首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evolutionary biologists have long been interested in the processes influencing population differentiation, but separating the effects of neutral and adaptive evolution has been an obstacle for studies of population subdivision. A recently developed method allows tests of whether disruptive (ie, spatially variable) or stabilizing (ie, spatially uniform) selection is influencing phenotypic differentiation among subpopulations. This method, referred to as the F(ST) vs Q(ST) comparison, separates the total additive genetic variance into within- and among-population components and evaluates this level of differentiation against a neutral hypothesis. Thus, levels of neutral molecular (F(ST)) and quantitative genetic (Q(ST)) divergence are compared to evaluate the effects of selection and genetic drift on phenotypic differentiation. Although the utility of such comparisons appears great, its accuracy has not yet been evaluated in populations with known evolutionary histories. In this study, F(ST) vs Q(ST) comparisons were evaluated using laboratory populations of house mice with known evolutionary histories. In this model system, the F(ST) vs Q(ST) comparisons between the selection groups should reveal quantitative trait differentiation consistent with disruptive selection, while the F(ST) vs Q(ST) comparisons among lines within the selection groups should suggest quantitative trait differentiation in agreement with drift. We find that F(ST) vs Q(ST) comparisons generally produce the correct evolutionary inference at each level in the population hierarchy. Additionally, we demonstrate that when strong selection is applied between populations Q(ST) increases relative to Q(ST) among populations diverging by drift. Finally, we show that the statistical properties of Q(ST), a variance component ratio, need further investigation.  相似文献   

2.
Comparisons of estimates of genetic differentiation at molecular markers (F(ST)) and at quantitative traits (Q(ST)) are a means of inferring the level and heterogeneity of selection in natural populations. However, such comparisons are questionable because they require that the influence of drift and selection on Q(ST) be detectable over possible background influences of environmental or nonadditive genetic effects on Q(ST)-values. Here we test this using an experimental evolution approach in metapopulations of Arabidopsis thaliana experiencing different levels of drift and selection heterogeneity. We estimated the intensity and heterogeneity of selection on morphological and phenological traits via selection differentials. We demonstrate that Q(ST)-values increased with increasing selection heterogeneity when genetic drift was limited. The effect of selection on Q(ST) was thus detectable despite significant genotype-by-environment interactions that most probably biased the estimates of genetic differentiation. Although they cannot be used as a direct validation of the conclusions of prior studies, our results strongly support both the relevance of Q(ST) as an estimator of genetic differentiation and the role of local selection in shaping the genetic differentiation of natural populations.  相似文献   

3.
Goudet J  Büchi L 《Genetics》2006,172(2):1337-1347
To test whether quantitative traits are under directional or homogenizing selection, it is common practice to compare population differentiation estimates at molecular markers (F(ST)) and quantitative traits (Q(ST)). If the trait is neutral and its determinism is additive, then theory predicts that Q(ST) = F(ST), while Q(ST) > F(ST) is predicted under directional selection for different local optima, and Q(ST) < F(ST) is predicted under homogenizing selection. However, nonadditive effects can alter these predictions. Here, we investigate the influence of dominance on the relation between Q(ST) and F(ST) for neutral traits. Using analytical results and computer simulations, we show that dominance generally deflates Q(ST) relative to F(ST). Under inbreeding, the effect of dominance vanishes, and we show that for selfing species, a better estimate of Q(ST) is obtained from selfed families than from half-sib families. We also compare several sampling designs and find that it is always best to sample many populations (>20) with few families (five) rather than few populations with many families. Provided that estimates of Q(ST) are derived from individuals originating from many populations, we conclude that the pattern Q(ST) > F(ST), and hence the inference of directional selection for different local optima, is robust to the effect of nonadditive gene actions.  相似文献   

