首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Binding of 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine ([3H]GBR 12935) was studied in membrane preparations of several human brain regions. In putamen, the substituted piperazine derivates cis- and trans-flupenthixol displaced 90% of the total [3H]GBR 12935 binding. Computer-assisted analysis of the competition curves revealed a high-affinity site (30%; KiH = 54 nM) and a low-affinity site (60%; KiL = 4.5 microM). The dopamine uptake blockers mazindol and nomifensine only displaced 30% of the total [3H]GBR 12935 binding in a monophasic way. Binding of [3H]GBR 12935 to the dopamine uptake sites, i.e., that displaced by dopamine uptake blockers, corresponded to part of the binding having low affinity for flupenthixol and was only detected in putamen, nucleus caudatus, nucleus accumbens, and substantia nigra. Even after masking the high-affinity binding site for flupenthixol by including 1 microM cis-flupenthixol in the binding assays, no dopamine uptake sites could be detected in globus pallidus, amygdala, thalamus, hippocampus, and cerebral cortex. Binding of [3H]GBR 12935 to dopamine uptake sites was lost in the nucleus caudatus ipsilateral to ventral midbrain infarctions, confirming their location on nigrostriatal nerve endings. Gross unilateral lesions of the striato- and pallidonigral pathways did not affect the number of dopamine uptake sites in the ipsilateral substantia nigra, suggesting that they may reside on the soma or dendrites of nigral neurons.  相似文献   

2.
Desmethylimipramine (DMI) administered once daily for 10 days caused a significant decrease in beta-adrenergic receptor binding, as measured by quantitative autoradiography in discrete brain regions. The decrease was observed 72 h after the last injection throughout the cortex and in hippocampus but not in other regions, much richer in beta-receptors, such as the caudate, olfactory tubercle, superior colliculus, dorsomedial thalamus, substantia nigra, or pineal. The same paradigm did not affect imipramine (IMI) binding in the cortex or in regions with high concentrations of IMI binding sites. DMI binding was not decreased, either. Significant increases in DMI binding were observed in frontal cortex and in the ventral aspect of the bed nucleus of the stria terminalis. We conclude that a reduction in tricyclic binding is not a general phenomenon following chronic treatment with tricyclic antidepressants, and changes in binding, when they do occur, are not correlated with areas of high binding site density.  相似文献   

3.
Abstract: [3H]Imipramine binds with high affinity to membranes from different regions of the human brain. The highest density of binding sites was observed in the hypothalamus and substantia nigra and the lowest density in the white matter and cerebellum. As found in rat brain, tricyclic antidepressant drugs are potent inhibitors of [3H]imipramine binding. Atypical antidepressants are, however, much weaker at inhibiting the specific binding. The [3H]imipramine binding site in human cortex is apparently identical to the site already described in the rat brain and in human platelets.  相似文献   

4.
Abstract: The cocaine analogue RTI-55 was evaluated as a probe for in vitro labeling and localization of dopamine and serotonin transporters after death in the human brain. Kinetic, saturation, and competition binding experiments indicated complex interactions of the radioligand with the identification of multiple recognition sites. In membrane binding assays, the association of [125I]RTI-55 at 25°C to putamen membranes was monophasic. In contrast, dissociation of [125I]RTI-55 occurred in two phases with t1/2 values of 9.4 and 36.5 min, respectively. Saturation analysis of [125I]RTI-55 binding demonstrated two binding sites in the human putamen with KD values of 0.10 ± 0.02 and 1.81 ± 0.46 nM. The binding of [125I]RTI-55 was displaced by a wide range of cocaine analogues and monoamine uptake inhibitors. The rank order of potency demonstrated in competition assays with human putamen membranes indicates that the radioligand labels cocaine recognition sites on the dopamine transporter (mazindol > GBR 12909 > GBR 12935 > paroxetine > nisoxetine > desipramine ≥ fluoxetine > citalopram). In the human occipital cortex, [125I]RTI-55 recognized multiple binding sites with KD values of 0.02 ± 0.01 and 4.18 ± 0.46 nM. The rank order of potency for inhibition of [125I]RTI-55 binding to cerebral cortex membranes (paroxetine > citalopram > GBR 12909 ≥ mazindol ≥ nisoxetine > benztropine) suggests that [125I]RTI-55 labels the serotonin transporter in the human occipital cortex. Autoradiographic mapping of [125I]RTI-55 revealed very high densities of cocaine recognition sites over areas known to be rich in dopaminergic innervation, including the caudate, putamen, and nucleus accumbens. Moderately elevated densities of [125I]RTI-55 binding sites were also seen throughout the thalamus, hypothalamus, and substantia nigra. [125I]RTI-55 binding sites were prevalent throughout the cerebral cortex and amygdala. In autoradiographic studies, the addition of the selective serotonin transport blocker citalopram completely prevented [125I]RTI-55 labeling in the thalamus, hypothalamus, and throughout most of the cerebral cortex. In the presence of citalopram, [125I]RTI-55 binding site densities remained elevated over the striatum and substantia nigra, with selective residual labeling also seen in the external segment of the globus pallidus and the lateral nucleus of the amygdala. These results demonstrate that in the human brain, [125I]RTI-55 labels multiple recognition sites on dopamine and serotonin transporters.  相似文献   

