首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
At present, little is known regarding the mechanism of metabotropic glutamate receptor (mGluR) trafficking. To facilitate this characterization we inserted a haemagglutinin (HA) epitope tag in the extracellular N-terminal domain of the rat mGluR1a. In human embryonic kidney cells (HEK293), transiently transfected with HA-mGluR1a, the epitope-tagged receptor was primarily localized to the cell surface prior to agonist stimulation. Following stimulation with glutamate (10 microM; 30 min) the HA-mGluR1a underwent internalization to endosomes. Further quantification of receptor internalization was provided by ELISA experiments which showed rapid agonist-induced internalization of the HA-mGluR1a. To determine whether agonist-induced mGluR1a internalization is an arrestin- and dynamin-dependent process, cells were cotransfected with HA-mGluR1a and either of these dynamin-K44A or arrestin-2 (319-418). Expression of either dominant negative mutant constructs with receptor strongly inhibited glutamate-induced (10 microM; 30 min) HA-mGluR1a internalization. In addition, wild-type arrestin-2-green fluorescent protein (arrestin-2-GFP) or arrestin-3-GFP underwent agonist-induced translocation from cytosol to membrane in HEK293 cells coexpressing HA-mGluR1a. Taken together our observations demonstrate that agonist-induced internalization of mGluR1a is an arrestin- and dynamin-dependent process.  相似文献   

2.
As with most G-protein-coupled receptors, repeated agonist stimulation of the platelet-activating factor receptor (PAFR) results in its desensitization, sequestration, and internalization. In this report, we show that agonist-induced PAFR internalization is independent of G-protein activation but is dependent on arrestins and involves the interaction of arrestins with a limited region of the PAFR C terminus. In cotransfected COS-7 cells, both arrestin-2 and arrestin-3 could be coimmunoprecipitated with PAFR, and agonist stimulation of PAFR induced the translocation of both arrestin-2 and arrestin-3. Furthermore, coexpression of arrestin-2 with PAFR potentiated receptor internalization, whereas agonist-induced PAFR internalization was inhibited by a dominant negative mutant of arrestin-2. The coexpression of a minigene encoding the C-terminal segment of the receptor abolished PAF-induced arrestin translocation and inhibited PAFR internalization. Using C terminus deletion mutants, we determined that the association of arrestin-2 with the receptor was dependent on the region between threonine 305 and valine 330 because arrestin-2 could be immunoprecipitated with the mutant PAFRstop330 but not PAFRstop305. Consistently, stop330 could mediate agonist-induced arrestin-2 translocation, whereas stop305 could not. Two other deletion mutants with slightly longer regions of the C terminus, PAFRstop311 and PAFRstop317, also failed to induce arrestin-2 translocation. Finally, the PAFR mutant Y293A, containing a single substitution in the putative internalization motif DPXXY in the seventh transmembrane domain (which we had shown to be able to internalize but not to couple to G-proteins) could efficiently induce arrestin translocation. Taken together, our results indicate that ligand-induced PAFR internalization is dependent on arrestins, that PAFR can associate with both arrestin-2 and -3, and that their translocation involves interaction with the region of residues 318-330 in the PAFR C terminus but is independent of G-protein activation.  相似文献   