4.
Relating geographic variation in quantitative traits to underlying population structure is crucial for understanding processes driving population differentiation, isolation and ultimately speciation. Our study represents a comprehensive population genetic survey of the yellow dung fly Scathophaga stercoraria, an important model organism for evolutionary and ecological studies, over a broad geographic scale across Europe (10 populations from the Swiss Alps to Iceland). We simultaneously assessed differentiation in five quantitative traits (body size, development time, growth rate, proportion of diapausing individuals and duration of diapause), to compare differentiation in neutral marker loci (F(ST)) to that of quantitative traits (Q(ST)). Despite long distances and uninhabitable areas between sampled populations, population structuring was very low but significant (F(ST) = 0.007, 13 microsatellite markers; F(ST) = 0.012, three allozyme markers; F(ST) = 0.007, markers combined). However, only two populations (Iceland and Sweden) showed significant allelic differentiation to all other populations. We estimated high levels of gene flow [effective number of migrants (Nm) = 6.2], there was no isolation by distance, and no indication of past genetic bottlenecks (i.e. founder events) and associated loss of genetic diversity in any northern or island population. In contrast to the low population structure, quantitative traits were strongly genetically differentiated among populations, following latitudinal clines, suggesting that selection is responsible for life history differentiation in yellow dung flies across Europe.  相似文献   

5.
Comparative studies of quantitative genetic and neutral marker differentiation have provided means for assessing the relative roles of natural selection and random genetic drift in explaining among-population divergence. This information can be useful for our fundamental understanding of population differentiation, as well as for identifying management units in conservation biology. Here, we provide comprehensive review and meta-analysis of the empirical studies that have compared quantitative genetic (Q(ST)) and neutral marker (F(ST)) differentiation among natural populations. Our analyses confirm the conclusion from previous reviews - based on ca. 100% more data - that the Q(ST) values are on average higher than F(ST) values [mean difference 0.12 (SD 0.27)] suggesting a predominant role for natural selection as a cause of differentiation in quantitative traits. However, although the influence of trait (life history, morphological and behavioural) and marker type (e.g. microsatellites and allozymes) on the variance of the difference between Q(ST) and F(ST) is small, there is much heterogeneity in the data attributable to variation between specific studies and traits. The latter is understandable as there is no reason to expect that natural selection would be acting in similar fashion on all populations and traits (except for fitness itself). We also found evidence to suggest that Q(ST) and F(ST) values across studies are positively correlated, but the significance of this finding remains unclear. We discuss these results in the context of utility of the Q(ST)-F(ST) comparisons as a tool for inferring natural selection, as well as associated methodological and interpretational problems involved with individual and meta-analytic studies.  相似文献   

6.
Studies examining the effects of anthropogenic habitat fragmentation on both neutral and adaptive genetic variability are still scarce. We compared tadpole fitness-related traits (viz. survival probability and body size) among populations of the common frog (Rana temporaria) from fragmented (F) and continuous (C) habitats that differed significantly in population sizes (C > F) and genetic diversity (C > F) in neutral genetic markers. Using data from common garden experiments, we found a significant positive relationship between the mean values of the fitness related traits and the amount of microsatellite variation in a given population. While genetic differentiation in neutral marker loci (F(ST)) tended to be more pronounced in the fragmented than in the continuous habitat, genetic differentiation in quantitative traits (Q(ST)) exceeded that in neutral marker traits in the continuous habitat (i.e. Q(ST) > F(ST)), but not in the fragmented habitat (i.e. Q(ST) approximately F(ST)). These results suggest that the impact of random genetic drift relative to natural selection was higher in the fragmented landscape where populations were small, and had lower genetic diversity and fitness as compared to populations in the more continuous landscape. The findings highlight the potential importance of habitat fragmentation in impairing future adaptive potential of natural populations.  相似文献   

7.
López-Fanjul C  Fernández A  Toro MA 《Genetics》2003,164(4):1627-1633
For neutral additive genes, the quantitative index of population divergence (Q(ST)) is equivalent to Wright's fixation index (F(ST)). Thus, divergent or convergent selection is usually invoked, respectively, as a cause of the observed increase (Q(ST) > F(ST)) or decrease (Q(ST) < F(ST)) of Q(ST) from its neutral expectation (Q(ST) = F(ST)). However, neutral nonadditive gene action can mimic the additive expectations under selection. We have studied theoretically the effect of consecutive population bottlenecks on the difference F(ST) - Q(ST) for two neutral biallelic epistatic loci, covering all types of marginal gene action. With simple dominance, Q(ST) < F(ST) for only low to moderate frequencies of the recessive alleles; otherwise, Q(ST) > F(ST). Additional epistasis extends the condition Q(ST) < F(ST) to a broader range of frequencies. Irrespective of the type of nonadditive action, Q(ST) < F(ST) generally implies an increase of both the within-line additive variance after bottlenecks over its ancestral value (V(A)) and the between-line variance over its additive expectation (2F(ST)V(A)). Thus, both the redistribution of the genetic variance after bottlenecks and the F(ST) - Q(ST) value are governed largely by the marginal properties of single loci. The results indicate that the use of the F(ST) - Q(ST) criterion to investigate the relative importance of drift and selection in population differentiation should be restricted to pure additive traits.  相似文献   

