首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yeast two-hybrid and Far Western analyses were used to detect interactions between Bacillus subtilis spores' nutrient germinant receptor proteins and proteins encoded by the spoVA operon, all of which are involved in spore germination and located in the spores' inner membrane. These analyses indicated that two subunits of the GerA nutrient germinant receptor interact, consistent with previous genetic data, and that some GerA proteins interact with SpoVAD and some with SpoVAE. SpoVA proteins appear to be involved in the release of the spore's dipicolinic acid during spore germination, an event triggered by the binding of nutrient germinants to their receptors. Consequently, these new findings suggest that nutrient germinant receptors physically contact SpoVA proteins, and presumably this is a route for signal transduction during spore germination.  相似文献   

2.
3.
The rates of germination of Bacillus subtilis spores with L-alanine were increased markedly, in particular at low L-alanine concentrations, by overexpression of the tricistronic gerA operon that encodes the spore's germinant receptor for L-alanine but not by overexpression of gerA operon homologs encoding receptors for other germinants. However, spores with elevated levels of the GerA proteins did not germinate more rapidly in a mixture of asparagine, glucose, fructose, and K(+) (AGFK), a germinant combination that requires the participation of at least the germinant receptors encoded by the tricistronic gerB and gerK operons. Overexpression of the gerB or gerK operon or both the gerB and gerK operons also did not stimulate spore germination in AGFK. Overexpression of a mutant gerB operon, termed gerB*, that encodes a receptor allowing spore germination in response to either D-alanine or L-asparagine also caused faster spore germination with these germinants, again with the largest enhancement of spore germination rates at lower germinant concentrations. However, the magnitudes of the increases in the germination rates with D-alanine or L-asparagine in spores overexpressing gerB* were well below the increases in the spore's levels of the GerBA protein. Germination of gerB* spores with D-alanine or L-asparagine did not require participation of the products of the gerK operon, but germination with these agents was decreased markedly in spores also overexpressing gerA. These findings suggest that (i) increases in the levels of germinant receptors that respond to single germinants can increase spore germination rates significantly; (ii) there is some maximum rate of spore germination above which stimulation of GerA operon receptors alone will not further increase the rate of spore germination, as action of some protein other than the germinant receptors can become rate limiting; (iii) while previous work has shown that the wild-type GerB and GerK receptors interact in some fashion to cause spore germination in AGFK, there also appears to be an additional component required for AGFK-triggered spore germination; (iv) activation of the GerB receptor with D-alanine or L-asparagine can trigger spore germination independently of the GerK receptor; and (v) it is likely that the different germinant receptors interact directly and/or compete with each other for some additional component needed for initiation of spore germination. We also found that very high levels of overexpression of the gerA or gerK operon (but not the gerB or gerB* operon) in the forespore blocked sporulation shortly after the engulfment stage, although sporulation appeared normal with the lower levels of gerA or gerK overexpression that were used to generate spores for analysis of rates of germination.  相似文献   

4.
Nutrient‐dependent germination of Bacillus anthracis spores is stimulated when receptors located in the inner membrane detect combinations of amino acid and purine nucleoside germinants. B. anthracis produces five distinct germinant receptors, GerH, GerK, GerL, GerS and GerX. Otherwise isogenic mutant strains expressing only one of these receptors were created and tested for germination and virulence. The GerH receptor was necessary and sufficient for wild‐type levels of germination with inosine‐containing germinants in the absence of other receptors. GerK and GerL were sufficient for germination in 50 mM L‐alanine. When mutants were inoculated intratracheally, any receptor, except for GerX, was sufficient to allow for a fully virulent infection. In contrast, when inoculated subcutaneously only the GerH receptor was able to facilitate a fully virulent infection. These results suggest that route of infection determines germinant receptor requirements. A mutant lacking all five germinant receptors was also attenuated and exhibited a severe germination defect in vitro. Together, these data give us a greater understanding of the earliest moments of germination, and provide a more detailed picture of the signals required to stimulate this process.  相似文献   

