythm in rat-1 cells  相似文献   

5.
6.
Disruption of circadian regulation was recently shown to cause diabetes and metabolic disease. We have previously demonstrated that retinal lipid metabolism contributed to the development of diabetic retinopathy. The goal of this study was to determine the effect of diabetes on circadian regulation of clock genes and lipid metabolism genes in the retina and retinal endothelial cells (REC). Diabetes had a pronounced inhibitory effect on the negative clock arm with lower amplitude of the period (per) 1 in the retina; lower amplitude and a phase shift of per2 in the liver; and a loss of cryptochrome (cry) 2 rhythmic pattern in suprachiasmatic nucleus (SCN). The positive clock arm was increased by diabetes with higher amplitude of circadian locomotor output cycles kaput (CLOCK) and brain and muscle aryl-hydrocarbon receptor nuclear translocator-like 1 (bmal1) and phase shift in bmal1 rhythmic oscillations in the retina; and higher bmal1 amplitude in the SCN. Peroxisome proliferator-activated receptor (PPAR) α exhibited rhythmic oscillation in retina and liver; PPARγ had lower amplitude in diabetic liver; sterol regulatory element-binding protein (srebp) 1c had higher amplitude in the retina but lower in the liver in STZ- induced diabetic animals. Both of Elongase (Elovl) 2 and Elovl4 had a rhythmic oscillation pattern in the control retina. Diabetic retinas lost Elovl4 rhythmic oscillation and had lower amplitude of Elovl2 oscillations. In line with the in vivo data, circadian expression levels of CLOCK, bmal1 and srebp1c had higher amplitude in rat REC (rREC) isolated from diabetic rats compared with control rats, while PPARγ and Elovl2 had lower amplitude in diabetic rREC. In conclusion, diabetes causes dysregulation of circadian expression of clock genes and the genes controlling lipid metabolism in the retina with potential implications for the development of diabetic retinopathy.  相似文献   

7.
Cells/organs must respond both rapidly and appropriately to increased fatty acid availability; failure to do so is associated with the development of skeletal muscle and hepatic insulin resistance, pancreatic beta-cell dysfunction, and myocardial contractile dysfunction. Here we tested the hypothesis that the intrinsic circadian clock within the cardiomyocytes of the heart allows rapid and appropriate adaptation of this organ to fatty acids by investigating the following: 1) whether circadian rhythms in fatty acid responsiveness persist in isolated adult rat cardiomyocytes, and 2) whether manipulation of the circadian clock within the heart, either through light/dark (L/D) cycle or genetic disruptions, impairs responsiveness of the heart to fasting in vivo. We report that both the intramyocellular circadian clock and diurnal variations in fatty acid responsiveness observed in the intact rat heart in vivo persist in adult rat cardiomyocytes. Reversal of the 12-h/12-h L/D cycle was associated with a re-entrainment of the circadian clock within the rat heart, which required 5-8 days for completion. Fasting rats resulted in the induction of fatty acid-responsive genes, an effect that was dramatically attenuated 2 days after L/D cycle reversal. Similarly, a targeted disruption of the circadian clock within the heart, through overexpression of a dominant negative CLOCK mutant, severely attenuated induction of myocardial fatty acid-responsive genes during fasting. These studies expose a causal relationship between the circadian clock within the cardiomyocyte with responsiveness of the heart to fatty acids and myocardial triglyceride metabolism.  相似文献   

8.
The cardiomyocyte circadian clock directly regulates multiple myocardial functions in a time-of-day-dependent manner, including gene expression, metabolism, contractility, and ischemic tolerance. These same biological processes are also directly influenced by modification of proteins by monosaccharides of O-linked β-N-acetylglucosamine (O-GlcNAc). Because the circadian clock and protein O-GlcNAcylation have common regulatory roles in the heart, we hypothesized that a relationship exists between the two. We report that total cardiac protein O-GlcNAc levels exhibit a diurnal variation in mouse hearts, peaking during the active/awake phase. Genetic ablation of the circadian clock specifically in cardiomyocytes in vivo abolishes diurnal variations in cardiac O-GlcNAc levels. These time-of-day-dependent variations appear to be mediated by clock-dependent regulation of O-GlcNAc transferase and O-GlcNAcase protein levels, glucose metabolism/uptake, and glutamine synthesis in an NAD-independent manner. We also identify the clock component Bmal1 as an O-GlcNAc-modified protein. Increasing protein O-GlcNAcylation (through pharmacological inhibition of O-GlcNAcase) results in diminished Per2 protein levels, time-of-day-dependent induction of bmal1 gene expression, and phase advances in the suprachiasmatic nucleus clock. Collectively, these data suggest that the cardiomyocyte circadian clock increases protein O-GlcNAcylation in the heart during the active/awake phase through coordinated regulation of the hexosamine biosynthetic pathway and that protein O-GlcNAcylation in turn influences the timing of the circadian clock.  相似文献   

