首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Reproductive and somatic biomass, nitrogen (N), and phosphorus (P) pools were compared between females and males in 1st-year plants of Silene dioica. We estimated irretrievable resources allocated to seeds, pollen, flowers, and unrecovered summer leaf investment by collecting plant parts at abscission throughout the season. At the end of the season, we determined resources lost through senescent stems and autumn leaf turnover and resources stored in perennial roots and overwintering buds. Sexual differences in allocation patterns depended on the resource used for comparison, and whether absolute or proportional resource pools were assessed. Total resource pools in terms of biomass and N were similar for females and males. However, male plants acquired relatively more P. The proportional reproductive investment, i.e., reproductive effort, was similar for males and females in terms of biomass and N. In terms of P, male reproductive effort was higher. There was no difference between sexes in the proportional and relative biomass allocated to perennial roots and overwintering buds. However, in terms of absolute and relative N allocation to below-ground parts, females had larger reserves than males. Females, moreover, had a larger proportion of their P in below-ground parts. However, as male total P pools were larger, absolute P reserves did not differ between sexes. The high reproductive effort and N depletion of below-ground parts in males resulted largely from higher flower production compared to females. In females, seeds were the major component of reproductive effort. These results show that if biomass and nutrient allocation are assessed in parallel for dioecious plants, we obtain a more complete view of their sexual differences. Received: 07 May 1998 / Accepted: 30 October 1998  相似文献   

2.
Sex dimorphic plants often show sex-specific differences in growth and biomass allocation. These differences have been explained as a consequence of the different reproductive functions performed by the sexes. Such differences may determine the performance of each sex in different habitats and therefore might explain the spatial segregation of the sexes described in many dimorphic plants. We examined the growth, reproductive and physiological responses of the sexes of the subdioecious plant Honckenya peploides to two levels each of salt spray and nutrients, which are assumed to be important selective forces in coastal environments. We found sex-related differences in H. peploides. In particular, females allocated proportionally more dry mass to reproduction and grew less and more slowly than males regardless of salt spray and nutrient conditions, which is interpreted as a trade-off between reproductive and vegetative growth. Regarding physiological response, nutrients significantly increased values of photochemical reflectance index (PRI) in females but not in males, suggesting that photochemical efficiency is more limited by nutrients in females than in males. PRI values also suggest intersexual differences in protection requirements against photoinhibition. The study did not find sex-differential responses to salt spray, which caused a decrease in reproductive effort in both sexes. The sex-related differences in relative growth rates, reproductive allocation and photosynthetic features found here may contribute to explaining habitat-related between-sex differences in performance and, therefore, the spatial segregation of the sexes observed in H. peploides.  相似文献   

3.
We investigated clonal traits in the dioecious herb Rumex acetosella to characterize sexual dimorphism in clonal forms and to correlate below-ground clonal patterns and above-ground ramet distributions. We recorded creeping root length, branching patterns, ramet and clump (caespitose ramets from the same position on the root) sprouting patterns, and biomass allocations in three females and males. We also estimated the patch size of flowering ramets within a quadrat. No sexual dimorphism was detected in the frequencies of branches and flowering ramets per root length. Male plants allocated proportionally more biomass to below-ground organs. Total root length did not differ between the sexes. Females sprouted more clumps with fewer flowering ramets per root length than males, which sprouted fewer clumps with more flowering ramets, which meant that clump sprouting patterns were phalanx-like in females and guerrilla-like in males. Flowering ramets were aggregately distributed in both females and males and patch sizes were similar between sexes, indicating that the spreader propagations were not found in the guerrilla-like males. We assumed that sexual dimorphism occurred in response to physiological integration for higher reproductive effort in females.  相似文献   

