首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Candida rugosa lipase was immobilized by first cross-linking with glutaraldehyde and then entrapping in calcium alginate beads. The presence of 2-propanol during cross-linking markedly improved the enzyme activity and activity recovery. Maximal enzyme activity (2.1?mmol?h?1?g?1 immobilized conjugate, wet weight) and activity recovery (117%) were observed at 30% (v/v) 2-propanol for hydrolysis of olive oil, which were 1.7 and 2.0 times higher than those of the immobilized enzyme prepared in the absence of 2-propanol. The half-life of the immobilized lipase prepared by entrapment after cross-linking in 30% 2-propanol was 1.6 times higher than that prepared by entrapment of the native lipase without cross-linking and 2-propanol pretreatment. The enantioselectivity of the former was 11 times higher than that of the latter for hydrolysis of racemic ketoprofen ethyl ester.  相似文献   

2.
Summary Increased reaction rates and increased enantioselectivities were observed with decreased concentrations of n-alkanols when resolving 2-methyldecanoic acid by esterification catalysed by immobilised lipase from Candida rugosa at controlled water activities in cyclohexane. The enantioselectivity was found to be independent of the water activity in the reaction medium at the n-heptanol concentrations investigated. However, when n-decanol was used as the acyl acceptor, not only the alcohol concentration but also the water activity in the reaction medium, influenced the enantioselectivity. The results obtained showed that the low enantioselectivity seen at a high alcohol concentration could be explained by the alcohol influencing the apparent V max S and V max R differently.  相似文献   

3.
The influence of reaction media on the racemic temperature (Tr) in the lipase-catalyzed resolution of ketoprofen vinyl ester was investigated. An effective approach to the control of the enzymatic enantioselectivity and the prediction of the increasing tendency was developed based on the Tr influenced by reaction media. The Tr for the resolution catalyzed by Candida rugosa lipase (CRL) was found at 29 °C in aqueous and S-ketoprofen was obtained predominantly at 40 °C. However, CRL showed R-selectivity at 40 °C in diisopropyl ether because the Tr was changed to 56 °C. CRL, lipase from AYS Amano® and Mucor javanicus lipase were further applied for the investigation of the enzymatic enantioselectivity in dioxane, DIPE, isooctane and their mixed media with water. The effects of the reaction medium on Tr could be related to the solvent hydrophobicity, the lipase conformational flexibility and the interaction between the enantiomers and the lipase.  相似文献   

4.
Baker's yeast pretreated with α-phenacyl chloride was employed to improve the enantioselectivity of the asymmetric reduction of ethyl-2-oxo-4-phenylbutyrate (EOPB) to ethyl-(R)-2-hydroxy-4-phenylbutyrate ((R)-EHPB) and maintain a high activity of the yeast. A water/organic solvent two-liquid phase system was also introduced to overcome the strong substrate and product inhibition of the enzyme; the highest catalytic activity and enantioselectivity were obtained in a water/benzene two-liquid phase system. When the reduction was catalyzed with pretreated yeast (300 mg mL?1 buffer) in the water/benzene two-liquid phase system (Vaq/Vben=20:40), 41.9% molar conversion of EOPB and 87.5% e.e. of (R)-EHPB were obtained in 48 h, using pH 8.0 phosphate buffer with 1.5% (v/v) of ethanol added as a co-substrate at 30°C, even with an initial EOPB concentration of 400 mM and a final EHPB concentration as high as 167.7 mM.  相似文献   

5.
Lipases are important cuticle-degrading enzymes that hydrolyze the ester bonds of waxes, fats and lipoproteins during the infection of insects by the fungus Nomuraea rileyi. Lipase production by the N. rileyi strain MJ was optimized by varying environmental and nutritional conditions in culture medium containing different vegetable oils at various concentrations with shaking at 150 rpm for 8 days at 25°C. The maximum lipase production was obtained using castor oil (30.5±0.6 U mL?1), followed in order by coconut oil (20.8±0.4 U mL?1), olive oil (20.8±0.4 U mL?1) and cottonseed oil (20.6±0.4 U mL?1). The highest lipase activity (37.7±0.4 U mL?1) was obtained when castor oil was used at a concentration of 4% (v/v) of basal medium. When the surfactant Tween 80 was added at the fourth day rather than at the beginning of incubation, a maximum lipase activity of 44.9±3.5 U mL?1 was obtained. The optimal temperature and pH for lipase production were 25°C and pH 8.0, respectively. This is the first report on lipase production by the biocontrol fungus N. rileyi.  相似文献   