9.
10.
Circadian clocks have been shown to operate developmentally in mouse and human hematopoietic stem and progenitor cells in vivo, but little is known about their possible oscillations in vitro. Here, we show that repeated circadian oscillations could be induced in both cultured bone marrow‐derived mesenchymal‐ and adipose‐derived stem cells (MSCs and ASCs, respectively) by serum shock. In particular, the novel finding of rhythmic clock gene expression induced by cAMP analogs showed similarities as well as differences to serum‐induced oscillations. Rhythmic PER1 expression was found in serum‐shocked MSCs, suggesting the phosphorylation status of PER1 is important for its activity in circadian rhythms. Furthermore, immunofluoresent staining showed that the localization of PER1 was dependent on the level of PER1 expression. These inducible self‐sustained circadian clocks in primary cultures of human MSCs in vitro with rhythmic changes in expression levels, phosphorylation, and localization of clock protein, PER1, may be of importance for maintaining the induced oscillations in stem cells. Therefore, the established cell models described here appear to be valuable for studying the molecular mechanism driving and coordinating the circadian network between stem and stromal cells.  相似文献   

11.
The molecular circadian clock mechanism is highly conserved between mammalian and avian species. Avian circadian timing is regulated at multiple oscillatory sites, including the retina, pineal, and hypothalamic suprachiasmatic nucleus (SCN). Based on the authors' previous studies on the rat ovary, it was hypothesized that ovarian clock timing is regulated by the luteinizing hormone (LH) surge. The authors used the chicken as a model to test this hypothesis, because the timing of the endogenous LH surge is accurately predicted from the time of oviposition. Therefore, tissues can be removed before and after the LH surge, allowing one to determine the effect of LH on specific clock genes. The authors first examined the 24-h expression patterns of the avian circadian clock genes of Bmal1, Cry1, and Per2 in primary oscillatory tissues (hypothalamus and pineal) as well as peripheral tissues (liver and ovary). Second, the authors determined changes in clock gene expression after the endogenous LH surge. Clock genes were rhythmically expressed in each tissue, but LH influenced expression of these clock genes only in the ovary. The data suggest that expression of ovarian circadian clock genes may be influenced by the LH surge in vivo and directly by LH in cultured granulosa cells. LH induced rhythmic expression of Per1 and Bmal1 in arrhythmic, cultured granulosa cells. Furthermore, LH altered the phase and amplitude of clock gene rhythms in serum-shocked granulosa cells. Thus, the LH surge may be a mechanistic link for communicating circadian timing information from the central pacemaker to the ovary.  相似文献   

12.
13.
The molecular circadian clock mechanism is highly conserved between mammalian and avian species. Avian circadian timing is regulated at multiple oscillatory sites, including the retina, pineal, and hypothalamic suprachiasmatic nucleus (SCN). Based on the authors’ previous studies on the rat ovary, it was hypothesized that ovarian clock timing is regulated by the luteinizing hormone (LH) surge. The authors used the chicken as a model to test this hypothesis, because the timing of the endogenous LH surge is accurately predicted from the time of oviposition. Therefore, tissues can be removed before and after the LH surge, allowing one to determine the effect of LH on specific clock genes. The authors first examined the 24-h expression patterns of the avian circadian clock genes of Bmal1, Cry1, and Per2 in primary oscillatory tissues (hypothalamus and pineal) as well as peripheral tissues (liver and ovary). Second, the authors determined changes in clock gene expression after the endogenous LH surge. Clock genes were rhythmically expressed in each tissue, but LH influenced expression of these clock genes only in the ovary. The data suggest that expression of ovarian circadian clock genes may be influenced by the LH surge in vivo and directly by LH in cultured granulosa cells. LH induced rhythmic expression of Per1 and Bmal1 in arrhythmic, cultured granulosa cells. Furthermore, LH altered the phase and amplitude of clock gene rhythms in serum-shocked granulosa cells. Thus, the LH surge may be a mechanistic link for communicating circadian timing information from the central pacemaker to the ovary. (Author correspondence: stischkau@siumed.edu)  相似文献   