4.
Reproduction can have a high resource cost. It has been suggested that greater investments in sexual reproduction by female dioecious plants leads to a lower rate of vegetative growth in females than in males. In this study, we investigated sexual dimorphism in biomass allocation and genet growth of the dioecious clonal shrub, northern prickly ash (Xanthoxylum americanum). The allocation of biomass over the course of one growing season to reproductive tissue, leaves, and growth of aboveground first-year wood, was compared in 18 clones growing in fields and six clones in woods in southeastern Wisconsin during 1985 and 1986. In addition, the number of shoots per clone, and weight of nonfirst-year wood (accumulated biomass) above- and below-ground were estimated. In open field sites, male clones allocated more biomass to new wood and less to reproduction than females, although males allocated more to flowers alone. Accordingly, male clones had significantly more shoots and more accumulated biomass both above- and below-ground than female clones. In the woods, where fruit set was near zero, there were few significant differences between male and female clones in either biomass allocation or accumulated biomass. These results support the hypothesis that the high resource investment in fruit production by females reduces their vegetative growth relative to males.  相似文献   

5.
Summary Within the high arctic of Canada, Salix arctica, a dioecious, dwarf willow exhibits significant spatial segregation of the sexes. The overall sex ratio is female-biased and female plants are especially common in wet, higher nutrient, but lower soil temperature habitats. In contrast, male plants predominate in more xeric and lower nutrient habitats with higher soil temperatures that can be drought prone. Associated with the sex-specific habitat differences were differences in the seasonal and diurnal patterns of water use as measured by stomatal conductance to water vapor and the bulk tissue water relations of each gender. Within the wet habitats, female plants maintained higher rates of stomatal conductance (g) than males when soil and root temperatures were low (<4° C). In contrast, within the xeric habitats, male plants maintained higher g and had lower leaf water potentials leaf at low soil water potentials and a high leaf-to-air vapor pressure gradient (w) when compared to females. Female plants had more positive carbon isotope ratios than males indicating a lower internal leaf carbon dioxide concentration and possibly higher water use efficiency relative to males. Tissue osmotic and elastic properties also differed between the sexes. Male plants demonstrated lower tissue osmotic potentials near full tissue hydration and at the turgor loss point and a lower bulk tissue elastic modulus (higher tissue elasticity) than female plants. Males also demonstrated a greater ability to osmotically adjust on a diurnal basis than females. These properties allowed male plants to maintain higher tissue turgor pressures at lower tissue water contents and soil over the course of the day. The sex-specific distributional and ecophysiological characteristics were also correlated with greater total plant growth and higher fecundity of females in wet habitats, and males in xeric habitats respectively. The intersexual differences in physiology persisted in all habitats. These results and those obtained from growth chamber studies suggest that sex-specific differences have an underlying genetic basis. From these data we conjecture that selection maintaining the intersexual differences may be related to different costs associated with reproduction that can be most easily met through physiological specialization and spatial segregation of the sexes among habitats of differing conditions.  相似文献   

6.

Background and Aims

The males and females of many dioecious plant species differ from one another in important life-history traits, such as their size. If male and female reproductive functions draw on different resources, for example, one should expect males and females to display different allocation strategies as they grow. Importantly, these strategies may differ not only between the two sexes, but also between plants of different age and therefore size. Results are presented from an experiment that asks whether males and females of Mercurialis annua, an annual plant with indeterminate growth, differ over time in their allocation of two potentially limiting resources (carbon and nitrogen) to vegetative (below- and above-ground) and reproductive tissues.

Methods

Comparisons were made of the temporal patterns of biomass allocation to shoots, roots and reproduction and the nitrogen content in the leaves between the sexes of M. annua by harvesting plants of each sex after growth over different periods of time.

Key Results and Conclusions

Males and females differed in their temporal patterns of allocation. Males allocated more to reproduction than females at early stages, but this trend was reversed at later stages. Importantly, males allocated proportionally more of their biomass towards roots at later stages, but the roots of females were larger in absolute terms. The study points to the important role played by both the timing of resource deployment and the relative versus absolute sizes of the sinks and sources in sexual dimorphism of an annual plant.  相似文献   