3.
Mundell SJ  Matharu AL  Kelly E  Benovic JL 《Biochemistry》2000,39(42):12828-12836
Adenosine mediates the activation of adenylyl cyclase via its interaction with specific A(2A) and A(2B) adenosine receptors. Previously, we demonstrated that arrestins are involved in rapid agonist-promoted desensitization of the A(2B) adenosine receptor (A(2B)AR) in HEK293 cells. In the present study, we investigate the role of arrestins in A(2B)AR trafficking. Initial studies demonstrated that HEK293 cells stably expressing arrestin antisense constructs, which reduce endogenous arrestin levels, effectively reduced A(2B)AR internalization. A(2B)AR recycling after agonist-induced endocytosis was also significantly impaired in cells with reduced arrestin levels. Interestingly, while overexpression of arrestin-2 or arrestin-3 rescued A(2B)AR internalization and recycling, arrestin-3 promoted a significantly faster rate of recycling as compared to arrestin-2. The specificity of arrestin interaction with A(2B)ARs was further investigated using arrestins fused to the green fluorescent protein (arr-2-GFP and arr-3-GFP). Both arrestins underwent rapid translocation (<1 min) from the cytosol to the plasma membrane following A(2B)AR activation. However, longer incubations with agonist (>10 min) revealed that arr-2-GFP but not arr-3-GFP colocalized with the A(2B)AR in rab-5 and transferrin receptor containing early endosomes. At later times, the A(2B)AR but not arr-2-GFP was observed in an apparent endocytic recycling compartment. Thus, while arrestin-2 and arrestin-3 mediate agonist-induced A(2B)AR internalization with relative equal potency, arrestin isoform binding dictates the differential kinetics of A(2B)AR recycling and resensitization.  相似文献   

4.
To investigate the role of the intracellular C-terminal tail of the rat metabotropic glutamate receptor 1a (mGlu1a) in receptor regulation, we constructed three C-terminal tail deletion mutants (Arg847stop, DM-I; Arg868stop, DM-II; Val893stop, DM-III). Quantification of glutamate-induced internalization provided by ELISA indicated that DM-III, like the wild-type mGlu1a, underwent rapid internalization whilst internalization of DM-I and DM-II was impaired. The selective inhibitor of protein kinase C (PKC), GF109203X, which significantly reduced glutamate-induced mGlu1a internalization, had no effect on the internalization of DM-I, DM-II, or DM-III. In addition activation by carbachol of endogenously expressed M1 muscarinic acetylcholine receptors, which induces PKC- and Ca2+-calmodulin-dependent protein kinase II-dependent internalization of mGlu1a, produced negligible internalization of the deletion mutants. Co-expression of a dominant negative mutant form of G protein-coupled receptor kinase 2 (DNM-GRK2; Lys220Arg) significantly attenuated glutamate-induced internalization of mGlu1a and DM-III, whilst internalization of DM-I and DM-II was not significantly affected. The glutamate-induced internalization of mGlu1a and DM-III, but not of DM-I or DM-II, was inhibited by expression of DNM-arrestin [arrestin-2(319-418)]. In addition glutamate-induced rapid translocation of arrestin-2-Green Fluorescent Protein (arr-2-GFP) from cytosol to membrane was only observed in cells expressing mGlu1a or DM-III. Functionally, in cells expressing mGlu1a, glutamate-stimulated inositol phosphate accumulation was increased in the presence of PKC inhibition, but so too was that in cells expressing DM-II and DM-III. Together these results indicate that different PKC mechanisms regulate the desensitization and internalization of mGlu1a. Furthermore, PKC regulation of mGlu1a internalization requires the distal C terminus of the receptor (Ser894-Leu1199), whilst in contrast glutamate-stimulated GRK- and arrestin-dependent regulation of this receptor depends on a region of 25 amino acids (Ser869-Val893) in the proximal C-terminal tail.  相似文献   

5.
Following activation by ligand, the N-formyl peptide receptor (FPR) undergoes processing events initiated by phosphorylation that lead to receptor desensitization and internalization. Our previous results have shown that FPR internalization can occur in the absence of receptor desensitization, suggesting that FPR desensitization and internalization are controlled by distinct mechanisms. More recently, we have provided evidence that internalization of the FPR occurs via a mechanism that is independent of the actions of arrestin, dynamin, and clathrin. In the present report, we demonstrate that stimulation of the FPR with agonist leads to a significant translocation of arrestin-2 from the cytosol to the membrane. Fluorescence microscopy revealed that the translocated arrestin-2 is highly colocalized with the ligand-bound FPR. A D71A mutant FPR, which does not undergo activation or phosphorylation in response to ligand, did not colocalize with arrestin-2. Surprisingly, an R123G mutant FPR, which does not bind G protein but does become phosphorylated and subsequently internalized, also did not bind arrestin. These results indicate that arrestin binding is not required for FPR internalization and demonstrate for the first time that a common motif, the conserved "DRY" domain of G protein-coupled receptors, is essential for phosphorylation-dependent arrestin binding, as well as G protein activation.  相似文献   

