首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
As in many species, gustatory pheromones regulate the mating behavior of Drosophila. Recently, several ppk genes, encoding ion channel subunits of the DEG/ENaC family, have been implicated in this process, leading to the identification of gustatory neurons that detect specific pheromones. In a subset of taste hairs on the legs of Drosophila, there are two ppk23-expressing, pheromone-sensing neurons with complementary response profiles; one neuron detects female pheromones that stimulate male courtship, the other detects male pheromones that inhibit male-male courtship. In contrast to ppk23, ppk25, is only expressed in a single gustatory neuron per taste hair, and males with impaired ppk25 function court females at reduced rates but do not display abnormal courtship of other males. These findings raised the possibility that ppk25 expression defines a subset of pheromone-sensing neurons. Here we show that ppk25 is expressed and functions in neurons that detect female-specific pheromones and mediates their stimulatory effect on male courtship. Furthermore, the role of ppk25 and ppk25-expressing neurons is not restricted to responses to female-specific pheromones. ppk25 is also required in the same subset of neurons for stimulation of male courtship by young males, males of the Tai2 strain, and by synthetic 7-pentacosene (7-P), a hydrocarbon normally found at low levels in both males and females. Finally, we unexpectedly find that, in females, ppk25 and ppk25-expressing cells regulate receptivity to mating. In the absence of the third antennal segment, which has both olfactory and auditory functions, mutations in ppk25 or silencing of ppk25-expressing neurons block female receptivity to males. Together these results indicate that ppk25 identifies a functionally specialized subset of pheromone-sensing neurons. While ppk25 neurons are required for the responses to multiple pheromones, in both males and females these neurons are specifically involved in stimulating courtship and mating.  相似文献   

3.
Insects utilize diverse families of ion channels to respond to environmental cues and control mating, feeding, and the response to threats. Although degenerin/epithelial sodium channels (DEG/ENaC) represent one of the largest families of ion channels in Drosophila melanogaster, the physiological functions of these proteins are still poorly understood. We found that the DEG/ENaC channel ppk23 is expressed in a subpopulation of sexually dimorphic gustatory-like chemosensory bristles that are distinct from those expressing feeding-related gustatory receptors. Disrupting ppk23 or inhibiting activity of ppk23-expressing neurons did not alter gustatory responses. Instead, blocking ppk23-positive neurons or mutating the ppk23 gene delayed the initiation and reduced the intensity of male courtship. Furthermore, mutations in ppk23 altered the behavioral response of males to the female-specific aphrodisiac pheromone 7(Z), 11(Z)-Heptacosadiene. Together, these data indicate that ppk23 and the cells expressing it play an important role in the peripheral sensory system that determines sexual behavior in Drosophila.  相似文献   

4.
In Drosophila, pheromones play a crucial role in regulating courtship behaviors. In males, female aphrodisiac pheromones promote male‐female courtship, and male antiaphrodisiac pheromones inhibit male‐male courtship. Previous studies have reported that receptor proteins belonging to the pickpocket (ppk) family, ionotropic receptor family and gustatory receptor family are required for pheromone detection and normal courtship. However, none of them has been shown to be sufficient for sensing pheromones after ectopic expression in originally unresponsive cells. “M” cells are activated by male antiaphrodisiac pheromones but not female aphrodisiac pheromones, and the activated cells inhibit male‐male courtship. In our study, male flies with ectopic expression of ppk25, ppk29 and ppk23 in “M” cells showed decreased male‐female courtship. Using an in vivo calcium imaging approach, we found that the “M” cells expressing these three ppks were significantly activated by the female aphrodisiac pheromone 7,11‐heptacosadiene (7,11‐HD). Our results indicate that a sodium channel consisting, at minimum, of ppk25, ppk29 and ppk23, can sense 7,11‐HD, most likely as a receptor. Our findings may help us gain insights into the molecular mechanisms of pheromonal functions.  相似文献   