6.
Ketoprofen–saccharide conjugates were synthesized by selectively enzymatic hydrolysis and acylation. Firstly, the (S)-ketoprofen vinyl ester was prepared by enzymatic hydrolysis of (R,S)-ketoprofen vinyl ester. Then enzymatic transesterification of (S)-ketoprofen vinyl ester with a series of saccharides were performed by the catalysis of a commercial protease from Bacillus licheniformis (BLP) in organic medium mixture of pyridine and tert-butanol. The ketoprofen was selectively conjugated onto the primary hydroxyl group of saccharides and with high yield after 72 h. Partition coefficient determination showed that all the products have better water solubility than parent ketoprofen. Chemical hydrolysis experiment indicated that 50% ketoprofen could be release from ketoprofen glucoside and maltoside in aqueous buffer (pH 7.4) within 48 h.  相似文献   

7.
The enzyme (BSL2), a highly active lipase expressed from newly constructed strain of Bacillus subtilis BSL2, is used in the kinetic resolution of N-(2-ethyl-6-methylphenyl)alanine from the corresponding racemic methyl ester. Reaction conditions are optimized to enhance the enantioselectivity. The effects of various racemic alkyl esters, substrate concentration, operating temperature, pH of the aqueous medium and organic solvents on activity and enantioselectivity of BSL2 for kinetic resolution are also studied. A high enantiomeric ratio (E = 60.7) is reached in diisopropyl ether/water (10%, v/v) and the enantioselectivity is about 22-fold higher than that in pure buffered aqueous solution. The results show that the reaction medium greatly influences BSL2 reaction and its enantioselectivity in the hydrolysis of racemic methyl ester.  相似文献   

8.
Alpha-Chymotrypsin was found to show a 119% increase in activity after three phase partitioning. The kcat/Km of the partitioned enzyme (TPP-C) for hydrolysis of Bz-Tyr-OEt in aqueous medium at 25°C was found to be 48.3×104 mM?1 min?1 as compared to the corresponding value of 17.7×104 mM?1 min?1 for the untreated control (C). The λmax of the fluorescence emission spectrum of TPP-C showed 178% increase in the quantum yield when compared to C. TPP-C showed a 2.94 and 3.58 fold increase (as compared to C) in initial rates for formation of the ester Ac-Phe-OEt (from Ac-Phe and ethanol) in low water containing toluene and n-octane, respectively. It was found that TPP-C also showed the phenomenon of pH memory. At 5% (v v?1) water (in t-amyl alcohol), while no esterification was observed with C, TPP-C still showed significant level of esterification activity.

Bz-Tyr-OEt, Benzoyl tyrosine ethyl ester; Ac-Phe, N-acetyl phenylalanine; Ac-Phe-OEt, N-acetyl phenylalanine ethyl ester; TPP, Three phase partitioning; C, Untreated α-chymotrypsin; TPP-C, α-Chymotrypsin subjected to TPP; kcat, Catalytic efficiency; Km, Michaelis constant  相似文献   

9.
The application of ionic liquids as solvents for transesterification of prochiral pirymidine acyclonucleoside using lipase (EC 3.1.1.3) Amano PS from Burkholderia cepacia (BCL) is reported. The effect of using medium reaction, acyl group donor, and temperature on the activity and enantioselectivity of BCL was studied. From the investigated ionic solvents, the hydrophobic ionic liquid [BMIM]PF6] was the preferred medium for enzymatic reactions. However, the best result was obtained in the mixture [BMIM][PF6]:TBME (1:1 v/v) at 50°C. Enzyme activity and selectivity in [BMIM][PF6]:TBME (1:1 v/v) was slightly higher in than in conventional organic solvents (for example, TBME), and in this condition, good activity and enantioselectivity were associated with unique properties of ionic liquid such as hydrophobicity and high polarity. Independently of solvents, monester of (R)‐configuration was obtained in excess. Under optimal conditions, desymmetrization of the prochiral compound using different acyl donors was performed. If vinyl butyrate was used as the acylating agent, BCL completely selectively acylated enantiotopic hydroxyl groups.  相似文献   