8.
The existence and mode of selection operating on heritable adaptive traits can be inferred by comparing population differentiation in neutral genetic variation between populations (often using F(ST) values) with the corresponding estimates for adaptive traits. Such comparisons indicate if selection acts in a diversifying way between populations, in which case differentiation in selected traits is expected to exceed differentiation in neutral markers [F(ST )(selected) > F(ST )(neutral)], or if negative frequency-dependent selection maintains genetic polymorphisms and pulls populations towards a common stable equilibrium [F(ST) (selected) < F(ST) (neutral)]. Here, we compared F(ST) values for putatively neutral data (obtained using amplified fragment length polymorphism) with estimates of differentiation in morph frequencies in the colour-polymorphic damselfly Ischnura elegans. We found that in the first year (2000), population differentiation in morph frequencies was significantly greater than differentiation in neutral loci, while in 2002 (only 2 years and 2 generations later), population differentiation in morph frequencies had decreased to a level significantly lower than differentiation in neutral loci. Genetic drift as an explanation for population differentiation in morph frequencies could thus be rejected in both years. These results indicate that the type and/or strength of selection on morph frequencies in this system can change substantially between years. We suggest that an approach to a common equilibrium morph frequency across all populations, driven by negative frequency-dependent selection, is the cause of these temporal changes. We conclude that inferences about selection obtained by comparing F(ST) values from neutral and adaptive genetic variation are most useful when spatial and temporal data are available from several populations and time points and when such information is combined with other ecological sources of data.  相似文献   

9.
The comparison between neutral genetic differentiation (F(ST) ) and quantitative genetic differentiation (Q(ST) ) is commonly used to test for signatures of selection in population divergence. However, there is an ongoing discussion about what F(ST) actually measures, even resulting in some alternative metrics to express neutral genetic differentiation. If there is a problem with F(ST) , this could have repercussions for its comparison with Q(ST) as well. We show that as the mutation rate of the neutral marker increases, F(ST) decreases: a higher within-population heterozygosity (He) yields a lower F(ST) value. However, the same is true for Q(ST) : a higher mutation rate for the underlying QTL also results in a lower Q(ST) estimate. The effect of mutation rate is equivalent in Q(ST) and F(ST) . Hence, the comparison between Q(ST) and F(ST) remains valid, if one uses neutral markers whose mutation rates are not too high compared to those of quantitative traits. Usage of highly variable neutral markers such as hypervariable microsatellites can lead to serious biases and the incorrect inference that divergent selection has acted on populations. Much of the discussion on F(ST) seems to stem from the misunderstanding that it measures the differentiation of populations, whereas it actually measures the fixation of alleles. In their capacity as measures of population differentiation, Hedrick's G'(ST) and Jost's D reach their maximum value of 1 when populations do not share alleles even when there remains variation within populations, which invalidates them for comparisons with Q(ST) .  相似文献   

10.
Le Corre V  Kremer A 《Genetics》2003,164(3):1205-1219
Genetic variability in a subdivided population under stabilizing and diversifying selection was investigated at three levels: neutral markers, QTL coding for a trait, and the trait itself. A quantitative model with additive effects was used to link genotypes to phenotypes. No physical linkage was introduced. Using an analytical approach, we compared the diversity within deme (H(S)) and the differentiation (F(ST)) at the QTL with the genetic variance within deme (V(W)) and the differentiation (Q(ST)) for the trait. The difference between F(ST) and Q(ST) was shown to depend on the relative amounts of covariance between QTL within and between demes. Simulations were used to study the effect of selection intensity, variance of optima among demes, and migration rate for an allogamous and predominantly selfing species. Contrasting dynamics of the genetic variability at markers, QTL, and trait were observed as a function of the level of gene flow and diversifying selection. The highest discrepancy among the three levels occurred under highly diversifying selection and high gene flow. Furthermore, diversifying selection might cause substantial heterogeneity among QTL, only a few of them showing allelic differentiation, while the others behave as neutral markers.  相似文献   