6.
Prostacyclin (PGI(2)), the major product of cyclooxygenase in macrovascular endothelium, mediates its biological effects through its cell surface G protein-coupled receptor, the IP. PKC-mediated phosphorylation of human (h) IP is a critical determinant of agonist-induced desensitization (Smyth, E. M., Hong Li, W., and FitzGerald, G. A. (1998) J. Biol. Chem. 273, 23258-23266). The regulatory events that follow desensitization are unclear. We have examined agonist-induced sequestration of hIP. Human IP, tagged at the N terminus with hemagglutinin (HA) and fused at the C terminus to the green fluorescent protein (GFP), was coupled to increased cAMP (EC(50) = 0.39 +/- 0.09 nm) and inositol phosphate (EC(50) = 86. 6 +/- 18.3 nm) generation when overexpressed in HEK 293 cells. Iloprost-induced sequestration of HAhIP-GFP, followed in real time by confocal microscopy, was partially colocalized to clathrin-coated vesicles. Iloprost induced a time- and concentration-dependent loss of cell surface HA, indicating receptor internalization, which was prevented by inhibitors of clathrin-mediated trafficking and partially reduced by cotransfection of cells with a dynamin dominant negative mutant. Sequestration (EC(50) = 27.6 +/- 5.7 nm) was evident at those concentrations of iloprost that induce PKC-dependent desensitization. Neither the PKC inhibitor GF109203X nor mutation of Ser-328, the site for PKC phosphorylation, altered receptor sequestration indicating that, unlike desensitization, internalization is PKC-independent. Deletion of the C terminus prevented iloprost-induced internalization, demonstrating the critical nature of this region for sequestration. Internalization was unaltered by cotransfection of cells with G protein-coupled receptor kinases (GRK)-2, -3, -5, -6, arrestin-2, or an arrestin-2 dominant negative mutant, indicating that GRKs and arrestins do not play a role in hIP trafficking. The hIP is sequestered in response to agonist activation via a PKC-independent pathway that is distinct from desensitization. Trafficking is dependent on determinants located in the C terminus, is GRK/arrestin-independent, and proceeds in part via a dynamin-dependent clathrin-coated vesicular endocytotic pathway although other dynamin-independent pathways may also be involved.  相似文献   

7.
5-Hydroxytryptamine 2A (5-HT2A) receptors, a major site of action of clozapine and other atypical antipsychotic medications, are, paradoxically, internalized in vitro and in vivo by antagonists and agonists. The mechanisms responsible for this paradoxical regulation of 5-HT2A receptors are unknown. In this study, the arrestin and dynamin dependences of agonist- and antagonist-mediated internalization were investigated in live cells using green fluorescent protein (GFP)-tagged 5-HT2A receptors (SR2-GFP). Preliminary experiments indicated that GFP tagging of 5-HT2A receptors had no effect on either the binding affinities of several ligands or agonist efficacy. Likewise, both the native receptor and SR2-GFP were internalized via endosomes in vitro. Experiments with a dynamin dominant-negative mutant (dynamin K44A) demonstrated that both agonist- and antagonist-induced internalization were dynamin-dependent. By contrast, both the agonist- and antagonist-induced internalization of SR2-GFP were insensitive to three different arrestin (Arr) dominant-negative mutants (Arr-2 V53D, Arr-2-(319-418), and Arr-3-(284-409)). Interestingly, 5-HT2A receptor activation by agonists, but not antagonists, induced greater Arr-3 than Arr-2 translocation to the plasma membrane. Importantly, the agonist-induced internalization of 5-HT2A receptors was accompanied by differential sorting of Arr-2, Arr-3, and 5-HT2A receptors into distinct plasma membrane and intracellular compartments. The agonist-induced redistribution of Arr-2 and Arr-3 into intracellular vesicles and plasma membrane compartments distinct from those involved in 5-HT2A receptor internalization implies novel roles for Arr-2 and Arr-3 independent of 5-HT2A receptor internalization and desensitization.  相似文献   