5.
Mutations in the Drosophila retained/dead ringer (retn) gene lead to female behavioral defects and alter a limited set of neurons in the CNS. retn is implicated as a major repressor of male courtship behavior in the absence of the fruitless (fru) male protein. retn females show fru-independent male-like courtship of males and females, and are highly resistant to courtship by males. Males mutant for retn court with normal parameters, although feminization of retn cells in males induces bisexuality. Alternatively spliced RNAs appear in the larval and pupal CNS, but none shows sex specificity. Post-embryonically, retn RNAs are expressed in a limited set of neurons in the CNS and eyes. Neural defects of retn mutant cells include mushroom body beta-lobe fusion and pathfinding errors by photoreceptor and subesophageal neurons. We posit that some of these retn-expressing cells function to repress a male behavioral pathway activated by fruM.  相似文献   

6.
Drosophila species exhibit polymorphism in female pheromonal cuticular hydrocarbons, with 7-monoenes produced in Drosophila simulans and 7,11-dienes in most populations of Drosophila melanogaster (5,9-dienes in several African populations). A female-biased desaturase, desatF, expressed only in D. melanogaster is involved in the synthesis of 7,11-dienes. We investigated the role of desatF in 5,9-diene flies. We constructed a 5,9-diene strain knock-down for desatF and showed that desatF is involved in 5,9-diene formation. We also studied D. melanogaster/D. simulans hybrids. These hybrid females produced dienes and received normal courtship from D. melanogaster males, but copulation success was reduced. With D. simulans males, courtship was decreased and no copulation occurred. Hybrids with a chromosomal deletion of the D. melanogaster desatF gene had no dienes and received normal courtship from D. simulans males; depending on the D. simulans parental strain, 7-19% of them succeeded in mating. D. simulans desatF promoter region shows 21-23% gaps and 86-89% identity with D. melanogaster promoter region, the coding region 93-94% identity, depending on the strain. These differences could explain the functional polymorphism of desatF observed between both species, contributing to different cuticular hydrocarbon profiles, that constitute an effective barrier between species.  相似文献   

7.
J. A. Coyne  B. Charlesworth 《Genetics》1997,145(4):1015-1030
Females of the sibling species Drosophila sechellia and D. mauritiana differ in their cuticular hydrocarbons: the predominant compound in D. sechellia is 7,11-heptacosadiene (7,11-HD), while that in D. mauritiana is 7-tricosene (7-T). We investigate the genetic basis of this difference and its involvement in reproductive isolation between the species. Behavioral studies involving hydrocarbon transfer suggest that these compounds play a large role in the sexual isolation between D. mauritiana males and D. sechellia females, while sexual isolation in the reciprocal hybridization results more from differences in female behavior than hydrocarbons. This interspecific difference in hydrocarbon profile is due to evolutionary change at a minimum of six loci, all on the third chromosome. The localization of evolutionary change to the third chromosome has been seen in every other genetic analysis of female hydrocarbon differences in the D. melanogaster group. We suggest that the high 7,11-HD phenotype seen in two species evolved twice independently from ancestors having the high 7-T phenotype, and that the recurrent third-chromosome effects are evolutionary convergences that may be due to a concentration of ``hydrocarbon genes' on that chromosome.  相似文献   

8.
Ejima A  Griffith LC 《PloS one》2008,3(9):e3246
Finding a mating partner is a critical task for many organisms. It is in the interest of males to employ multiple sensory modalities to search for females. In Drosophila melanogaster, vision is thought to be the most important courtship stimulating cue at long distance, while chemosensory cues are used at relatively short distance. In this report, we show that when visual cues are not available, sounds produced by the female allow the male to detect her presence in a large arena. When the target female was artificially immobilized, the male spent a prolonged time searching before starting courtship. This delay in courtship initiation was completely rescued by playing either white noise or recorded fly movement sounds to the male, indicating that the acoustic and/or seismic stimulus produced by movement stimulates courtship initiation, most likely by increasing the general arousal state of the male. Mutant males expressing tetanus toxin (TNT) under the control of Gr68a-GAL4 had a defect in finding active females and a delay in courtship initiation in a large arena, but not in a small arena. Gr68a-GAL4 was found to be expressed pleiotropically not only in putative gustatory pheromone receptor neurons but also in mechanosensory neurons, suggesting that Gr68a-positive mechanosensory neurons, not gustatory neurons, provide motion detection necessary for courtship initiation. TNT/Gr68a males were capable of discriminating the copulation status and age of target females in courtship conditioning, indicating that female discrimination and formation of olfactory courtship memory are independent of the Gr68a-expressing neurons that subserve gustation and mechanosensation. This study suggests for the first time that mechanical signals generated by a female fly have a prominent effect on males' courtship in the dark and leads the way to studying how multimodal sensory information and arousal are integrated in behavioral decision making.  相似文献   

