首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The amylopullulanse produced by Bacillus sp. DSM 405 was purified to homogeneity. It exhibited dual activity, cleaving the α1-4 bonds in starch, releasing a range of malto-oligosaccharides, and also cleaving the α1-6 bonds in pullulan, releasing maltotriose as the sole end-product. The enzyme was a glycoprotein and had a relative molecular mass of 126 000 and an isoelectric point of 4.3. While the enzyme was optimally active on starch at pH 6.5 and at pH 6.0 on pullulan, activity on both substrates was maximal at 70 °C. Kinetic analyses of the enzyme in a system that contained both starch and pullulan as two competing substrates demonstrated the dual specificity of the enzyme. Chemical modification of the carboxyl groups within the active centre of the protein showed that one active site was responsible for hydrolysis of the α1-4 and α1-6 bonds in starch and pullulan respectively. This is the first comprehensive investigation of an amylopullulanse produced by an aerobic bacterium, showing a single active site responsible for both activities. Received: 3 August 1998 / Received revision: 13 October 1998 / Accepted: 16 October 1998  相似文献   

2.
A novel raw starch degrading cyclomaltodextrin glucanotransferase (CGTase; E.C. 2.4.1.19), produced by Bacillus firmus, was purified to homogeneity by ultrafiltration, affinity and gel filtration chromatography. The molecular weight of the pure protein was estimated to be 78 000 and 82 000 Da, by SDS-PAGE and gel filtration, respectively. The pure enzyme had a pH optimum in the range 5.5–8.5. It was stable over the pH range 7–11 at 10 °C, and at pH 7.0 at 60 °C. The optimum temperature for enzyme activity was 65 °C. In the absence of substrate, the enzyme rapidly lost its activity above 30 °C. K m and k cat for the pure enzyme were 1.21 mg/ml and 145.17 μM/mg per minute respectively, with soluble starch as the substrate. For cyclodextrin production, tapioca starch was the best substrate used when gelatinized, while wheat starch was the best substrate used when raw. This CGTase could degrade raw wheat starch very efficiently; up to 50% conversion to cyclodextrins was obtained from 150 g/l starch without using any additives. The enzyme produced α-, β- and γ-cyclodextrins in the ratio of 0.2:9.2:0.6 and 0.2:8.6:1.2 from gelatinized tapioca starch and raw wheat starch with 150 g/l concentration respectively, after 18 h incubation. Received: 25 September 1998 / Received revision: 15 December 1998 / Accepted: 21 December 1998  相似文献   

3.
Ethanol-precipitated substances after fermentation of various agro-industrial wastes by Aureobasidium pullulans were examined for their pullulan content. Grape skin pulp extract, starch waste, olive oil waste effluents and molasses served as substrates for the fermentation. A glucose-based defined medium was used for comparison purposes. Samples were analysed by an enzyme-coupled assay method and by high-performance anion-exchange chromatography with pulsed amperometric detection after enzymic hydrolysis with pullulanase. Fermentation of grape skin pulp extract gave 22.3 g l−1 ethanol precipitate, which was relatively pure pullulan (97.4% w/w) as assessed by the coupled-enzyme assay. Hydrolysed starch gave only 12.9 g l−1 ethanol precipitate, which increased to 30.8 g l−1 when the medium was supplemented with NH4NO3 and K2HPO4; this again was relatively pure pullulan (88.6% w/w). Molasses and olive oil wastes produced heterogeneous ethanol-precipitated substances containing small amounts of pullulan, even when supplemented with nitrogen and phosphate. Overall, grape skin pulp should be considered as the best substrate for pullulan production. Starch waste requires several hydrolyis steps to provide a usable carbon source, which reduces its economic attraction as an industrial process. Received: 24 October 1997 / Received revision: 10 February 1998 / Accepted: 15 February 1998  相似文献   