7.
In shallow flooded parts of rich fens Mentha aquatica might thrive in deeper water than Epilobium hirsutum but previous experiments have provided no clear indication that the flooding tolerance of these species differs. In this study we investigated, by measuring growth, biomass allocation and vegetative reproduction, whether the impact of water level on vegetative reproduction might produce different lower boundaries on water level gradients. There was a striking contrast between biomass production at high water levels and the field distribution of both species. After 18 wk, the mean biomass of E. hirsutum grown in waterlogged and flooded conditions was 82% and 54%, respectively, of the mean biomass production of drained plants. Biomass of waterlogged and flooded M. aquatica was reduced to 57% and 37% in drained conditions. Waterlogged and flooded E. hirsutum had swollen stem bases and invested a high proportion of biomass in adventitious roots. Stems of M. aquatica did not swell, formed few adventitious roots and maintained an equal proportion of below-ground roots at all water levels. The effect of water level on vegetative reproduction corresponded well with the lower hydrological boundaries of both species. When waterlogged and flooded, most rhizomes of E. hirsutum emerged from above-ground parts of the stem base and were oriented in an upward direction. Plants in flooded soil allocated less biomass to rhizomes and also reduced the number and size of rhizomes. Rhizome formation of M. aquatica on the other hand was not directly affected by water level and only depended on plant size. These differences in vegetative reproduction are discussed in relation to the different abilities of both species to oxygenate their below-ground roots. It was concluded that the mode of adaptation to soil flooding might also affect vegetative reproduction and, therefore, a species' ability for long-term persistence in soil-flooded habitats.  相似文献   

8.
Summary Male and female plants of Rumex acetosella were grown on a moisture gradient to measure possible differences in the drought tolerance of the sexes. The growth of both sexes declined under water stress but males were significantly more drought tolerant. This could not be explained by greater water use efficiency in the male plants; measured rates of both photosynthesis and leaf conductance did not differ significantly between the sexes. Multiple discriminant analysis showed that the sexes differed at all moisture regimes in their overall patterns of biomass allocation. Males had proportionately greater investment in root and leaf tissue which could explain their growth advantage over females under water stress. Despite essentially equal water use efficiencies, on a per plant basis males, with more leaf and root biomass, could fix more carbon and more rapidly exploit the local water resource than females. Thus the pattern of biomass allocation rather than intrinsic physiological differences appears to explain the greater drought tolerance of male plants of Rumex acetosella.  相似文献   

9.
Patterns of root/shoot carbon allocation within plants have been studied at length. The extent, however, to which patterns of carbon allocation from shoots to roots affect the timing and quantity of organic carbon release from roots to soil is not known. We employed a novel approach to study how natural short-term variation in the allocation of carbon to roots may affect rhizosphere soil biology. Taking advantage of the semi-determinate phenology of young northern red oak (Quercus rubra L.), we examined how pulsed delivery of carbon from shoots to roots affected dynamics of soil respiration as well as microbial biomass and net nitrogen mineralization in the rhizosphere. Young Q. rubra exhibit (1) clear switches in the amount of carbon allocated below-ground that are non-destructively detected simply by observing pulsed shoot growth above-ground, and (2) multiple switches in internal carbon allocation during a single growing season, ensuring our ability to detect short-term effects of plant carbon allocation on rhizosphere biology separate from longer-term seasonal effects. In both potted oaks and oaks rooted in soil, soil respiration varied inversely with shoot flush stage through several oak shoot flushes. In addition, upon destructive harvest of potted oaks, microbial biomass in the rhizosphere of saplings with actively flushing shoots was lower than microbial biomass in the rhizosphere of saplings with shoots that were not flushing. Given that plants have evolved with their roots in contact with soil microbes, known species-specific carbon allocation patterns within plants may provide insight into interactions among roots, symbionts, and free-living microbes in the dynamic soil arena.  相似文献   

10.
The gender of dimorphic plant species is often affected by ecophysiological variables. Differences have been interpreted as a response of the sexes to meet specific resource demands associated with reproduction. This study investigated whether sex‐specific variations in ecophysiological traits in response to water availability determine the performance of each sex in different habitats, and therefore promote extreme spatial segregation of the sexes in the subdioecious plant, Honckenya peploides. Twenty‐seven plants of each sex were individually potted in dune sand and assigned randomly to one of three water treatments. Well‐watered plants were watered daily to field capacity, whereas plants in the moderate and high‐water stress treatments received 40% and 20%, respectively, of the water given to well‐watered plants. Photochemical efficiency, leaf spectral properties and components of relative growth rate (leaf area ratio and net assimilation rate) were measured. Photochemical efficiencies integrated over time were higher in male than in female plants. Water deficit decreased maximum quantum yield in female plants more rapidly than in male plants, but female plants (unlike male plants) had recovered to initial values by the end of the experiment. Maximum quantum yield in male plants was more affected by water stress than in female plants, indicating that male plants were more susceptible to photoinhibition. The two sexes did not differ in growth rate, but male plants invested a higher proportion of their biomass in leaves, had a higher leaf area per unit biomass and lower net assimilation rate relative to female plants. Female plants had a higher water content and succulence than male plants. Differences in stomatal density between the sexes depended on water availability. The results suggest that the two sexes of H. peploides have different strategies for coping with water stress. The study also provides evidence of sex differences in allocation traits. We conclude that between‐sex differences in ecophysiological and allocation traits may contribute to explain habitat‐related between‐sex differences in performance and, therefore, the spatial segregation of the sexes.  相似文献   