9.
In Drosophila melanogaster, male courtship behaviour is genetically controlled and is influenced by sex pheromones. 7-tricosene (7-T) induces a dose-dependent inhibition of male-male courtship, whereas 7,11-dienes stimulate male courtship of females. There is a geographical quantitative variation in the production of two predominant male hydrocarbons, 7-T and 7-pentacosene (7-P). We have previously found that 7-P, the main hydrocarbon from males of West African strains, stimulates males that mainly produce 7-T. Using both 'natural' and genetically engineered strains, we find that genetic factors coding for low levels of 7-P in males have co-evolved with factor(s) coding for male responses to high levels of 7-P. These two phenotypes are coded by factors on different chromosomes: the intraspecific polymorphism for the production of 7-T and 7-P is largely controlled by chromosome 2, whereas the variation in courtship towards 7-P-rich males is largely controlled by chromosome 3. The polymorphism of male courtship towards 7-P-rich males shows no correlation with the variation in male responses to female flies.  相似文献   

10.
Drosophila melanogaster are found in sympatry with Drosophila simulans, and matings between the species produce nonfertile hybrid offspring at low frequency. Evolutionary theory predicts that females choose mates, so males should alter their behaviour in response to female cues. We show that D. melanogaster males quickly decrease courtship towards D. simulans females. Courtship levels are reduced within 5 min of exposure to a heterospecific female, and overall courtship is significantly lower than courtship towards conspecific females. To understand changes at the molecular level during mate choice, we performed microarray analysis on D. melanogaster males that courted heterospecific D. simulans females and found nine genes have altered expression compared with controls. In contrast, males that court conspecific females alter expression of at least 35 loci. The changes elicited by conspecific courtship likely modulate nervous system function to reinforce positive conspecific signals and dampen the response to heterospecific signals.  相似文献   

11.
Reproductive behavior in Drosophila has both stereotyped and plastic components that are driven by age- and sex-specific chemical cues. Males who unsuccessfully court virgin females subsequently avoid females that are of the same age as the trainer. In contrast, males trained with mature mated females associate volatile appetitive and aversive pheromonal cues and learn to suppress courtship of all females. Here we show that the volatile aversive pheromone that leads to generalized learning with mated females is (Z)-11-octadecenyl acetate (cis-vaccenyl acetate, cVA). cVA is a major component of the male cuticular hydrocarbon profile, but it is not found on virgin females. During copulation, cVA is transferred to the female in ejaculate along with sperm and peptides that decrease her sexual receptivity. When males sense cVA (either synthetic or from mated female or male extracts) in the context of female pheromone, they develop a generalized suppression of courtship. The effects of cVA on initial courtship of virgin females can be blocked by expression of tetanus toxin in Or65a, but not Or67d neurons, demonstrating that the aversive effects of this pheromone are mediated by a specific class of olfactory neuron. These findings suggest that transfer of cVA to females during mating may be part of the male's strategy to suppress reproduction by competing males.  相似文献   

12.
Virgin Drosophila melanogaster females, which are courted vigorously, emit pheromones which stimulate males to court each other (Tompkinset al., 1980). Females which have recently copulated are courted less vigrously, and volatile compounds produced by mated females stimulate less courtship between males. Analysis of these compounds from fertilized females by gas chromatography and behavioral assays indicates that mated females emit less of the sex attractant made by virgins and may also produce material which inhibits courtship. These changes in pheromone production are initiated after the first few minutes of copulation.  相似文献   

13.
Drosophila melanogaster males from Canton-S and Oregon-R stocks perform more courtship in response to virgin females from the stock other than their own. Pairs of Canton-S and Oregon-R males also court each other more in the presence of volatile compounds extracted from Oregon-R and Canton-S females, respectively. These observations suggest that D. melanogaster females are polymorphic with respect to some components of their sex pheromone system and that males are capable of distinguishing females from their own stock and females from another stock on the basis of these differences in pheromone production.  相似文献   