8.
In the current study, we investigated the role of receptor phosphorylation and beta-arrestins in delta-opioid receptor (DOR) signaling and trafficking by using a DOR mutant in which all Ser/Thr residues in the C terminus were mutated to Ala (DTS). We demonstrated that the DOR agonist D-[Pen(2),Pen(5)]enkephalin could induce receptor internalization and adenylyl cyclase (AC) desensitization of DTS, but with comparatively slower kinetics than those observed with wild type DOR. Blockade of the internalization of DTS by the dominant-negative mutant dynamin, dynamin K44E, did not affect AC desensitization. However, depletion of beta-arrestins almost totally blocked both internalization and AC desensitization of DTS. A BRET assay suggested that DOR phosphorylation promotes receptor selectivity for beta-arrestin 2 over beta-arrestin 1. Furthermore, in mouse embryonic fibroblast (MEF) cells lacking either beta-arrestin 1 (beta arr1(-/-)) or beta-arrestin 2 (beta arr2(-/-)), agonist-induced DTS desensitization and internalization were similar to that observed in wild type MEFs. In contrast, although DOR internalization decreased in both beta arr1(-/-) MEFs and beta arr2(-/-) MEFs, DPDPE-induced DOR desensitization was significantly reduced in beta arr2(-/-) MEFs, but not in beta arr1(-/-) MEFs. Additionally, the BRET assay suggested that depletion of phosphorylation did not influence the stability of the receptor-beta-arrestin complex. Consistent with this observation, DTS did not recycle after internalization, which is like wild type DOR. Taken together, these results indicate that receptor phosphorylation confers DOR selectivity for beta-arrestin 2 without affecting the stability of the receptor-beta-arrestin complex and the fate of the internalized receptor.  相似文献   

9.
After stimulation by ligand, most G protein-coupled receptors (GPCRs) undergo rapid phosphorylation, followed by desensitization and internalization. In the case of the N-formyl peptide receptor (FPR), these latter two processing steps have been shown to be entirely dependent on phosphorylation of the receptor's carboxy terminus. We have previously demonstrated that FPR internalization can occur in the absence of receptor desensitization, indicating that FPR desensitization and internalization are regulated differentially. In this study, we have investigated whether human chemoattractant receptors internalize via clathrin-coated pits. Internalization of the FPR transiently expressed in HEK 293 cells was shown to be dependent upon receptor phosphorylation. Despite this, internalization of the FPR, as well as the C5a receptor, was demonstrated to be independent of the actions of arrestin, dynamin, and clathrin. In addition, we utilized fluorescence microscopy to visualize the FPR and beta(2)-adrenergic receptor as they internalized in the same cell, revealing distinct sites of internalization. Last, we found that a nonphosphorylatable mutant of the FPR, unable to internalize, was competent to activate p44/42 MAP kinase. Together, these results demonstrate not only that the FPR internalizes via an arrestin-, dynamin-, and clathrin-independent pathway but also that signal transduction to MAP kinases occurs in an internalization-independent manner.  相似文献   