11.
Studies of the movements and home-ranges of houbara bustards (Chlamydotis undulata undulata) showed sexual and seasonal differences in the use of space, with a polygynous mating system similar to an ‘exploded-lek’ or a ‘resource-defence-polygyny’, that remains undefined. We used the arthropod biomass as an index of the trophic quality of six defined habitats and we radio-tracked 7 females and 13 males to test whether sexual and seasonal variations in habitat use were related to resource availability, and to verify if critical resources for breeding females were monopolised by males. We analysed habitat selection in both sexes separately. We used the habitat type composition of buffer zones around radio-locations to study annual and seasonal habitat selection and to identify preferred habitats, using the chi-square goodness-of-fit test. Habitat use between sexes and between seasons were compared using MANOVA based on log-ratios of habitat proportions. During the year, and in each season, both sexes appeared to be significantly selective for habitats in comparison to their availability. But males avoided esparto grass, while females used all habitats. Habitat use differed between sexes in the breeding season, but not in the non-breeding season. In spring, when food resources were abundant and uniformly distributed in space, males preferred ‘temporarily flooded areas’ and females preferred ‘reg with tall perennials’ that offered both food and cover for brooding. Critical resources were not monopolised by males and the mating system fulfilled the definition of the ‘exploded-lek’. Leks are key sites for reproduction and should be considered as priority areas in further conservation plans.  相似文献   

12.
Females tend to be smaller than males in woody dioecious plant species, but they tend to be larger in herbs. The smaller size of females in woody species has been attributed to higher reproductive costs, yet no satisfactory explanation has been provided for their larger size in herbs. Because herbs have higher nitrogen concentrations in their tissues than woody plants, and because pollen is particularly rich in nitrogen, we predicted that male growth would be more compromised by reproduction than female growth. To test this hypothesis, we conducted three experiments on the annual dioecious herb Mercurialis annua. First, we compared the timing of reproduction between males and females and found that males started flowering earlier than females; early flowering is expected to compromise growth more than later flowering. Second, we compared plants allowed to flower with those prevented from flowering by experimental debudding and found that males incurred a higher reproductive cost than females in terms of both biomass and, particularly, nitrogen. Third, we grew plants under varying levels of nitrogen availability and found that although sexual size dimorphism was unaffected by nitrogen, females, but not males, decreased their relative allocation to both roots and reproduction under high nitrogen availability. We propose that males deal with the high cost of pollen production in terms of nitrogen by allocating biomass to nitrogen-harvesting roots, whereas females pay for carbon-rich seeds and fruits by investing in photosynthetic organs. Sexual dimorphism would thus seem to be the outcome of allocation to above- versus below-ground sinks that supply resources (carbon versus nitrogen) limiting the female and male reproduction differentially.  相似文献   

13.
Imbalanced biomass allocation patterns in emergent aquatic plants to above and below-ground structures as a response to climatic variations and water depth were investigated on the basis of observation of three stable homogeneous populations established under different water regimes and climatic environments in Goulburn and Ourimbah, New South Wales, Australia, from August 2003 to December 2004. The growth of shoots depended on water inundation-drawdown patterns and climatic variations. Shoot density was greater in shallow water but with shorter shoot length and less maximum above-ground biomass density than for plant stands in deep water. Deep-water populations attained higher below-ground biomass with higher above to below-ground biomass ratio than for the shallow-water population. Translocation of carbohydrate reserves between above and below-ground organs in deep-water populations were mostly downward throughout the year whereas the depletion–recharge pattern varied seasonally in shallow water populations. Shoots of deep-water populations grew year-round whereas in shallow water shoots died off after recession of the water level with no re-growth afterward, showing that Eleocharis sphacelata is better adapted to deep water and is stressed under shallow-water conditions. A mathematical model was formulated to describe the growth patterns of E. sphacelata and subsequently to predict the effect of water depth on production. Model simulations are in satisfactory agreement with observed patterns of growth. The model also predicts that maximum production decreases sharply with increasing water depth.  相似文献   