11.
Reduced genetic variation at marker loci in small populations has been well documented, whereas the relationship between quantitative genetic variation and population size has attracted little empirical investigation. Here we demonstrate that both neutral and quantitative genetic variation are reduced in small populations of a fragmented plant metapopulation, and that both drift and selective change are enhanced in small populations. Measures of neutral genetic differentiation (F(ST)) and quantitative genetic differentiation (Q(ST)) in two traits were higher among small demes, and Q(ST) between small populations exceeded that expected from drift alone. This suggests that fragmented populations experience both enhanced genetic drift and divergent selection on phenotypic traits, and that drift affects variation in both neutral markers and quantitative traits. These results highlight the need to integrate natural selection into conservation genetic theory, and suggests that small populations may represent reservoirs of genetic variation adaptive within a wide range of environments.  相似文献   

12.
The additive genetic variance-covariance matrix (G) is a concept central to discussions about evolutionary change over time in a suite of traits. However, at the moment we do not know how fast G itself changes as a consequence of selection or how sensitive it is to environmental influences. We investigated possible evolutionary divergence and environmental influences on G using data from a factorial common-garden experiment where common frog (Rana temporaria) tadpoles from two divergent populations were exposed to three different environmental treatments. G-matrices were estimated using an animal model approach applied to data from a NCII breeding design. Matrix comparisons using both Flury and multivariate analysis of variance methods revealed significant differences in G matrices both between populations and between treatments within populations, the former being generally larger than the latter. Comparison of levels of population differentiation in trait means using Q(ST) indices with that observed in microsatellite markers (F(ST)) revealed that the former values generally exceeded the neutral expectation set by F(ST). Hence, the results suggest that intraspecific divergence in G matrix structure has occurred mainly due to natural selection.  相似文献   

13.
The importance of directional selection relative to neutral evolution may be determined by comparing quantitative genetic variation in phenotype (Q(ST)) to variation at neutral molecular markers (F(ST)). Quantitative divergence between salmonid life history types is often considerable, but ontogenetic changes in the significance of major sources of genetic variance during post-hatch development suggest that selective differentiation varies by developmental stage. In this study, we tested the hypothesis that maternal genetic differentiation between anadromous and resident brook charr (Salvelinus fontinalis Mitchill) populations for early quantitative traits (embryonic size/growth, survival, egg number and developmental time) would be greater than neutral genetic differentiation, but that the maternal genetic basis for differentiation would be higher for pre-resorption traits than post-resorption traits. Quantitative genetic divergence between anadromous (seawater migratory) and resident Laval River (Québec) brook charr based on maternal genetic variance was high (Q(ST) > 0.4) for embryonic length, yolk sac volume, embryonic growth rate and time to first response to feeding relative to neutral genetic differentiation [F(ST) = 0.153 (0.071-0.214)], with anadromous females having positive genetic coefficients for all of the above characters. However, Q(ST) was essentially zero for all traits post-resorption of the yolk sac. Our results indicate that the observed divergence between resident and anadromous brook charr has been driven by directional selection, and may therefore be adaptive. Moreover, they provide among the first evidence that the relative importance of selective differentiation may be highly context-specific, and varies by genetic contributions to phenotype by parental sex at specific points in offspring ontogeny. This in turn suggests that interpretations of Q(ST)-F(ST) comparisons may be improved by considering the structure of quantitative genetic architecture by age category and the sex of the parent used in estimation.  相似文献   