10.
Following activation by ligand, most G protein-coupled receptors undergo rapid phosphorylation. This is accompanied by a drastic decrease in the efficacy of continued or repeated stimulation, due to receptor uncoupling from G protein and receptor internalization. Such processing steps have been shown to be absolutely dependent on receptor phosphorylation in the case of the N-formyl peptide receptor (FPR). In this study, we report results that indicate that the mechanisms responsible for desensitization and internalization are distinct. Using site-directed mutagenesis of the serine and threonine residues of the FPR carboxyl terminus, we have characterized regions that differentially regulate these two processes. Whereas substitution of all 11 Ser/Thr residues in the carboxyl terminus prevents both desensitization and internalization, substitution of four Ser/Thr residues between 328-332 blocks desensitization but has no effect on internalization. Similarly, substitution of four Ser/Thr residues between positions 334 and 339 results in a deficit in desensitization but again no decrease in internalization, suggesting that phosphorylation at either site evokes receptor internalization, whereas maximal desensitization requires phosphorylation at both sites. These results also indicate that receptor internalization is not involved in the process of desensitization. Further analysis of the residues between 328-332 revealed that restoration either of Ser(328) and Thr(329) or of Thr(331) and Ser(332) was sufficient to restore desensitization, suggesting that phosphorylation within either of these two sites, in addition to sites between residues 334 and 339, is sufficient to produce desensitization. Taken together, these results indicate that the mechanisms involved in FPR processing (uncoupling from G proteins and internalization) are regulated differentially by phosphorylation at distinct sites within the carboxyl terminus of the FPR. The relevance of this paradigm to other G protein-coupled receptors is discussed.  相似文献   

11.
It is generally accepted that the internalization and desensitization of mu-opioid receptor (MOR) involves receptor phosphorylation and beta-arrestin recruitment. However, a mutant MOR, which is truncated after the amino acid residue Ser363 (MOR363D), was found to undergo phosphorylation-independent internalization and desensitization. As expected, MOR363D, missing the putative agonist-induced phosphorylation sites, did not exhibit detectable agonist-induced phosphorylation. MOR363D underwent slower internalization as reflected in the attenuation of membrane translocation of beta-arrestin 2 when compared with wild type MOR, but the level of receptor being internalized was similar to that of wild type MOR after 4 h of etorphine treatment. Furthermore, MOR363D was observed to desensitize faster than that of wild type MOR upon agonist activation. Surface biotinylation assay demonstrated that the wild type receptors recycled back to membrane after agonist-induced internalization, which contributed to the receptor resensitization and thus partially reversed the receptor desensitization. On the contrary, MOR363D did not recycle after internalization. Hence, MOR desensitization is controlled by the receptor internalization and the recycling of internalized receptor to cell surface in an active state. Taken together, our data indicated that receptor phosphorylation is not absolutely required in the internalization, but receptor phosphorylation and subsequent beta-arrestin recruitment play important roles in the resensitization of internalized receptors.  相似文献   

12.
The functional role of neutrophils during acute inflammatory responses is regulated by two high affinity interleukin-8 receptors (CXCR1 and CXCR2) that are rapidly desensitized and internalized upon binding their cognate chemokine ligands. The efficient re-expression of CXCR1 on the surface of neutrophils following agonist-induced internalization suggests that CXCR1 surface receptor turnover may involve regulatory pathways and intracellular factors similar to those regulating beta2-adrenergic receptor internalization and re-expression. To examine the internalization pathway utilized by ligand-activated CXCR1, a CXCR1-GFP construct was transiently expressed in two different cell lines, HEK 293 and RBL-2H3 cells. While interleukin-8 stimulation promoted CXCR1 sequestration in RBL-2H3 cells, receptor internalization in HEK 293 cells required co-expression of G protein-coupled receptor kinase 2 and beta-arrestin proteins. The importance of beta-arrestins in CXCR1 internalization was confirmed by the ability of a dominant negative beta-arrestin 1-V53D mutant to block internalization of CXCR1 in RBL-2H3 cells. A role for dynamin was also demonstrated by the lack of CXCR1 internalization in dynamin I-K44A dominant negative mutant-transfected RBL-2H3 cells. Agonist-promoted co-localization of transferrin and CXCR1-GFP in endosomes of RBL-2H3 cells confirmed that receptor internalization occurs via clathrin-coated vesicles. Our data provides a direct link between agonist-induced internalization of CXCR1 and a requirement for G protein-coupled receptor kinase 2, beta-arrestins, and dynamin during this process.  相似文献   