14.
Cyclical parthenogenesis involves an alternation of parthenogenetic and sexual reproduction. In cyclical parthenogens with a short generation time, seasonal succession of clones switching to sexual reproduction at different periods of the growing season entails the risk of severe inbreeding with associated fitness costs. We show, however, that differences in genotype frequencies between males and sexual females result in a substantial reduction in the probability of selfing in natural Daphnia populations. This suggests that responses to male- and sexual egg-inducing stimuli may be uncoupled at the level of individual clones as a mechanism to avoid severe inbreeding.  相似文献   

15.
2008年5-11月, 对黄河口滨岸潮滩不同生境下翅碱蓬(Suaeda salsa)硫(S)的季节变化特征进行了研究。研究表明: 中潮滩翅碱蓬(JP1)和低潮滩翅碱蓬(JP2)各器官生物量均具有明显的季节变化特征, 总体表现为JP1 > JP2; JP1和JP2地上与地下部分比值的变化较为一致, 整体表现为JP2 > JP1; 二者枯落物量呈递增变化; JP1和JP2叶、茎和枯落物中的全硫(TS)含量在生长季波动变化明显, 整体呈先增后减变化, 而根中的TS含量在生长季呈递减变化, 符合指数衰减模型; 二者不同器官及枯落物的TS累积量和S累积速率(VS)季节变化明显, JP1地上部分的TS累积量和VS明显高于JP2, 且二者地上部分的TS累积量和VS均明显高于地下; JP1和JP2不同部分的S分配比差异明显, 其中叶的分配比最高, 分别为(38.34 ± 16.19)%和(66.27 ± 12.09)%, 说明叶是翅碱蓬重要的S累积器官。结果显示, 翅碱蓬的生态学特性和其所处生境的水盐状况对JP1和JP2生物量、TS含量、累积量、累积速率、分配比均具有重要影响。  相似文献   

16.
Allocation to vegetative growth and sexual reproduction was investigated throughout the growing season in the dioecious sedge, Carex picta, under natural conditions and following experimental manipulations. Measurements taken on unmanipulated plants showed that the sexes did not differ in the total amount of biomass they allocated to either growth or reproduction. The relatively equal investment in reproduction by the two sexes is contrary to other studies, the majority of which show greater investment in reproduction by females. Two features of the reproductive biology of C. picta may account for the equal investment: the fruit are relatively inexpensive because they are uniovulate and nonfleshy, and the stamens are relatively expensive because C. picta is wind pollinated. In contrast to the lack of differences in the amount of allocation, there were differences between the sexes in the timing of allocation to growth and reproduction: males allocated more to reproduction and less to growth up to the time of flowering, whereas females showed this pattern during the time of fruit maturation. Defoliation and inflorescence removal experiments showed that a trade-off within plants between growth and reproduction does exist. In addition, the defoliation experiment revealed a difference in the response of the two sexes: defoliated tillers on males showed a reduction in growth, whereas defoliated tillers on females did not. Overall, the data support the idea that differences in the timing of reproductive expenditure are as important as the amount of expenditure in determining many aspects of the life history strategies of the two sexes.  相似文献   