4.
Purification and characterization of pullulanase from Aureobasidium pullulans. Pullulanase was purified by using gel—filtration column then on ion exchange using Q-sepharose column yielding a single peak. Purification was further carried out on SP-sepharose column. Molecular weight of pullulanase from A. pullulans was found to be about 73 KDa on the SDS-PAGE 10%. Native-PAGE 10% showed the activity of pullulanase, using polyacrylamide gel containing pullulan. Hydrolysis products from pullulanase activity with soluble starch, glycogen and pullulan on thin layer chromatography appeared as one band which is maltotriose, while α-amylase with soluble starch and glycogen showed two bands which are maltose and maltotriose but α-amylase gave negative result with pullulan on TLC chromatography only. Pullulanase could degrade α-1,6 glycosidic linkage of the previous substrates, while amylase could degrade α-1,4 glycosidic linkage of glycogen, soluble starch and pullulan. MALDI-Ms was employed to deduce protein sequence of pullulanase.  相似文献   

5.
Bacillus pumilus TYO-67 was isolated from tofu (soybean curd) as the best producer of a soybean-milk-coagulating enzyme, induced by the addition of soybean protein to the growth medium. The enzyme was purified approximately 30-fold with an 11% yield. The homogeneous preparation of the enzyme showed that it is a monomer with a molecular mass of about 30 kDa and has an isoelectric point at pH 9.75. The results of amino acid composition analyses showed that the enzyme is rich in alanine, aspartic acid, glycine, serine and valine. Although the amino-terminal amino acid (alanine) was identical with that of subtilisins, the amino-terminal sequence was different from those of subtilisins. The α-helix content of the enzyme was calculated to be 28.2%. The optimum pH and temperature were observed at 6.0–6.1 and 65 °C respectively. The enzyme was significantly activated by the addition of 1 mM Mn2+, Ca2+, Mg2+, and Sr2+ ions in the reaction mixture, and its thermal stability was significantly increased by Ca2+ ion. Received: 31 August 1998 / Received last revision: 1 December 1998 / Accepted: 20 December 1998  相似文献   

6.
Interspecific protoplast fusion between␣Aspergillus terreus, an itaconic acid producer, and A.␣usamii, a glucoamylase producer, was done to breed new koji molds producing itaconic acid from starch. Protoplast fusion between auxotrophic mutant strains by poly(ethylene glycol) treatment produced prototrophic fusants with a fusion frequency of 10−5−10−4. The stabilities of some fusants obtained were confirmed by successive subcultures. Conidial analyses of DNA contents and the number of nuclei indicated that the fusants obtained were haploids like the parental strains. One of the stable fusants, F-112, morphologically resembled A. terreus, and produced maximally 35.9 mg/ml itaconic acid from soluble starch (120 mg/ml) at day 6 of cultivation. This productivity from soluble starch was five times as high as that of A. terreus and 70 % of that of A. terreus from glucose (120 mg/ml). Received: 28 June 1996 / Received revision: 3 September 1996 / Accepted: 29 September 1996  相似文献   

7.
Summary A novel thermostable pullulanase, secreted by the thermophilic anaerobic bacterium Clostridium thermosulfurogenes EM1, was purified and characterized. Applying anion exchange chromatography and gel filtration the enzyme was purified 47-fold and had a specific activity of 200 units/mg. The molecular mass of this thermostable enzyme was determined to be 102 000 daltons and consisted of a single subunit. The enzyme was able to attack specifically the -1,6-glycosidic linkages in pullulan and caused its complete hydrolysis to maltotriose. Surprisingly and unlike the enzyme from Klebsiella pneumoniae, the purified enzyme from this anaerobic thermophile exhibited, in addition to its debranching and pullulanase activity, an -1,4 hydrolysing activity as well. By the action of this single polypeptide chain various branched and linear polysaccharides were completely converted to two major products, namely maltose and maltotriose. The K m values of this enzyme for pullulan and amylose were determined to be 1.33 mg/ml and 0.38 mg/ml, respectively. This debranching enzyme displays a temperature optimum at 60°–65° C and a pH optimum at 5.5–6.0. The application of this new class of pullulanase (pullulanase type II) in industry will significantly enhance the starch saccharification process. Offprint requests to: G. Antranikian  相似文献   