10.
Summary The activity and enantioselectivity of Lipase PS from Pseudomonas cepacia and lipoprotein lipase from Pseudomonas sp. were investigated in organic solvents preequilibrated to water activities ranging from <0.1 to 0.53, using as a model reaction the transesterification between (±)-sulcatol and vinyl acetate. Variations of water activity markedly influenced the transesterification rate but did not modify the enantioselectivity of the two enzymes.  相似文献   

11.
Using two commercial immobilized lipases Lipozyme® TL and Novozym® 435 effective kinetic resolution of several novel 3-aryloxy-1-halogenopropan-2-ols was achieved by acyl transfer reaction in organic solvents, yielding both enantiomers with 89–99% ee. In preparative resolutions carried out in tert-butyl methyl ether at 25 °C with vinyl acetate as acyl donor enantioselectivity ratio E was from 64 to 99. The resolved enantiomers were successfully used as chiral building blocks in the synthesis of new 1-alkylamino-3-aryloxypropan-2-ols, by nucleophilic halogen substitution with isopropylamine and tert-butylamine. The obtained products will be evaluated in vitro as potential new β-adrenergic receptors antagonists.  相似文献   

12.
Summary The -chymotrypsin-catalyzed transesterification between N-trifluoroacetyl-DL-phenylalanine trifluoroethyl ester and 1-propanol was carried out in a variety of organic solvents. The addition of small quantities of water enhanced both the rate of reaction and enantioselectivity. A high enantioselectivity was achieved in ethyl acetate (E = 120), diethyl ether (86), or acetonitrile (60). The competing hydrolysis became significant at water content higher than 0.5% (w/w).  相似文献   

13.
Immobilized chymotrypsin catalyzes esterification of N-acetyltyrosine in a medium containing high concentrations of alcohols. The hydrophilic support and inclusion of glycerol protect the enzyme activity and allow catalysis to proceed in the presence of only 10% (v/v) water. The same equilibrium concentration of ester is obtained whether reaction proceeds from ester or from free acid. Hates of ester synthesis and hydrolysis are similar when measured under the same conditions, but are at least one order of magnitude slower than optimal rates of hydrolysis. Subtilisin Carlsberg in the free, unmodified form catalyzes ester synthesis at even lower water concentrations; optimal rates are obtained at 5–15% H2O. Hydrolytic enzymes can thus be utilized as catalysts of synthesis reactions in nonaqueous solvents where synthesis is thermodynamically favored over hydrolysis; in some cases this may provide economic and/or energetic advantages over conventional techniques.  相似文献   

14.
The objective of the present work was to study the kinetics of the solvent-free synthesis of geranyl acetate by a novel lipase (activity 60 U g?1) made by immobilization of lipase from Rhizopus oligosporous NRRL 5905 on to cross-linked silica gel. Transesterification was performed with vinyl acetate as the acyl donor. Vinyl acetate was used in large excess compared to geraniol, which made the reaction pseudo first order with respect to geraniol and the reaction rate followed Michaelis–Menten kinetics for a single substrate. To obtain the highest yield for geranyl acetate, various relevant physical parameters such as shaking speed, reaction time, enzyme concentration, initial water amount and reaction temperature that influence the activity of lipase were investigated. A maximum molar conversion of 67% was achieved after 48 h of reaction at 30°C, at an enzyme concentration of 25% w/v of reaction mixture. Substrate conversion remained constant for five successive cycles; thereafter the conversion dropped by only 11%. Using a pseudo first-order kinetic model for geranyl acetate synthesis in the absence of organic solvents, apparent Km and Vmax values were evaluated as 60 mM and 141 µmol g?1 h?1, respectively.  相似文献   

15.
The ionic liquid, l-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide ([Bmim] [NTf2]), was used as a reaction medium for the kinetic resolution of rac-2-pentanol catalyzed by free Candida antarctica lipase B, using vinyl propionate at 2% (v/v) water content. The synthetic activity of lipase in [Bmim] [NTf2] was up 2.5-times greater than in hexane, and showed high enantioselectivity (ee > 99.99%). The optimal temperature and pH were 60 degrees C and 7, respectively. A decrease in water activity (aw) produced a decay in synthetic activity, and an exponential increase in selectivity.  相似文献   