5.
The GerA nutrient receptor alone triggers germination of Bacillus subtilis spores with L-alanine or L-valine, and these germinations were stimulated by glucose and K+ plus the GerK nutrient receptor. The GerB nutrient receptor alone did not trigger spore germination with any nutrients but required glucose, fructose, and K+ (GFK) (termed cogerminants) plus GerK for triggering of germination with a number of L-amino acids. GerB and GerA also triggered spore germination cooperatively with l-asparagine, fructose, and K+ and either L-alanine or L-valine. Two GerB variants (termed GerB*s) that were previously isolated by their ability to trigger spore germination in response to D-alanine do not respond to D-alanine but respond to the same L-amino acids that stimulate germination via GerB plus GerK and GFK. GerB*s alone triggered spore germination with these L-amino acids, although GerK plus GFK stimulated the rates of these germinations. In contrast to l-alanine germination via GerA, spore germination via L-alanine and GerB or GerB* was not inhibited by D-alanine. These data support the following conclusions. (i) Interaction with GerK, glucose, and K+ somehow stimulates spore germination via GerA. (ii) GerB can bind and respond to L-amino acids, although normally either the binding site is inaccessible or its occupation is not sufficient to trigger spore germination. (iii) Interaction of GerB with GerK and GFK allows GerB to bind or respond to amino acids. (iv) In addition to spore germination due to the interaction between GerA and GerK, and GerB and GerK, GerB can interact with GerA to trigger spore germination in response to appropriate nutrients. (v) The amino acid sequence changes in GerB*s reduce these receptor variants' requirement for GerK and cogerminants in their response to L-amino acids. (vi) GerK binds glucose, GerB interacts with fructose in addition to L-amino acids, and GerA interacts only with L-valine, L-alanine, and its analogs. (vii) The amino acid binding sites in GerA and GerB are different, even though both respond to L-alanine. These new conclusions are integrated into models for the signal transduction pathways that initiate spore germination.  相似文献   

6.
Spores of a Bacillus subtilis strain with a gerD deletion mutation (Delta gerD) responded much slower than wild-type spores to nutrient germinants, although they did ultimately germinate, outgrow, and form colonies. Spores lacking GerD and nutrient germinant receptors also germinated slowly with nutrients, as did Delta gerD spores in which nutrient receptors were overexpressed. The germination defect of Delta gerD spores was not suppressed by many changes in the sporulation or germination conditions. Germination of Delta gerD spores was also slower than that of wild-type spores with a pressure of 150 MPa, which triggers spore germination through nutrient receptors. Ectopic expression of gerD suppressed the slow germination of Delta gerD spores with nutrients, but overexpression of GerD did not increase rates of spore germination. Loss of GerD had no effect on spore germination induced by agents that do not act through nutrient receptors, including a 1:1 chelate of Ca2+ and dipicolinic acid, dodecylamine, lysozyme in hypertonic medium, a pressure of 500 MPa, and spontaneous germination of spores that lack all nutrient receptors. Deletion of GerD's putative signal peptide or change of its likely diacylglycerylated cysteine residue to alanine reduced GerD function. The latter findings suggest that GerD is located in a spore membrane, most likely the inner membrane, where the nutrient receptors are located. All these data suggest that, while GerD is not essential for nutrient germination, this protein has an important role in spores' rapid response to nutrient germinants, by either direct interaction with nutrient receptors or some signal transduction essential for germination.  相似文献   

7.
Abstract A mutant of Bacillus subtilis has been isolated which is devoid of glucose dehydrogenase. This mutant is unable to germinate on a mix of glucose, fructose, asparagine, and KCl, which is a normal germination trigger for wild-type strains. Transfer of the genotype by transformation to isogenic strains confers the same properties on these transformed strains. These observations strongly implicate glucose dehydrogenase in germination.  相似文献   

8.
Germination of Bacillus subtilis spores via the GerA nutrient receptor was suppressed by GerAC lacking the diacylglycerylated cysteine essential for receptor function. Overexpression of the C protein of the GerB nutrient receptor also suppressed the function of both the GerA receptor and a variant GerB receptor, GerB*. These findings suggest that GerAC and GerBC interact with their respective A and B proteins in GerA or GerB receptors and that GerBC potentially interacts with GerAA-GerAB. However, GerAC did not appear to interact with GerBA-GerBB.  相似文献   

9.
Different nutrient receptors varied in triggering germination of Bacillus subtilis spores with a pressure of 150 MPa, the GerA receptor being more responsive than the GerB receptor and even more responsive than the GerK receptor. This hierarchy in receptor responsiveness to pressure was the same as receptor responsiveness to a mixture of nutrients. The levels of nutrient receptors influenced rates of pressure germination, since the GerA receptor is more abundant than the GerB receptor and elevated levels of individual receptors increased spore germination by 150 MPa of pressure. However, GerB receptor variants with relaxed specificity for nutrient germinants responded as well as the GerA receptor to this pressure. Spores lacking dipicolinic acid did not germinate with this pressure, and pressure activation of the GerA receptor required covalent addition of diacylglycerol. However, pressure activation of the GerB and GerK receptors displayed only a partial (GerB) or no (GerK) diacylglycerylation requirement. These effects of receptor diacylglycerylation on pressure germination are similar to those on nutrient germination. Wild-type spores prepared at higher temperatures germinated more rapidly with a pressure of 150 MPa than spores prepared at lower temperatures; this was also true for spores with only one receptor, but receptor levels did not increase in spores made at higher temperatures. Changes in inner membrane unsaturated fatty acid levels, lethal treatment with oxidizing agents, or exposure to chemicals that inhibit nutrient germination had no major effect on spore germination by 150 MPa of pressure, except for strong inhibition by HgCl2.  相似文献   