14.
A link between learning deficits and circadian period-lengthening mutations in Drosophila melanogaster previously has been reported. Mutant long-period males performed poorly in two learning assays involving experience-dependent courtship inhibition. In one, normal males that have courted fertilized females subsequently show courtship inhibition with virgin females. In the other, normal males that have courted sexually immature males subsequently fail to court other immature males. Those results have been reassessed in an extended study of genetic variants involving the period gene. 1. Long-period perL1 males demonstrated poor conditioned courtship inhibition when exposed to fertilized females; they showed normal courtship conditioning when exposed to immature males. This could be due to a perL1-associated olfactory deficit with fertilized females, since perL1 males were unable to discriminate behaviorally between fertilized and virgin females. 2. Other long-period males, including perL2 males and transgenic perL1 males bearing a truncated form of the per+ gene, were conditioned normally by fertilized females. Thus, the courtship inhibition defect is specific to the perL1 mutant strain. 3. perL1 (and other per mutant) flies showed normal acquisition and retention of a classically conditioned olfactory avoidance response. 4. Results from a new conditioned courtship inhibition experiment are presented; males exposed to fertilized females during training showed further courtship inhibition during subsequent exposure to fertilized females. From the perspective of learning theory, this can be viewed as a savings experiment.  相似文献   

15.
Appropriate displays of aggression rely on the ability to recognize potential competitors. As in most species, Drosophila males fight with other males and do not attack females. In insects, sex recognition is strongly dependent on chemosensory communication, mediated by cuticular hydrocarbons acting as pheromones. While the roles of chemical and other sensory cues in stimulating male to female courtship have been well characterized in Drosophila, the signals that elicit aggression remain unclear. Here we show that when female pheromones or behavior are masculinized, males recognize females as competitors and switch from courtship to aggression. To masculinize female pheromones, a transgene carrying dsRNA for the sex determination factor transformer (traIR) was targeted to the pheromone producing cells, the oenocytes. Shortly after copulation males attacked these females, indicating that pheromonal cues can override other sensory cues. Surprisingly, masculinization of female behavior by targeting traIR to the nervous system in an otherwise normal female also was sufficient to trigger male aggression. Simultaneous masculinization of both pheromones and behavior induced a complete switch in the normal male response to a female. Control males now fought rather than copulated with these females. In a reciprocal experiment, feminization of the oenocytes and nervous system in males by expression of transformer (traF) elicited high levels of courtship and little or no aggression from control males. Finally, when confronted with flies devoid of pheromones, control males attacked male but not female opponents, suggesting that aggression is not a default behavior in the absence of pheromonal cues. Thus, our results show that masculinization of either pheromones or behavior in females is sufficient to trigger male-to-female aggression. Moreover, by manipulating both the pheromonal profile and the fighting patterns displayed by the opponent, male behavioral responses towards males and females can be completely reversed. Therefore, both pheromonal and behavioral cues are used by Drosophila males in recognizing a conspecific as a competitor.  相似文献   

16.
Kohatsu S  Koganezawa M  Yamamoto D 《Neuron》2011,69(3):498-508
We determined the cellular substrate for male courtship behavior by quasinatural and artificial stimulation of brain neurons. Activation of fruitless (fru)-expressing neurons via stimulation of thermosensitive dTrpA1 channels induced an entire series of courtship acts in male Drosophila placed alone without any courting target. By reducing the number of neurons expressing dTrpA1 by MARCM, we demonstrated that the initiation of courtship behavior is significantly correlated with the activation of the transmidline P1 interneurons, the descending P2b interneurons, or both, indicating that these interneurons trigger courtship. Using an experimental paradigm in which a tethered male can be stimulated to initiate courtship by touching his foreleg tarsus to a female's abdomen, we found that P1 neurites of tethered males showed a transient Ca(2+) rise after tarsal stimulation with the female-associated sensory cues. These observations strongly suggest that P1 neurons are the prime components of the neural circuitry that initiates male courtship.  相似文献   