13.
Homologous desensitization of beta2-adrenergic and other G-protein-coupled receptors is a two-step process. After phosphorylation of agonist-occupied receptors by G-protein-coupled receptor kinases, they bind beta-arrestins, which triggers desensitization and internalization of the receptors. Because it is not known which regions of the receptor are recognized by beta-arrestins, we have investigated beta-arrestin interaction and internalization of a set of mutants of the human beta2-adrenergic receptor. Mutation of the four serine/threonine residues between residues 355 and 364 led to the loss of agonist-induced receptor-beta-arrestin2 interaction as revealed by fluorescence resonance energy transfer (FRET), translocation of beta-arrestin2 to the plasma membrane, and receptor internalization. Mutation of all seven serine/threonine residues distal to residue 381 did not affect agonist-induced receptor internalization and beta-arrestin2 translocation. A beta2-adrenergic receptor truncated distal to residue 381 interacted normally with beta-arrestin2, whereas its ability to internalize in an agonist-dependent manner was compromised. A similar impairment of internalization was observed when only the last eight residues of the C terminus were deleted. Our experiments show that the C terminus distal to residue 381 does not affect the initial interaction between receptor and beta-arrestin, but its last eight amino acids facilitate receptor internalization in concert with beta-arrestin2.  相似文献   

14.
Similar to other G protein-coupled receptors, rapid phosphorylation of the delta-opioid receptor in the presence of agonist has been reported. Hence, agonist-induced desensitization of the delta-opioid receptor has been suggested to be via the receptor phosphorylation, arrestin-mediated pathway. However, due to the highly efficient coupling between the delta-opioid receptor and the adenylyl cyclase, the direct correlation between the rates of receptor phosphorylation and receptor desensitization as measured by the adenylyl cyclase activity could not be established. In the current studies, using an ecdysone-inducible expression system to control the delta-opioid receptor levels in HEK293 cells, we could demonstrate that the rate of deltorphin II-induced receptor desensitization is dependent on the receptor level. Only at receptor concentrations 相似文献   

15.
Substance P receptor (SPR) and its naturally occurring splice-variant, lacking the C-terminal tail, are found in brain and spinal cord. Whether C-terminally truncated SPR desensitizes like full-length SPR is controversial. We used a multivaried approach to determine whether human SPR (hSPR) and a C-terminally truncated mutant, hSPRDelta325, differ in their desensitization and internalization. In HEK-293 cells expressing either hSPRDelta325 or hSPR, SP-induced desensitization of the two receptors was similar when measured by inositol triphosphate accumulation or by transient translocation of coexpressed PKCbetaII-GFP to the plasma membrane. Moreover, translocation of beta-arrestin 1 or 2-GFP (betaarr1-GFP or betaarr2-GFP) to the plasma membrane, and receptor internalization were also similar. However, hSPR and hSPRDelta325 differ in their phosphorylation and in their ability to form beta-arrestin-containing endocytic vesicles. Unlike hSPR, hSPRDelta325 is not phosphorylated to a detectable level in intact HEK293 cells, and whereas hSPR forms vesicles containing either betaarr1-GFP or betaarr2-GFP, hSPRDelta325 does not form any vesicles with betaarr1-GFP, and forms fewer vesicles with betaarr2-GFP. We conclude that truncated hSPR undergoes agonist-dependent desensitization and internalization without detectable receptor phosphorylation.  相似文献   