8.
We investigated extracellular carbohydrase production in the medium of an ectomycorrhizal fungus, Tricholoma matsutake, to reveal its ability to utilize carbohydrates such as starch as a growth substrate and to survey the saprotrophic aspects. We found β-glucosidase activity in the static culture filtrate of this fungus. The β-glucosidase was purified and characterized. The purified enzyme was obtained from about 2.1 l static culture filtrate, with 9.0% recovery, and showed a single protein band on SDS-PAGE. Molecular mass was about 160 kDa. The enzyme was most active around 60°C and pH 5.0, and stable over a pH of 4.0–8.0 for 30 min at 37°C. The purified enzyme was activated by the presence of Ca2+ and Mn2+ ions (about 2–3 times that of the control). The enzyme readily hydrolyzed oligosaccharides having a β-1,4-glucosidic linkage such as cellobiose and cellotriose. However, it did not hydrolyze polysaccharides such as avicel and CM-cellulose or oligosaccharides having an α-glucosidic linkage. Moreover, cellotriose was hydrolyzed by the enzyme for various durations, and the resultant products were analyzed by TLC. We concluded that the enzyme from T. matsutake seems to be a β-glucosidase because cellotriose with a β-1,4-glucosidic linkage decomposed to glucose during the enzyme reaction.  相似文献   

9.
A thermoanaerobe (Thermoanaerobacter sp.) grown in TYE-starch (0.5%) medium at 60°C produced both extra- and intracellular pullulanase (1.90 U/ml) and amylase (1.19 U/ml) activities. Both activities were produced at high levels on a variety of carbon sources. The temperature and pH optima for both pullulanase and amylase activities were 75°C and pH 5.0, respectively. Both the enzyme activities were stable up to 70°C (without substrate) and at pH 4.5 to 5.0. The half-lives of both enzyme activities were 5 h at 70°C and 45 min at 75°C. The enzyme activities did not show any metal ion activity, and both activities were inhibited by β- and γ-cyclodextrins but not by α-cyclodextrin. A single amylolytic pullulanase responsible for both activities was purified to homogeneity by DEAE-Sepharose CL-6B column chromatography, gel filtration using high-pressure liquid chromatography, and pullulan-Sepharose affinity chromatography. It was a 450,000-molecular-weight glycoprotein composed of two equivalent subunits. The pullulanase cleaved pullulan in α1,6 linkages and produced multiple saccharides from cleavage of α-1,4 linkages in starch. The Kms for pullulan and soluble starch were 0.43 and 0.37 mg/ml, respectively.  相似文献   

10.
A new amidohydrolase deacetylating several N-acetyl-1-phenylethylamine derivatives (R)-specifically was found in Arthrobacter aurescens AcR5b. The strain was isolated from a wet haystack by enrichment culture with (R)-N-acetyl-1-phenylethylamine as the sole carbon source. (R) and (S )-N-acetyl-1-phenylethylamine do not serve as inducers for acylase formation. By improving the growth conditions the enzyme production was increased 47-fold. The amidohydrolase was purified to homogeneity leading to a 5.2-fold increase of the specific activity with a recovery of 67%. A molecular mass of 220 kDa was estimated by gel filtration. Sodium dodecyl sulfate/polyacrylamide gel electrophorosis shows two subunits with molecular masses of 16 kDa and 89 kDa. The optimum pH and temperature were pH 8 and 50 °C, respectively. The enzyme was stable in the range of pH 7–9 and at temperatures up to 30 °C. The enzyme activity was inhibited by Cu2+, Co2+, Ni2+, and Zn2+, and this inhibition was reversed by EDTA.M Received: 20 September 1996 / Received version: 23 December 1996 / Accepted: 30 December 1996  相似文献   