14.
BACKGROUND AND AIMS: Populations of oak (Quercus petraea and Q. robur) were investigated using morphological and molecular (AFLP) analyses to assess species distinction. The study aimed to describe species distinction in Irish oak populations and to situate this in a European context. METHODS: Populations were sampled from across the range of the island of Ireland. Leaf morphological characters were analysed through clustering and ordination methods. Putative neutral molecular markers (AFLPs) were used to analyse the molecular variation. Cluster and ordination analyses were also performed on the AFLP markers in addition to calculations of genetic diversity and F-statisitcs. KEY RESULTS: A notable divergence was uncovered between the morphological and molecular analyses. The morphological analysis clearly differentiated individuals into their respective species, whereas the molecular analysis did not. Twenty species-specific AFLP markers were observed from 123 plants in 24 populations but none of these was species-diagnostic. Principal Coordinate Analysis of the AFLP data revealed a clustering, across the first two axes, of individuals according to population rather than according to species. High F(ST) values calculated from AFLP markers also indicated population differentiation (F(ST) = 0.271). Species differentiation accounted for only 13 % of the variation in diversity compared with population differentiation, which accounted for 27 %. CONCLUSIONS: The results show that neutral molecular variation is partitioned more strongly between populations than between species. Although this could indicate that the populations of Q. petraea and Q. robur studied may not be distinct species at a molecular level, it is proposed that the difficulty in distinguishing the species in Irish oak populations using AFLP markers is due to population differentiation masking species differences. This could result from non-random mating in small, fragmented woodland populations. Hybridization and introgression between the species could also have a significant role.  相似文献   

15.
The impact of natural selection on the adaptive divergence of invasive populations can be assessed by testing the null hypothesis that the extent of quantitative genetic differentiation (Q(ST) ) would be similar to that of neutral molecular differentiation (F(ST) ). Using eight microsatellite loci and a common garden approach, we compared Q(ST) and F(ST) among ten populations of an invasive species Ambrosia artemisiifolia (common ragweed) in France. In a common garden study with varying water and nutrient levels, we measured Q(ST) for five traits (height, total biomass, reproductive allocation, above- to belowground biomass ratio, and days to flowering). Although low F(ST) indicated weak genetic structure and strong gene flow among populations, we found significant diversifying selection (Q(ST) > F(ST) ) for reproductive allocation that may be closely related to fitness. It suggests that abiotic conditions may have exerted selection pressure on A. artemisiifolia populations to differentiate adaptively, such that populations at higher altitude or latitude evolved greater reproductive allocation. As previous studies indicate multiple introductions from various source populations of A. artemisiifolia in North America, our results suggest that the admixture of introduced populations may have increased genetic diversity and additive genetic variance, and in turn, promoted the rapid evolution and adaptation of this invasive species.  相似文献   

16.
O'Hara RB  Merilä J 《Genetics》2005,171(3):1331-1339
Comparison of population differentiation in neutral marker genes and in genes coding quantitative traits by means of F(ST) and Q(ST) indexes has become commonplace practice. While the properties and estimation of F(ST) have been the subject of much interest, little is known about the precision and possible bias in Q(ST) estimates. Using both simulated and real data, we investigated the precision and bias in Q(ST) estimates and various methods of estimating the precision. We found that precision of Q(ST) estimates for typical data sets (i.e., with <20 populations) was poor. Of the methods for estimating the precision, a simulation method, a parametric bootstrap, and the Bayesian approach returned the most precise estimates of the confidence intervals.  相似文献   

17.
Three measures of divergence, estimated at nine putatively neutral microsatellite markers, 14 quantitative traits, and seven quantitative trait loci (QTL) were compared in eight populations of the three-spined stickleback (Gasterosteus aculeatus L.) living in the Scheldt river basin (Belgium). Lowland estuarine and polder populations were polymorphic for the number of lateral plates, whereas upland freshwater populations were low-plated. The number of short gill rakers and the length of dorsal and pelvic spines gradually declined along a coastal-inland gradient. Plate number, short gill rakers and spine length showed moderate to strong signals of divergent selection between lowland and upland populations in comparison between P(ST) (a phenotypic alternative for Q(ST)) and neutral F(ST). However, such comparisons rely on the unrealistic assumption that phenotypic variance equals additive genetic variance, and that nonadditive genetic effects and environmental effects can be minimized. In order to verify this assumption and to confirm the phenotypic signals of divergence, we tested for divergent selection at the underlying QTL. For plate number, strong genetic evidence for divergent selection between lowland and upland populations was obtained based on an intron marker of the Eda gene, of which the genotype was highly congruent with plate morph. Genetic evidence for divergent selection on short gill rakers was limited to some population pairs where F(ST) at only one of two QTL was detected as an outlier, although F(ST) at both loci correlated significantly with P(ST). No genetic confirmation was obtained for divergent selection on dorsal spine length, as no outlier F(ST)s were detected at dorsal spine QTL, and no significant correlations with P(ST) were observed.  相似文献   