16.
The rat follitropin receptor (rFSHR) is an unusual G protein-coupled receptor in that agonist-induced activation leads to the phosphorylation of the first and third intracellular loops instead of the C-terminal tail. To determine regions of G protein-coupled receptors that affect internalization independently of phosphorylation we examined the effects of truncations of the C-terminal tail of the rFSHR on agonist-induced internalization. Our studies show that progressive truncations of a region flanked by residues 642 and 651 enhance the internalization of human follicle-stimulating hormone (hFSH). Further characterization of a mutant truncated at residue 649 (designated rFSHR-t649) and another mutant in which the 642-651 region was deleted in the context of the full-length rFSHR, designated rFSHR(Delta642-651), showed that both of them internalized hFSH at rates that were 2-3 times faster than rFSHR-wild type (wt). Like rFSHR-wt, however, the internalization of hFSH mediated by rFSHR-t649 and rFSHR(Delta642-651) can be inhibited with dominant-negative mutants of the non-visual arrestins or dynamin. Alanine-scanning mutagenesis of the 642-651 region suggests that the effects on internalization are not mediated by a single residue, however. In an attempt to understand the molecular basis of the enhanced internalization of hFSH mediated by these mutants we used an assay that can be readily used to assess the association of the rFSHR with the arrestin-3 in co-transfected cells. Using this assay we were able to show that, when compared with rFSHR-wt, rFSHR(Delta642-651) displays an approximately 4-fold enhancement in binding affinity for arrestin-3 and an approximately 1.7-fold reduction in maximal arrestin-3 binding capacity. We conclude that a short linear sequence present in the C-terminal tail of the rFSHR (642SATHNFHARK651) that is not phosphorylated limits internalization by lowering the affinity of the rFSHR for the endogenous non-visual arrestins.  相似文献   

17.
Previous studies with overexpressing wild-type or dominant negative nonvisual arrestins have established a role for these proteins in beta2-adrenergic receptor (beta2AR) internalization, desensitization, and resensitization. To validate and extend such findings, we employed an antisense strategy to target the nonvisual arrestins, arrestin-2 and arrestin-3, and determined the associated effects on the regulation of G protein-coupled receptor (GPCR) signaling. HEK293 cells stably expressing antisense constructs targeting arrestin-2 exhibited a selective reduction (approximately 50%) in arrestin-2 levels, while arrestin-3 antisense constructs resulted in reductions (>/=50%) in both arrestin-2 and arrestin-3 levels. Initial analysis of these cells demonstrated that a reduced level of arrestin expression resulted in a significant decrease in the extent of agonist-induced internalization of exogenously expressed beta2ARs, but had no effect on internalization of either m2 or m3 muscarinic acetylcholine receptors. Additional characterization involved assessing the role of arrestins in the regulation of endogenous GPCRs in these cells. Reduced arrestin levels significantly decreased the rate of endogenous beta2AR internalization, desensitization, and resensitization. Further analysis demonstrated that the desensitization of endogenous A2b adenosine and prostaglandin E2-stimulated receptors was also attenuated in cells with reduced arrestin levels. The effects on the beta2-adrenergic, A2b adenosine, and PGE2-stimulated receptors were similar among cell lines that exhibited either a selective reduction in arrestin-2 levels or a reduction in both arrestin-2 and -3 levels. These findings establish the utility of antisense approaches in the examination of arrestin-mediated GPCR regulation.  相似文献   

18.
Cysteinyl leukotrienes activate the cysteinyl leukotriene type 1 receptor (CysLT1R) to regulate numerous cell functions important in inflammatory processes and diseases such as asthma. Despite its physiologic importance, no studies to date have examined the regulation of CysLT1R signaling or trafficking. We have established model systems for analyzing recombinant human CysLT1R and found regulation of internalization and signaling of the CysLT1R to be unique among G protein-coupled receptors. Rapid and profound LTD4-stimulated internalization was observed for the wild type (WT) CysLT1R, whereas a C-terminal truncation mutant exhibited impaired internalization yet signaled robustly, suggesting a region within amino acids 310-321 as critical to internalization. Although overexpression of WT arrestins significantly increased WT CysLT1R internalization, expression of dominant-negative arrestins had minimal effects, and WT CysLT1R internalized in murine embryonic fibroblasts lacking both arrestin-2 and arrestin-3, suggesting that arrestins are not the primary physiologic regulators of CysLT1Rs. Instead, pharmacologic inhibition of protein kinase C (PKC) was shown to profoundly inhibit CysLT1R internalization while greatly increasing both phosphoinositide (PI) production and calcium mobilization stimulated by LTD4 yet had almost no effect on H1 histamine receptor internalization or signaling. Moreover, mutation of putative PKC phosphorylation sites within the CysLT1R C-tail (CysLT1RS(313-316)A) reduced receptor internalization, increased PI production and calcium mobilization by LTD4, and significantly attenuated the effects of PKC inhibition. These findings characterized the CysLT1R as the first G protein-coupled receptor identified to date in which PKC is the principal regulator of both rapid agonist-dependent internalization and rapid agonist-dependent desensitization.  相似文献   