11.
Summary The type strainsKlebsiella pneumoniae NCTC 9633,K.ozaenae NCTC 5050 andK.rhinoscleromatis NCTC 5046, representative for all members of the genusKlebsiella, were found to produce pullulanase (pullulan 6-glucanohydrolase, EC 3.2.1.41). In addition, 58 fresh isolates ofKlebsiella sp. of human origin were screened for growth on a defined solid medium with either maltose, maltodextrin mixture, soluble starch, glycogen, or pullulan as the sole carbon source. All of the strains showed luxurious growth on maltose and maltodextrins, seven strains grew poorly or not at all on the polymeric substrates, soluble starch, pullulan or glycogen. Three fresh isolates out of the 51 strains which did grow on each carbon source tested were examined in more detail with respect to a possible involvement of pullulanase in the utilization of -glucans. The production of pullulanase was inducible by growth of the cells on -glucans, whereas cultivation on glycerol, D-glucose or lactose did not lead to enzyme formation. The level of pullulanase activity in the three strains varied under otherwise comparable culture conditions, as did the level of a co-inducible -amylase. Comparative growth experiments on linear or branched -glucans allow the conclusion that the cooperation of hydrolases specific for 1,4--glucosidic linkages (-amylase) and for 1,6--linkages (pullulanase) is an obligatory requirement for the effective utilization of starch and glycogen.  相似文献   

12.
Summary A new thermophilic Bacillus strain 3183 (ATCC 49341) was isolated from hot-spring sediments. The organism grew on pullulan as a carbon source and showed optimum pH and temperature at pH 5.5 and 62° C, respectively, for growth. The strain reduced nitrate to nitrite both aerobically and anaerobically. It produced extracellular thermostable pullulanase and saccharidase activities which degraded pullulan and starch into maltotriose, maltose, and glucose. Medium growth conditions for pullulanase production were optimized. The optimum pH and temperature for pullulanase activity were at pH 6.0 and 75° C, respectively. The enzyme was stable at pH 5.5-7.0 and temperature up to 70° C in the absence of substrate. The K m for pullulan at pH 6.0 and 75° C was 0.4 mg/ml. The pullulanase activity was stimulated and stabilized by Ca2+. It was inhibited by ethylenediaminetetraacetate (EDTA), beta and gamma-cyclodextrins but not by alpha-cyclodextrin and reagents that inhibit essential enzyme SH-groups. Offprint requests to: B. C. Saha  相似文献   

13.
A maltose-limited chemostat culture was used to investigate the expression and excretion of amylopullulanase by Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum 39E). In maltose-limited continuous culture, amylopullulanase was produced and secreted at tenfold higher levels than in batch culture. The extracellular amylopullulanase was purified to homonogeneity by using an inhibitor-linked affinity column matrix. The purified amylopullulanase had a specific activity of 480 units (U)/mg protein for pullulanase and 175 U/mg protein for -amylase. -Cyclodextrin inhibited both -amylase and pullulanase activities, with a substrate inhibition constant (K i) of 0.065 mg/ml.Amylopullulanase had a relative molecular mass (Mr) of 140 000 using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis and an Mr of 133 000 using gel-filtration chromatography. The N-terminal sequence of the enzyme was Glu-Thr-Asp-Thr-Ala-Pro-Ala. The purified enzyme displayed Michaelis constant (K m) values of 0.35 mg/ml for pullulan and 1.00 mg/ml for amylose. The enzyme had an isoelectric point (pI) of 4.0, and displayed an optimum pH for stability and activity of 6.2 and 5.5, respectively. The enzyme was stable up to 85° C in the presence of Ca2+, and had a half-life of 40 min at 90° C (pH 6.2). Ca2+ was required for thermal stability, but not for activity. Amylose, glycogen, and amylopectin were degrade to maltose, maltotriose, and maltotetraose, whereas only maltotriose was formed from pullulan. Correspondence to: J. G. Zeikus  相似文献   