14.
Hypertensive TGR(mREN-2)27 rats exerting inverted blood pressure (BP) profile were used to study clock gene expression in structures responsible for BP control. TGR and control Sprague Dawley male rats were synchronized to the light:dark cycle 12:12 with food and water ad libitum. Daily rhythm in per2, bmal1, clock and dbp expression in the suprachiasmatic nucleus (SCN), rostral ventrolateral medulla (RVLM), nucleus of the solitary tract (NTS), heart and kidney was determined in both groups. Sampling occurred in regular 4 h intervals when rats of both strains were 11-weeks-old. Blood pressure and relative heart weight were significantly elevated in TGR rats in comparison with control. Expression of bmal1 and clock was up regulated in SCN of TGR rats but daily rhythm in per2 and dbp expression was similar in both groups. Mesor of per2 expression in RVLM was significantly higher in TGR than in control rats. In NTS of TGR rats expression of per2 was phase delayed by 3.5 h in comparison with control and bmal1 did not exert rhythmic pattern. Our study provided the first evidence about modified function of central and peripheral circadian oscillators in TGR rats at the level of clock gene expression. Expression of clock genes exerted up regulation in SCN and RVLM and down regulation in NTS. Circadian oscillators in selected brain structures were influenced more than oscillators in the heart and kidney by additional renin gene. Interactions of RAS and circadian system probably contribute to the development of inverted BP profile in TGR rats.  相似文献   

15.
16.
Timing of circadian activities is controlled by rhythmic expression of clock genes in pacemaker neurons in the insect brain. Circadian behavior and clock gene expression can entrain to both thermoperiod and photoperiod but the availability of such cues, the organization of the brain, and the need for circadian behavior change dramatically during the course of insect metamorphosis. We asked whether photoperiod or thermoperiod entrains the clock during pupal and pharate adult stages by exposing flies to different combinations of thermoperiod and photoperiod and observing the effect on the timing of adult eclosion. This study used qRT-PCR to examine how entrainment and expression of circadian clock genes change during the course of development in the flesh fly, Sarcophaga crassipalpis. Thermoperiod entrains expression of period and controls the timing of adult eclosion, suggesting that the clock gene period may be upstream of the eclosion pathway. Rhythmic clock gene expression is evident in larvae, appears to cease during the early pharate adult stage, and resumes again by the time of adult eclosion. Our results indicate that both patterns of clock gene expression and the cues to which the clock entrains are dynamic and respond to different environmental signals at different developmental stages in S. crassipalpis.  相似文献   

17.
18.
Acute light exposure suppresses circadian rhythms in clock gene expression   总被引:1,自引:0,他引:1  
Light can induce arrhythmia in circadian systems by several weeks of constant light or by a brief light stimulus given at the transition point of the phase response curve. In the present study, a novel light treatment consisting of phase advance and phase delay photic stimuli given on 2 successive nights was used to induce circadian arrhythmia in the Siberian hamster ( Phodopus sungorus). We therefore investigated whether loss of rhythms in behavior was due to arrhythmia within the suprachiasmatic nucleus (SCN). SCN tissue samples were obtained at 6 time points across 24 h in constant darkness from entrained and arrhythmic hamsters, and per1, per2 , bmal1, and cry1 mRNA were measured by quantitative RT-PCR. The light treatment eliminated circadian expression of clock genes within the SCN, and the overall expression of these genes was reduced by 18% to 40% of entrained values. Arrhythmia in per1, per2, and bmal1 was due to reductions in the amplitudes of their oscillations. We suggest that these data are compatible with an amplitude suppression model in which light induces singularity in the molecular circadian pacemaker.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号