19.
Regulation and intracellular trafficking pathways of the endothelin receptors   总被引:12,自引:0,他引:12  
The effects of endothelin (ET) are mediated via the G protein-coupled receptors ET(A) and ET(B). However, the mechanisms of ET receptor desensitization, internalization, and intracellular trafficking are poorly understood. The aim of the present study was to investigate the molecular mechanisms of ET receptor regulation and to characterize the intracellular pathways of ET-stimulated ET(A) and ET(B) receptors. By analysis of ET(A) and ET(B) receptor internalization in transfected Chinese hamster ovary cells in the presence of overexpressed betaARK, beta-arrestin-1, beta-arrestin-2, or dynamin as well as dominant negative mutants of these regulators, we have demonstrated that both ET receptor subtypes follow an arrestin- and dynamin/clathrin-dependent mechanism of internalization. Fluorescence microscopy of Chinese hamster ovary and COS cells expressing green fluorescent protein (GFP)-tagged ET receptors revealed that the ET(A) and ET(B) subtypes were targeted to different intracellular routes after ET stimulation. While ET(A)-GFP followed a recycling pathway and colocalized with transferrin in the pericentriolar recycling compartment, ET(B)-GFP was targeted to lysosomes after ET-induced internalization. Both receptor subtypes colocalized with Rab5 in classical early endosomes, indicating that this compartment is a common early intermediate for the two ET receptors during intracellular transport. The distinct intracellular routes of ET-stimulated ET(A) and ET(B) receptors may explain the persistent signal response through the ET(A) receptor and the transient response through the ET(B) receptor. Furthermore, lysosomal targeting of the ET(B) receptor could serve as a biochemical mechanism for clearance of plasma endothelin via this subtype.  相似文献   

20.
Agonist-induced internalization of G protein-coupled receptors plays an important role in signal regulation. The underlying mechanisms of the internalization of the human neuropeptide Y(2) receptor (hY(2)R), as well as its desensitization, endocytosis, and resensitization are mainly unknown. In the present study we have investigated the role of carboxyl-terminal (C-terminal) Ser/Thr residues and acidic amino acids in regulating receptor internalization, arrestin interaction, and recycling by fluorescence microscopy, cell surface enzyme-linked immunosorbent assay, and bioluminescence resonance energy transfer in several cell lines. Strikingly, C-terminal truncation mutants revealed two different internalization motifs. Whereas a distal motif (373)DSXTEXT(379) was found to be the primary regulatory internalization sequence acting in concert with arrestin-3, the proximal motif (347)DXXXSEXSXT(356) promoted ligand-induced internalization in an arrestin-3-independent manner. Moreover, we identified a regulatory sequence located between these internalization motifs ((357)FKAKKNLEVRKN(368)), which serves as an inhibitory element. We found that hY(2)R recycling is also governed by structural determinants within the proximal internalization motif. In conclusion, these results indicate that the hY(2)R C terminus is involved in multiple molecular events that regulate internalization, interaction with arrestin-3, and receptor resensitization. Our findings provide novel insights into complex mechanisms of controlled internalization of hY(2)R, which is likely applicable to other GPCRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号