14.
A UV-induced mutant strain of Aspergillus niger (CFTRI-1105-U9) overproduced a starch-hydrolysing enzyme with properties characteristically different from the known amylases of the fungus. The purified enzyme of 4.0 pI had an apparent molecular mass of 125 kDa and it dextrinised starch and then saccharified the dextrins. Patterns of the enzyme activity on starch, resulting in glucose at 60 °C and glucose, maltose and maltodextrins at 70 °C as primary products, suggested significant applications for the enzyme in starch-processing industries. Received: 29 October 1998 / Received revision: 11 January 1999 / Accepted: 19 January 1999  相似文献   

15.
An arabinofuranohydrolase (AXH-d3) was purified from a cell-free extract of Bifidobacterium adolescentis DSM 20083. The enzyme had a molecular mass of approximately 100 kDa as determined by gel filtration. It displayed maximum activity at pH 6 and 30 °C. Using an arabinoxylan-derived oligosaccharide containing double-substituted xylopyranosyl residues established that the enzyme specifically released terminal arabinofuranosyl residues linked to C-3 of double-substituted xylopyranosyl residues. In addition, this arabinofuranohydrolase released arabinosyl groups from wheat flour arabinoxylan polymer but showed no activity towards p-nitrophenyl α-l-arabinofuranoside or towards sugar-beet arabinan, soy arabinogalactan, arabino-oligosaccharides and arabinogalacto-oligosaccharides. Received: 15 July 1996 / Received revision: 18 October 1996 / Accepted: 18 October 1996  相似文献   

16.
Red algae (Rhodophyceae) are photosynthetic eukaryotes that accumulate starch granules in the cytosol. Starch synthase activity in crude extracts of Gracilaria tenuistipitata Chang et Xia was almost 9-fold higher with UDP[U-14C]glucose than with ADP[U-14C]glucose. The activity with UDP[U-14C]glucose was sensitive to proteolytic and oxidative inhibition during extraction whilst the activity with ADP[U-14C]glucose appeared unaffected. This indicates the presence of separate starch synthases with different substrate specificities in G. tenuistipitata. The UDPglucose: starch synthase was purified and characterised. The enzyme appears to be a homotetramer with a native Mr of 580 kDa and displays kinetic properties similar to other α-glucan synthases such as stimulation by citrate, product (UDP) inhibition and broad primer specificity. We propose that this enzyme is involved in cytosolic starch synthesis in red algae and thus is the first starch synthase described that utilises UDPglucose in vivo. The biochemical implications of the different compartmentalisation of starch synthesis in red algae and green algae/plants are also discussed. Received: 29 January 1999 / Accepted: 11 March 1999  相似文献   

17.
Enzymes that convert starch and dextrins to α,α-trehalose and glucose were found in cell homogenates of the hyperthermophilic acidophilic archaeon Sulfolobus shibatae DMS 5389. Three enzymes were purified and characterized. The first, the S. shibatae trehalosyl dextrin-forming enzyme (SsTDFE), transformed starch and dextrins to the corresponding trehalosyl derivatives with an intramolecular transglycosylation process that converted the glucosidic linkage at the reducing end from α-1,4 to α-1,1. The second, the S. shibatae trehalose-forming enzyme (SsTFE), hydrolyzed the α-1,4 linkage adjacent to the α-1,1 bond of trehalosyl dextrins, forming trehalose and lower molecular weight dextrins. These two enzymes had molecular masses of 80 kDa and 65 kDa, respectively, and showed the highest activities at pH 4.5. The apparent optimal temperature for activity was 70°C for SsTDFE and 85°C for SsTFE. The third enzyme identified was an α-glycosidase (SsαGly), which catalyzed the hydrolysis of the α-1,4 glucosidic linkages in starch and dextrins, releasing glucose in a stepwise manner from the nonreducing end of the polysaccharide chain. The enzyme had a molecular mass of 313 kDa and showed the highest activity at pH 5.5 and at 85°C. Received: October 29, 1997 / Accepted: April 29, 1998  相似文献   