17.
The neuropeptide SIFamide modulates sexual behavior in Drosophila   总被引:1,自引:0,他引:1  
The expression of Drosophila neuropeptide AYRKPPFNGSIFamide (SIFamide) was shown by both immunohistology and in situ hybridization to be restricted to only four neurons of the pars intercerebralis. The role of SIFamide in adult courtship behavior in both sexes was studied using two different approaches to perturb the function of SIFamide; targeted cell ablation and RNA interference (RNAi). Elimination of SIFamide by either of these methods results in promiscuous flies; males perform vigorous and indiscriminant courtship directed at either sex, while females appear sexually hyper-receptive. These results demonstrate that SIFamide is responsible for these behavioral effects and that the four SIFamidergic neurons and arborizations play an important function in the neuronal circuitry controlling Drosophila sexual behavior.  相似文献   

18.
Transient receptor potential (TRP) channels play crucial roles in sensory perception. Expression of the Drosophila painless ( pain ) gene, a homolog of the mammalian TRPA1/ANKTM1 gene, in the peripheral nervous system is required for avoidance behavior of noxious heat or wasabi. In this study, we report a novel role of the Pain TRP channel expressed in the nervous system in the sexual receptivity in Drosophila virgin females. Compared with wild-type females, pain mutant females copulated with wild-type males significantly earlier. Wild-type males showed comparable courtship latency and courtship index toward wild-type and pain mutant females. Therefore, the early copulation observed in wild-type male and pain mutant female pairs is the result of enhanced sexual receptivity in pain mutant females. Involvement of pain in enhanced female sexual receptivity was confirmed by rescue experiments in which expression of a pain transgene in a pain mutant background restored the female sexual receptivity to the wild-type level. Targeted expression of pain RNA interference (RNAi) in putative cholinergic or GABAergic neurons phenocopied the mutant phenotype of pain females. However, target expression of pain RNAi in dopaminergic neurons did not affect female sexual receptivity. In addition, conditional suppression of neurotransmission in putative GABAergic neurons resulted in a similar enhanced sexual receptivity. Our results suggest that Pain TRP channels expressed in cholinergic and/or GABAergic neurons are involved in female sexual receptivity.  相似文献   

19.
Although females are traditionally thought of as the choosy sex, there is increasing evidence in many species that males will preferentially court or mate with certain females over others when given a choice. In the fruit fly, Drosophila melanogaster, males discriminate between potential mating partners based on a number of female traits, including species, mating history, age, and condition. Interestingly, many of these male preferences are affected by the male''s previous sexual experiences, such that males increase courtship toward types of females that they have previously mated with and decrease courtship toward types of females that have previously rejected them. Dmelanogaster males also show courtship and mating preferences for larger females over smaller females, likely because larger females have higher fecundity. It is unknown, however, whether this preference shows behavioral plasticity based on the male''s sexual history as we see for other male preferences. Here, we manipulate the sexual experience of Dmelanogaster males and test whether this manipulation has any effect on the strength of male mate choice for large females. We find that sexually inexperienced males have a robust courtship preference for large females that is unaffected by previous experience mating with, or being rejected by, females of differing sizes. Given that female body size is one of the most common targets of male mate choice across insect species, our experiments with Dmelanogaster may provide insight into how these preferences develop and evolve.  相似文献   

20.
A. Villella  J. C. Hall 《Genetics》1996,143(1):331-344
The role played by the sex-determining gene doublesex (dsx) and its influence on Drosophila courtship were examined. Against a background of subnormal male-like behavior that is reported to be an attribute of haplo-X flies homozygous for the original dsx mutation, and given that a sex-specific muscle is unaffected by genetic variation at this locus, analyses of several reproductive behaviors and control for genetic background effects indicated that XY dsx mutants are impaired in their willingness to court females. When they did court, certain behavioral actions were normal, including components of courtship song. However, these mutants never produced courtship humming sounds. Mature XY dsx flies elicited anomalously high levels of courtship; that this occurs merely because of a delay in imaginal development was experimentally discounted. The current analysis reconciled two ostensibly conflicting reports involving the courtship-stimulating qualities of this mutant type. Such experiments also uncovered a new behavioral anomaly: dsx mutations caused chromosomal males to court other males at abnormally high levels. These results are discussed from the perspective of doublesex's influence on internal tissues of adult Drosophila involved in the triggering and neural control of male- and female-like elements of courtship, reproductive pheromone production, or a combination of such factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号