18.
R. C. Yang  F. C. Yeh    A. D. Yanchuk 《Genetics》1996,142(3):1045-1052
We employed F-statistics to analyze quantitative and isozyme variation among five populations of Pinus contorta ssp. latifolia, a wind-pollinated outcrossing conifer with wide and continuous distribution in west North America. Estimates of population differentiation (F(ST)) for six quantitative traits were compared with the overall estimate of the differentiation (F*(ST)) from 19 isozymes that tested neutral to examine whether similar evolutionary processes were involved in morphological and isozyme differentiation. While the F(ST) estimates for specific gravity, stem diameter, stem height and branch length were significantly greater than the F*(ST) estimate, as judged from the 95% confidence intervals by bootstrapping, the F(ST) estimates for branch angle and branch diameter were indistinguishable from the F*(ST) estimate. Differentiation in stem height and stem diameter might reflect the inherent adaptation of the populations for rapid growth to escape suppression by neighboring plants during establishment and to regional differences in photoperiod, precipitation and temperature. In contrast, divergences in wood specific gravity and branch length might be correlated responses to population differentiation in stem growth. Possible bias in the estimation of F(ST) due to Hardy-Weinberg disequilibrium (F(IS) & 0), linkage disequilibrium, maternal effects and nonadditive genetic effects was discussed with special reference to P. contorta ssp. latifolia.  相似文献   

19.
Genetic differentiation in 20 hierarchically sampled populations of wild barley was analyzed with quantitative traits, allozymes and Random Amplified Polymorphic DNAs (RAPDs), and compared for three marker types at two hierarchical levels. Regional subdivision for both molecular markers was much lower than for quantitative traits. For both allozymes and RAPDs, most loci exhibited minor or no regional differentiation, and the relatively high overall estimates of the latter were due to several loci with exceptionally high regional differentiation. The allozyme- and RAPD-specific patterns of differentiation were concordant in general with one another, but not with quantitative trait differentiation. Divergent selection on quantitative traits inferred from very high regional Q(ST) was in full agreement with our previous results obtained from a test of local adaptation and multilevel selection analysis. In contrast, most variation in allozyme and RAPD variation was neutral, although several allozyme loci and RAPD markers were exceptional in their levels of regional differentiation. However, it is not possible to answer the question whether these exceptional loci are directly involved in the response to selection pressure or merely linked to the selected loci. The fact that Q(ST) and F(ST) did not differ at the population scale, that is, within regions, but differed at the regional scale, for which local adaptation has been previously shown, implies that comparison of the level of subdivision in quantitative traits, as compared with molecular markers, is indicative of adaptive population differentiation only when sampling is carried out at the appropriate scale.  相似文献   

20.
The comparison between quantitative genetic divergence (Q(ST) ) and neutral genetic divergence (F(ST) ) among populations has become the standard test for historical signatures of selection on quantitative traits. However, when the mutation rate of neutral markers is relatively high in comparison with gene flow, estimates of F(ST) will decrease, resulting in upwardly biased comparisons of Q(ST) vs. F(ST) . Reviewing empirical studies, the difference between Q(ST) and F(ST) is positively related to marker heterozygosity. After refuting alternative explanations for this pattern, we conclude that marker mutation rate indeed has had a biasing effect on published Q(ST) -F(ST) comparisons. Hence, it is no longer clear that populations have commonly diverged in response to divergent selection. We present and discuss potential solutions to this bias. Comparing Q(ST) with recent indices of neutral divergence that statistically correct for marker heterozygosity (Hedrick's G'st and Jost's D) is not advised, because these indices are not theoretically equivalent to Q(ST) . One valid solution is to estimate F(ST) from neutral markers with mutation rates comparable to those of the loci underlying quantitative traits (e.g. SNPs). Q(ST) can also be compared to Φ(ST) (Phi(ST) ) of amova, as long as the genetic distance among allelic variants used to estimate Φ(ST) reflects evolutionary history: in that case, neutral divergence is independent of mutation rate. In contrast to their common usage in comparisons of Q(ST) and F(ST) , microsatellites typically have high mutation rates and do not evolve according to a simple evolutionary model, so are best avoided in Q(ST) -F(ST) comparisons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号