10.
Spores of Bacillus subtilis NCTC 8236 were treated with glutaraldehyde, Lugol's iodine, polyvinylpyrrolidone-iodine (PVP-I), sodium hypochlorite or sodium dichloroisocyanurate (NaDCC). After exposure survivors were enumerated on nutrient agar containing potential revival agents (subtilisin, lysozyme, calcium dipicolinate, calcium lactate). Of these, only calcium lactate had any significant enhancing effect and then only with iodine-treated spores. Calcium lactate (9 mmol 1−1) in nutrient broth enhanced the rate and extent of germination of iodine-treated spores but not of spores previously subjected to glutaraldehyde, hypochlorite or NaDCC.  相似文献   

11.
Dormant Bacillus subtilis spores germinate in response to specific nutrients called germinants, which are recognized by multisubunit receptor complexes encoded by members of the gerA family of operons, of which the gerB operon is a member. The germinant receptors are expected to be membrane associated, but there is some debate about whether they are located in the inner or outer spore membrane. In this study we have used Western blot analysis to determine the precise location of GerBA, a gerB-encoded receptor protein, in various spore fractions. GerBA was not extracted from spores by a decoating treatment that removes the coat and outer membrane but was present in lysates from decoated spores and in the insoluble fraction (termed P100) from such lysates that contained inner-membrane vesicles. GerBA was also solubilized from the P100 fraction with detergent but not with high salt. These findings suggest that GerBA is an integral membrane protein located in the spore's inner membrane. Consistent with this idea, GerBA was present in the cell membrane of the outgrowing spore, a membrane that is derived from the dormant spore's inner membrane. Based on these observations we propose that GerBA and probably the entire GerB germinant receptor are located in the inner membrane of the dormant spore. We also estimated that there are only 24 to 40 molecules of GerBA per spore, a number that is consistent with the previously reported low level of gerB operon expression and with the putative receptor function of the proteins encoded by the gerB operon.  相似文献   

12.
13.
Germination experiments with specific germination mutants of Bacillus subtilis, including a newly isolated mutant affected in pressure-induced germination, suggest that a pressure of 100 MPa triggers the germination cascades that are induced by the nutrient germinant alanine (Ala) and by a mixture of asparagine, glucose, fructose, and potassium ions (AGFK), by activating the receptors for alanine and asparagine, GerA and GerB, respectively. As opposed to germination at 100 MPa, germination at 600 MPa apparently short-cuts at least part of the Ala- and AGFK-induced germination pathways. Inhibitors of nutrient-induced germination (HgCl(2) and Nalpha-P-tosyl-L-arginine methyl ester) also inhibit pressure-induced germination at 600 MPa, suggesting that germination at 600 MPa involves activation of a true physiological germination pathway and is therefore not merely a physico-chemical process in which water is forced into the spore protoplast.  相似文献   

14.
15.
Bacillus subtilis spores that germinated poorly with saturating levels of nutrient germinants, termed superdormant spores, were separated from the great majority of dormant spore populations that germinated more rapidly. These purified superdormant spores (1.5 to 3% of spore populations) germinated extremely poorly with the germinants used to isolate them but better with germinants targeting germinant receptors not activated in superdormant spore isolation although not as well as the initial dormant spores. The level of β-galactosidase from a gerA-lacZ fusion in superdormant spores isolated by germination via the GerA germinant receptor was identical to that in the initial dormant spores. Levels of the germination proteins GerD and SpoVAD were also identical in dormant and superdormant spores. However, levels of subunits of a germinant receptor or germinant receptors activated in superdormant spore isolation were 6- to 10-fold lower than those in dormant spores, while levels of subunits of germinant receptors not activated in superdormant spore isolation were only ≤ 2-fold lower. These results indicate that (i) levels of β-galactosidase from lacZ fusions to operons encoding germinant receptors may not be an accurate reflection of actual germinant receptor levels in spores and (ii) a low level of a specific germinant receptor or germinant receptors is a major cause of spore superdormancy.  相似文献   