5.
Injection of folic acid (FA) into the nucleus substantia innominata (NSI) was found to decrease [3H]quinuclidinyl benzilate ([3H]QNB) binding in the frontal cortex, pyriform cortex, amygdala, and the NSI itself without changing the KD. Binding in the thalamus, caudate nucleus, hippocampus, and substantia nigra was not affected. [3H]Flunitrazepam binding was unchanged in all eight regions studied. Previous work indicates FA injections into the NSI produce epileptiform activity and cause loss of GABAergic and possibly other neurons in the frontal and pyriform cortices, the amygdala, and thalamus. The reductions of [3H]QNB binding in the first three of these regions are interpreted as indicating that many of the neurons lost are cholinoceptive, a finding that supports the previous hypothesis that activation of cholinergic projections from the NSI is an important part of the mechanism of cell loss in these regions.  相似文献   

6.
The newly available and highly selective radiolabeled antagonist [3H]RX 821002 was used to examine the distribution of alpha 2 adrenoceptors in human brain. High densities of alpha 2 adrenoceptors were found in the hippocampus, frontal cortex, thalamus, amygdala, pons, and medulla oblongata. Intermediate densities were observed in the striatum (nucleus accumbens, nucleus caudatus, and putamen), globus pallidus, and substantia nigra. The KD values for [3H]RX 821002 were similar in all regions (ranging from 2.8 to 7.5 nM). On the basis of their different affinities for prazosin and oxymetazoline, the alpha 2 adrenoceptors have been divided into alpha 2A and alpha 2B subtypes. To examine the alpha 2A/alpha 2B-adrenoceptor ratio in the different brain regions, we performed oxymetazoline and prazosin/[3H]RX 821002 competition binding experiments. In frontal cortex membranes, the competition curves with prazosin were steep, indicating a single class of binding sites, whereas the competition curves with oxymetazoline were shallow and fitted by computer best to a two-site model. However, in the presence of GTP, the high-affinity sites for oxymetazoline were partially converted into low-affinity sites, indicating that this agonist interacts with high- and low-affinity states of the alpha 2 adrenoceptors. This implies that oxymetazoline is not very suitable for discriminating the alpha 2A- and alpha 2B-receptor subtypes in radioligand binding studies. Therefore, prazosin/[3H]RX 821002 competition binding experiments were used to investigate the distribution of the alpha 2-adrenoceptor subtypes in human brain. The alpha 2A-receptor subtype was detected in all brain regions examined. In contrast, alpha 2B receptors were only observed in striatum and globus pallidus.  相似文献   

7.
The distribution of 3H-nomifensine binding sites in the rat brain has been studied by quantitative autoradiography. The binding of 3H-nomifensine to caudate putamen sections was saturable, specific, of a high affinity (Kd = 56 nM) and sodium-dependent. The dopamine uptake inhibitors benztropine, nomifensine, cocaine, bupropion and amfonelic acid were the most potent competitors of 3H-nomifensine binding to striatal sections. The highest levels of (benztropine-displaceable) 3H-nomifensine binding sites were found in the caudate-putamen, the olfactory tubercle and the nucleus accumbens. 6-Hydroxydopamine-induced lesion of the ascending dopaminergic bundle resulted in a marked decrease in the 3H-ligand binding in these areas. Moderately high concentrations of the 3H-ligand were observed in the bed nucleus of the stria terminalis, the anteroventral thalamic nucleus, the cingulate cortex, the lateral septum, the hippocampus, the amygdala, the zona incerta and some hypothalamic nuclei. There were low levels of the binding sites in the habenula, the dorsolateral geniculate body, the substantia nigra, the ventral tegmental area and the periaqueductal gray matter. These autoradiographic data are consistent with the hypothesis that 3H-nomifensine binds primarily to the presynaptic uptake site for dopamine but also labels the norepinephrine uptake site.  相似文献   