18.
Summary Extracellular pullulanase (pullulan 6-glucanohydrolase, EC 3.2.1.41) was purified from cell free culture supernatants of Thermoanaerobium Tok6-B1 by ammonium sulphate precipitation, affinity precipitation, gel exclusion and ion exchange chromatography. A final purification factor of over 1600 was achieved. A molecular weight of 120 kD was determined by steric exclusion HPLC. Enzyme activity was specifically directed towards the 1–6 glucosidic linkages of pullulan resulting in 100% conversion to maltotriose and also possessed activity towards 1–4 linkages of starch, amylopectin and amylose producing maltooligosaccharides (DP2-DP4) as products. Maltotetraose was slowly hydrolysed to maltose. Values of K m (% w/v) were 7.3×10-3 for pullulan, 2.7×10-3 for amylopectin and 4.7×10-3 for Lintner's starch. Pullulanase activity was resistant to 6 M urea and was thermostable at temperatures up to 80°C (t 1/2 in the order of hours). Above 80°C thermal denaturation was significant (t 1/2=17 min at 85°C; 5 min at 90°C) but became less so in the presence of substrate (pullulan or starch). Thermostability was greatest at the pH activity optimum (pH 5.5) and was promoted by Ca2+ ions.Abbreviations BSA bovine serum albumin - EDTA ethylenediamine tetracetic acid - HPLC high performance liquid chromatography - MES 2-[N-Morpholino] ethanesulphonic acid - MOPS 3-[N-Morpholino] propanesulphonic acid - Tris tris-(hydroxymethyl)methylamine  相似文献   

19.
Summary Thermoactinomyces thalpophilus No. 15 produced an extracellular pullulanase in an aerobic fermentation with soluble starch, salts, and complex nitrogen sources. Acetone fractionation, ion-exchange chromatography, and gel filtration purified the enzyme from cell-free broth 16-fold to an electrophoretically homogeneous state (specific activity, 1352 U/mg protein; yield, 4%). The purified enzyme (estimated MW 79 000) was optimally active at pH 7.0 and 70°C and retained 90% relative activity at 80°C (30 min) in the absence of substrate. The enzyme was activated by Co2+, inhibited by Hg2+, and exhibited enhanced stability in the presence of Ca2+. The enzyme hydrolyzed pullulan (K m 0.32%, w/v) forming maltotriose, and hydrolyzed amylopectin (K m 0.36%, w/v), amylopectin beta-limit dextrin (K m 0.45%, w/v) and glycogen beta-limit dextrin (K m 1.11%, w/v) forming maltotriose and maltose.  相似文献   

20.
A cbh2 cDNA encoding Trichoderma reesei QM9414 cellobiohydrolase II, located on the expression vector whose copy number is controlled by the level of gentamicin, was successfully expressed under the control of a human cytomegalovirus promoter in the fission yeast, Schizosaccharomyces pombe. The 24-amino-acid leader peptide of the cbh2 gene was recognized by the yeast, enabling the efficient secretion of the heterologous cellobiohydrolase. The transformed S. pombe strain produced over 115 μg cellobiohydrolase proteins/ml rich medium supplemented with malt extract and 100 μg/ml gentamicin. The molecular masses of the recombinant cellobiohydrolases, secreted as two molecular species, were estimated to be 70 kDa and 72 kDa by sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE). Deglycosylation treatments revealed that the recombinant enzymes were overglycosylated and scarcely susceptible to α-mannosidase. The recombinant enzymes showed no carboxymethylcellulase activity, but showed similar characteristics to those of a native enzyme purified from T. reesei in their optimum pH and temperature, pH and temperature stabilities, and V max values toward phosphoric-acid-swollen cellulose as substrate, except that their K m values were about fourfold higher than that of the native enzyme. Received: 4 August 1997 / Received revision: 13 October 1997 / Accepted: 31 October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号