17.
Plant growth is driven by the rate of photosynthetic uptake of carbon, the loss of carbon and by allocation of photoassimilates to certain plant compartments, which leads to particular morphologies. Performance, vitality and persistence of a plant are affected by this partitioning process and vice versa. Under harsh climatic conditions such as cold temperature and seasonal drought, perennial plants often invest more in below-ground than above-ground structures. Festuca orthophylla in the subtropical Bolivian Altiplano does not match this ‘rule’. This species produces tall, evergreen tussocks, persisting decades and dominating the semi-arid, Andean landscape over thousands of square kilometers at elevation between 3600 and 4600 m a.s.l. The shallow rooting system represents only 21% of total biomass. The tussock base (root-stocks composed of the network of branching below-ground shoots and tiller meristems) comprises 28% of the total biomass. Although located partly below the soil surface, much of this biomass compartment is functionally above-ground (the basis of shoots). With their below-ground position, tiller meristems are protected against grazing and trampling by camelids as well as, to some degree, against fire and freezing. Fifty one percent of the biomass is above-ground (live leaves and inflorescences). In terms of phytomass (including attached necromass), 75% is above-ground. On average, a tussock consists of 3200 tightly packed total tillers (56% are live). Tillers emerge regularly intravaginally (i.e. within the leaf sheath of an existing mother tiller), resulting in dense canopies with strong self-shading: eighty percent of green foliage experience less than 50% of the incident light. The most important Altiplano plant species thus has morphological traits in favour of protection and survival rather than productivity.  相似文献   

18.
Females of dioecious species usually have higher reproductive effort than males because they produce fruits in addition to flowers. Since females have higher reproductive effort, they are expected to be more negatively affected than males by low resource availability. We tested that assumption by growing females and males of Silene latifolia under low levels of light, water, nitrogen, phosphorus, and potassium. Gas exchange of the sexes did not respond differently to low resource availability; higher female reproductive effort relative to males did not differentially affect their ability to assimilate carbon. However, male photosynthesis rates and stomatal conductances were slightly, but consistently, higher than those of females. The intersexual difference in photosynthesis rate may be a proximate result of reproduction if females translocate nutrients, particularly nitrogen, from their leaves to developing fruits. Alternatively (or perhaps additionally), higher male photosynthesis and stomatal conductances relative to females may be the ultimate result of sexual selection. This could be the case if 1) reproductive effort as estimated by biomass allocation is misleading and males actually invest more in reproduction than females, or 2) females experience stronger selection than males to conserve water late in the growing season, when soil moisture is likely to be low but females need to complete fruit maturation. Our results indicated that females had slightly lower leaf nitrogen but higher photosynthetic water-use efficiency than males, so it is possible that both proximate and ultimate factors are operating simultaneously to cause lower female photosynthesis rates.  相似文献   

19.
薇甘菊不同生长方式下的繁殖特征比较   总被引:1,自引:0,他引:1  
利用实验生态学方法, 对攀缘生长与伏地生长的薇甘菊(Mikania micrantha)的形态特征、生物量分配和繁殖特征进行了比较研究。结果表明: 在潮湿生境条件下, 攀缘生长的植株与伏地生长的植株相比对主茎的生物量投资较大, 而对分枝茎的生物量投资则相对较小; 但在干旱生境条件下, 攀缘生长的植株对主茎和分枝茎的生物量投资均较伏地生长的植株小。在潮湿与干旱生境中, 攀缘植株的繁殖投资分别为0.429 g·g–1和0.342 g·g–1, 显著高于相同生境中的伏地植株。在薇甘菊种群的补充与更新过程中, 攀缘生长的植株以有性生殖占主导地位, 在潮湿与干旱生境中产生的个体分别占种群数量的84.7%和62.6%; 伏地生长的植株则主要以无性(克隆)繁殖为主, 在潮湿与干旱生境中有性生殖产生的个体仅占种群数量的40.4%和35.9%。生长方式与土壤水分二因子互作效应对薇甘菊的生物量分配和繁殖指标影响均达到显著水平(P<0.05)。通过研究得出以下结论: 不同生长方式的薇甘菊对环境条件具有不同的生长与繁殖适应对策。  相似文献   

20.
Spatial segregation of the sexes (SSS) occurs in many dioecious angiosperms, but little data are available on the fitness advantages, if any, for males and females. We examined whether reciprocally transplanted male and female seedlings of Distichlis spicata, a dioecious grass species that exhibits extreme SSS, differed in their responses to microhabitats and competition treatments. Plants grown without conspecific competitors grew equally well in both male- or female-majority habitats, suggesting that male and female plants do not have differential resource needs at the juvenile life-history stage. However, plants subject to intra-sexual competition were significantly larger than plants subject to inter-sexual competition, suggesting that niche partitioning may occur in D. spicata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号