8.
Aging was associated with an increase in the density of specific binding sites for [3H]imipramine in postmortem specimens of human hypothalamus, frontal cortex, and parietal cortex. In general, [3H]imipramine binding was not affected by factors considered difficult to control in postmortem studies, i.e., time from death to autopsy and cause of death. The in vitro regulation of [3H]imipramine binding by sodium was impaired with age in hypothalamic homogenates. In vitro regulation of [3H]imipramine binding by chloride was intact. Determination of the concentrations of 5-hydroxytryptamine (serotonin) and 5-hydroxyindoleacetic acid in hypothalamus and frontal cortex indicated no apparent age-related changes in indole metabolism. The age-related increase in brain [3H]imipramine binding and impairment in the in vitro regulation of binding by ions are similar to changes observed previously in aged mouse brain. The increase in brain antidepressant binding sites is discussed in relationship to other indices of brain serotonergic function in aging and to the relationship of [3H]imipramine binding and depression.  相似文献   

9.
Abstract : The binding of L-2-[3H]amino-4-phosphonobutyrate ([3H]L-AP4) was examined in brain sections of wild-type mice and mice lacking the mGluR4 subtype of metabotropic glutamate receptors (mGluRs). Very high relative densities of [3H]L-AP4 binding were observed in the molecular layer of the cerebellar cortex, the nucleus basalis, the outer layer of the superior colliculus, and the substantia nigra. In mGluR4 knock-out mice, very low levels of binding were observed in these regions. The moderate levels of binding observed with wild-type mice in the molecular layer of the hippocampal dentate gyrus and in the thalamus were absent in mGluR4 knock-out mice. In contrast, the moderate levels observed in most of the cerebral cortex, caudate putamen, and globus pallidus were not different in mGluR4 knock-out mice compared with wild-type. In these regions, mGluR8 is likely to be labeled by [3H]L-AP4 because mGluR8 is expressed in such brain regions and, like mGluR4, has high affinity for L-AP4. We conclude that mGluR4 contributes substantially to the high-affinity binding site for [3H]L-AP4 in several regions of mouse brain, including cerebellar cortex, nucleus basalis, thalamus, superior colliculus, substantia nigra, and hippocampal dentate gyrus.  相似文献   

10.
The regional distribution of [3H]zolpidem, a novel imidazopyridine hypnotic possessing preferential affinity for the BZD1 (benzodiazepine subtype 1) receptor, has been studied autoradiographically in the rat CNS and compared with that of [3H]flunitrazepam. The binding of [3H]zolpidem to rat brain sections was saturable, specific, reversible, and of high affinity (KD = 6.4 nM). It occurred at a single population of sites whose pharmacological characteristics were similar to those of the benzodiazepine receptors labeled with [3H]flunitrazepam. However, ethyl-beta-carboline-3-carboxylate and CL 218,872 were more potent displacers of [3H]zolpidem than of [3H]flunitrazepam. The autoradiographic brain distribution of [3H]zolpidem binding sites was qualitatively similar to that previously reported for benzodiazepine receptors. The highest levels of [3H]-zolpidem binding sites occurred in the olfactory bulb (glomerular layer), inferior colliculus, ventral pallidum, nucleus of the diagonal band of Broca, cerebral cortex (layer IV), medial septum, islands of Calleja, subthalamic nucleus, and substantia nigra pars reticulata, whereas the lowest densities were found in parts of the thalamus, pons, and medulla. Comparative quantitative autoradiographic analysis of the binding of [3H]zolpidem and [3H]flunitrazepam [a mixed BZD1/BZD2 (benzodiazepine subtype 2) receptor agonist] in the CNS revealed that the relative density of both 3H-labeled ligands differed in several brain areas. Similar levels of binding for both ligands were found in brain regions enriched in BZD1 receptors, e.g., substantia nigra pars reticulata, inferior colliculus, cerebellum, and cerebral cortex lamina IV. The levels of [3H]zolpidem binding were five times lower than those of [3H]flunitrazepam binding in those brain regions enriched in BZD2 receptors, e.g., nucleus accumbens, dentate gyrus, and striatum. Moreover, [3H]zolpidem binding was undetectable in the spinal cord (which contains predominantly BZD2 receptors). Finally, like CL 218,872 and ethyl-beta-carboline-3-carboxylate, zolpidem was a more potent displacer of [3H]flunitrazepam binding in brain regions enriched in BZD1 receptors than in brain areas enriched in BZD2 receptors. The present data add further support to the view that zolpidem, although structurally unrelated to the benzodiazepines, binds to the benzodiazepine receptor and possesses selectivity for the BZD1 receptor subtype.  相似文献   