16.
During sporulation in Bacillus subtilis, germinant receptors assemble in the inner membrane of the developing spore. In response to specific nutrients, these receptors trigger germination and outgrowth. In a transposon‐sequencing screen, we serendipitously discovered that loss of function mutations in the gerA receptor partially suppress the phenotypes of > 25 sporulation mutants. Most of these mutants have modest defects in the assembly of the spore protective layers that are exacerbated in the presence of a functional GerA receptor. Several lines of evidence indicate that these mutants inappropriately trigger the activation of GerA during sporulation resulting in premature germination. These findings led us to discover that up to 8% of wild‐type sporulating cells trigger premature germination during differentiation in a GerA‐dependent manner. This phenomenon was observed in domesticated and undomesticated wild‐type strains sporulating in liquid and on solid media. Our data indicate that the GerA receptor is poised on a knife's edge during spore development. We propose that this sensitized state ensures a rapid response to nutrient availability and also elicits premature germination of spores with improperly assembled protective layers resulting in the elimination of even mildly defective individuals from the population.  相似文献   

17.
Bacillus subtilis spores break their metabolic dormancy through a process called germination. Spore germination is triggered by specific molecules called germinants, which are thought to act by binding to and stimulating spore receptors. Three homologous operons, gerA, gerB, and gerK, were previously proposed to encode germinant receptors because inactivating mutations in those genes confer a germinant-specific defect in germination. To more definitely identify genes that encode germinant receptors, we isolated mutants whose spores germinated in the novel germinant D-alanine, because such mutants would likely contain gain-of-function mutations in genes that encoded preexisting germinant receptors. Three independent mutants were isolated, and in each case the mutant phenotype was shown to result from a single dominant mutation in the gerB operon. Two of the mutations altered the gerBA gene, whereas the third affected the gerBB gene. These results suggest that gerBA and gerBB encode components of the germinant receptor. Furthermore, genetic interactions between the wild-type gerB and the mutant gerBA and gerBB alleles suggested that the germinant receptor might be a complex containing GerBA, GerBB, and probably other proteins. Thus, we propose that the gerB operon encodes at least two components of a multicomponent germinant receptor.  相似文献   

18.
GerD of Bacillus subtilis is a protein essential for normal spore germination with either L-alanine or a mixture of L-asparagine, D-glucose, D-fructose, and potassium ions. GerD's amino acid sequence suggests that it may be a lipoprotein, indicating a likely location in a membrane. Location in the spore's outer membrane seems unlikely, since removal of this membrane does not result in a gerD spore germination phenotype, suggesting that GerD is likely in the spore's inner membrane. In order to localize GerD within spores, FLAG-tagged GerD constructs were made, found to be functional in spore germination, and detected in immunoblots of spore extracts as not only monomers but also dimers and trimers. Upon fractionation of spore extracts, GerD-FLAG was found in the inner membrane fraction from dormant spores and was present at approximately 2,000 molecules/spore. GerD-FLAG in the inner membrane fraction was solubilized by Triton X-100, suggesting that GerD is a lipoprotein, and the protein was also solubilized by 0.5 M NaCl. GerD-FLAG was not processed proteolytically in a B. subtilis strain lacking gerF (lgt), which encodes prelipoprotein diacylglycerol transferase (Lgt), indicating that when GerD does not have a diacylglycerol moiety, signal sequence processing does not occur. However, unprocessed GerD-FLAG still gave bands corresponding to monomers and dimers of slightly higher molecular weight than that of GerD-FLAG from a strain with Lgt, further suggesting that GerD is a lipoprotein. Upon spore germination, much GerD became soluble and then appeared to be degraded as the germinated spores outgrew and initiated vegetative growth. All of these results suggest that GerD is a lipoprotein associated with the dormant spore's inner membrane that may be released in some fashion from this membrane upon spore germination.  相似文献   

19.
Characterization of Bacillus anthracis germinant receptors in vitro   总被引:2,自引:0,他引:2       下载免费PDF全文
Bacillus anthracis begins its infectious cycle as a metabolically dormant cell type, the endospore. Upon entry into a host, endospores rapidly differentiate into vegetative bacilli through the process of germination, thus initiating anthrax. Elucidation of the signals that trigger germination and the receptors that recognize them is critical to understanding the pathogenesis of B. anthracis. Individual mutants deficient in each of the seven putative germinant receptor-encoding loci were constructed via temperature-dependent, plasmid insertion mutagenesis and used to correlate these receptors with known germinant molecules. These analyses showed that the GerK and GerL receptors are jointly required for the alanine germination pathway and also are individually required for recognition of either proline and methionine (GerK) or serine and valine (GerL) as cogerminants in combination with inosine. The germinant specificity of GerS was refined from a previous study in a nonisogenic background since it was required only for germination in response to aromatic amino acid cogerminants. The gerA and gerY loci were found to be dispensable for recognition of all known germinant molecules. In addition, we show that the promoter of each putative germinant receptor operon, except that of the gerA locus, is active during sporulation. A current model of B. anthracis endospore germination is presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号