16.
Abstract

Pseudomonas cepacia lipase (PCL) was immobilized in alginate microgel beads by electrostatic dispersion. The high electrical potential applied in the immobilization process could significantly decrease the droplet size. The optimum conditions for lipase immobilization were 2% (w/v) alginate, 100 mM CaCl2, 8 mg/mL enzyme, 4 kV electrical potential and 200 μm mean bead size. Under these conditions, 78.2 U/g of immobilized PCL activity was obtained with 39.1% retained activity and 57.2% immobilization efficiency. The immobilized PCL (PCL-CA) was subsequently used in the enantioselective hydrolysis of (R, S)-N-(2-ethyl-6-methylphenyl) alanine methyl ester. Although PCL-CA exhibited slightly lower activity than free PCL, it preserved the high enantioselectivity (E-value >?200), which afforded enantiomerically pure (R)-acid (99% e.e.p). Furthermore, PCL-CA exhibited higher thermal stability, storage and medium stability than that of free PCL. Batch-wise operational stability studies demonstrated that PCL-CA retained its initial activity for at least 10 cycles of hydrolysis.  相似文献   

17.
Almond β-d-glucosidase was used to catalyze alkyl-β-d-glucoside synthesis by reacting glucose and the alcohol in organic media. The influence of five different solvents and the thermodynamic water activity on the reaction have been studied. The best yields were obtained in 80 or 90% (v/v) tert-butanol, acetone, or acetonitrile where the enzyme is very stable. In this enzymatic synthesis under thermodynamic control, the yield increases as the water activity of the reaction medium decreases. Enzymatic preparative-scale syntheses were performed in a tert-butanol-water mixture which was found to be the most appropriate medium. 2-Hydroxybenzyl β-d-glucopyranoside was obtained in 17% yield using a 90:10 (v/v) tert-butanol-water mixture. Octyl-β-glucopyranoside was obtained in 8% yield using a 60:30:10 (v/v) tert-butanol-octanol-water mixture.  相似文献   

18.
Enzymatic stereoselective hydrolysis of (R,S)-1-phenylethyl propionate was performed in a stirred tank and in a biphasic enzyme membrane reactor. Lipase from Pseudomonas sp. was proved to be a good enantioselective catalyst for this reaction. The enzyme was covalently immobilized in a porous polyamide membrane (flat sheet as well as hollow-fibres) via glutaraldehyde. An influence of membrane hydrophobicity on reactor performance was observed. Initial lipase activity and productivity in the processes were equal to 1.05 × 10?4, 1.3 × 10?5 and 1.0 × 10?5 mole/(h × mg of enzyme) in the case of native lipase, in the aromatic polyamide hydrophobic membrane reactor and in the hydrophilic polyamide-6 membrane reactor, respectively. The influence of some factors such as temperature, pH, buffer concentration, initial substrate concentration and addition of β-cyclodextrin derivatives on reaction rate and enantioselectivity was investigated and discussed. In the enzyme membrane reactor both organic and aqueous phases circulated countercurrently on both sides of the membrane. At a conversion degree of under 55–60%, pure enantiomer of the remaining ester (i.e. > 98%) was obtained.  相似文献   

19.
Abstract

Oenococcus oeni CECT4730, which catalyses the asymmetric reduction of 2-octanone to (R)-2-octanol with high enantioselectivity, was further studied to exploit its potential for production of (R)-2-octanol in an aqueous/organic solvent biphasic system. Variables such as the volume ratio of aqueous to organic phase (Va/Vo), buffer pH, reaction temperature, shaking speed, co-substrates and the ratio of biocatalyst to substrate were examined with respect to the molar conversion, the initial reaction rate and the product enantiomeric excess (e.e.). Under the optimized conditions (Va/Vo=1:1 (v/v), buffer pH=8.0, reaction temperature=30°C, shaking speed=150 rev/min, ratio of glucose to biomass=5.4:l (w/w), ratio of biocatalyst to substrate=0.51:l (g/mol)), the highest space time yield of (R)-2-octanol, 24 mmol L?1 per h, and >98% product e.e. were obtained at a substrate concentration close to 1.0 mol L?1 after 24 h reduction.  相似文献   

20.
A lipase-catalyzed, enantioselective esterification process in organic solvents was developed for the synthesis of (S)-naproxen hydroxyalkyl ester. With the selection of lipase (Candida rugosa lipase) and reaction medium (isooctane and cyclohexane), a high enantiomeric ratio of <100 for the enzyme was obtained. 1,4-Butanediol was the best acyl acceptor. The carbon chain length of the alcohol had a major effect on the enzyme activity and enantioselectivity of lipase-catalyzed esterification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号