11.
Abstract: Specific [3H]strychnine binding was used to identify the glycine receptor macromolecular complex in human spinal cord, substantia nigra, inferior olivary nucleus, and cerebral cortex. In material from control patients a high-affinity K d (3–8 n m ) was observed in the spinal cord and the substantia nigra, both the pars compacta and the pars reticulata. This is very similar to the values observed in the rat and bovine spinal cord (8 and 3 n m , respectively) and rat substantia nigra (12 n m ). In the human brain the distribution of [3H]strychnine binding (at 10 n m ) was: spinal cord – substantia nigra, pars compacta > substantia nigra, pars reticulata = inferior olivary nucleus > cerebral cortex. The binding capacity ( B max) of the rat brain (substantia nigra or spinal cord) was approximately 10-fold that of the human brain. [ 3 H]Strychnine binding was significantly decreased in the substantia nigra from Parkinson's disease patients, both in the pars compacta (67% of control) and the pars reticulata (50% of control), but not in the inferior olivary nucleus. The results were reproduced in a preliminary experiment in rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. In the substantia nigra from patients who died with Huntington's disease, [3H]strychnine binding tended to be high (150% of control, NS) in both the pars compacta and the reticulata. [3H]Strychnine binding was unaltered in the substantia nigra of patients with senile dementia. Together with previous neurophysiological and neuropharmacological findings, those results support the hypothesis of glycine receptors occurring on dopamine cell bodies and/or dendrites in the substantia nigra.  相似文献   

12.
The present study demonstrates that [3H]imipramine binds to both high- and low-affinity imipramine binding components on membranes prepared from rat cerebral cortex. Scatchard and computer analyses of saturation experiments using a wide range of [3H]imipramine concentrations (0.5 nM-50 nM) revealed the presence of two binding components. Inhibition experiments in which membranes were incubated with [3H]imipramine and various concentrations of unlabelled imipramine gave shallow inhibition curves with a Hill coefficient of 0.60 +/- 0.04. When dissociation rates of imipramine were studied, biphasic dissociation curves were obtained with apparent half-times of dissociation of 2.5 +/- 0.4 min and 18.5 +/- 2.5 min. Thus analysis of saturation, competition, and dissociation experiments indicate that [3H]imipramine binds to low as well as high-affinity binding sites in rat cortex.  相似文献   

13.
High affinity binding sites (Kd = 1.7 nM) for [3H] imipramine have been characterized in membranes prepared from human brain. The binding of [3H] imipramine was found to be saturable, reversible, and inhibited by pharmacologically active tricyclic antidepressants. Other psychoactive compounds as well as most neurotransmitter substances were ineffective in inhibiting [3H] imipramine binding at concentrations up to 10 μM. The hypothalamus was found to contain a relatively high density of these binding sites and is enriched approximately 4-fold when compared to cerebral and cerebellar cortex. A very good correlation (r = 0.97) p < 0.001 was found between the abilities of a series of clinically active tricyclic antidepressants in displacing specifically bound [3H] imipramine from human brain and platelet membranes, suggesting that the binding sites from these two tissues are very similar.  相似文献   

14.
Summary The distribution of immunoreactive arginine vasotocin (AVT-ir) was determined in the brain of the lizard Anolis carolinensis. Cells and fibers containing AVT-ir were found in the medial septal region, lamina terminalis, lateral forebrain bundle, preoptic area, supraoptic nucleus, anterior hypothalamus, paraventricular nucleus, periventricular nucleus, arcuate nucleus, and ventromedial nucleus of the thalamus. Occasional AVT-ir cells were found in the interpeduncular nucleus. Fibers containing AVT-ir were found in the cortex, around the olfactory ventricle, in the diagonal band of Broca, amygdala area, dorsal ventricular ridge, striatum, nucleus accumbens, septum, ventromedial hypothalamus, lateral hypothalamus, medial forebrain bundle, median eminence, pars nervosa, nucleus of the solitary tract, locus coeruleus, cerebellar cortex (granular layer), dorsal part of the nucleus of the lateral lemniscus, substantia nigra, and myelencephalon. The intensity of AVT-ir staining was, in general, greater in males than in females. Comparison of AVT-ir distribution in A. carolinensis with those previously published for other reptilian species revealed species-specific differences in distribution of AVT.  相似文献   

15.
Rats were submitted to a series of 10 daily electroconvulsive shocks (ECS). A first group of animals was killed 1 day after the last seizure and a second group 30 days later. Tyrosine hydroxylase (TH) activity was measured using an in vitro assay in the nucleus caudatus, anterior cortex, amygdala, substantia nigra, ventral tegmental area, and locus ceruleus. The mRNA corresponding to this enzyme (TH-mRNA) was evaluated using a cDNA probe at the cellular level in the ventral tegmental area, substantia nigra, and locus ceruleus. Met-enkephalin (MET)-immunoreactivity and the mRNA coding for the preproenkephalin (PPE-mRNA) were assayed in striatum and the central nucleus of the amygdala. The day after the last ECS an increase of TH activity was observed in the ventral tegmental area, locus ceruleus, and substantia nigra in parallel with a similar increase in the amygdala and striatum; in the anterior cortex TH activity remained unchanged. TH-mRNA was increased in the locus ceruleus, evidencing the presence in this structure of a genomic activation. The amounts of MET and PPE-mRNA were unaffected in the striatum but increased in the amygdala. Thirty days after the last ECS we observed a decrease of TH activity in the amygdala and of TH-mRNA amount in the ventral tegmental area. In the locus ceruleus TH-mRNA remained higher in treated animals than in controls whereas TH activity returned to control levels. These results demonstrate that a series of ECS induces an initial increase of the activity of mesoamygdaloid catecholaminergic neurons followed by a sustained decrease through alterations of TH gene expression which could mediate the clinical effect of the treatment.  相似文献   

16.
In vitro labeling of tissue sections with [3H]sulpiride has been utilized in the present study to autoradiographically localize D2-dopamine receptors in the rat brain. Preliminary biochemical studies, using slide-mounted tissue sections, were performed to define the optimal labeling conditions for this binding. Autoradiograms were generated by apposition of the labeled tissue sections to tritium-sensitive film. Specific binding sites for [3H]sulpiride were localized to the caudate-putamen, nucleus accumbens, olfactory tubercle, glomerular layer of the olfactory bulb, pituitary, laminae I and III of the entorhinal cortex, substantia nigra, lateral mammillary nucleus and the stratum-lacunosum moleculare of the hippocampus. The high selectivity of [3H]sulpiride for the D2-dopamine receptor indicates that it is a valuable tool for the autoradiographic localization and quantitation of neuroleptic receptors.  相似文献   

17.
The binding characteristics of [3H]-imipramine in slide mounted tissue sections of rat forebrain have been studied to ascertain the optimal binding conditions for labeling the sites prior to autoradiographic localization. The conditions for the experiments and the kinetics of the imipramine binding correspond reasonably well with those used in membrane preparations to initially define the imipramine binding site. Subsequent labeling of sections, using these parameters, allowed the autoradiographic localization of high concentrations of imipramine binding sites in such areas as the cerebral cortex, striatum, and several limbic and visual system structures. In addition, there was a marked overlap between regions demonstrating imipramine binding and areas known to be innervated by serotonergic neurons. This study outlines the potential sites of action of imipramine in the brain and defines areas for future investigations which attempt to localize brain regions involved in the etiology of depression and areas involved in the side effects of antidepressant drug therapy.  相似文献   

18.
In the present study the role of amygdala in the antidepressant action of imipramine is discussed. An animal model of depression is induced, in rats, by systemic injection of low doses of apomorphine. Systemic administration of imipramine prevents, as already reported, apomorphine-induced sedation. The same effect is observed following intra-amygdaloid imipramine administration. On the contrary, local injection of imipramine in frontal cortex or caudate nucleus does not affect apomorphine-induced sedation.  相似文献   

19.
Previously we found close similarities between high-affinity binding sites for [3H]cocaine and those for [3H]imipramine in the mouse cerebral cortex in regard to their association with neuronal uptake of serotonin. In the present study we investigated whether the two ligands bind to the same site. The two ligands had the following high-affinity binding properties in common: localization in both synaptosomal and microsomal fractions; vulnerability to treatment with N-ethylmaleimide, trypsin, and phospholipase A2; and resistance to exposure to dithiothreitol. In contrast, cocaine binding in the cerebral cortex was more sensitive to heat inactivation than imipramine binding. In addition, the mechanism by which cocaine inhibited [3H]imipramine binding differed from that by which imipramine inhibited [3H]cocaine binding. These data suggest that the high-affinity binding sites for [3H]cocaine and [3H]imipramine in the cerebral cortex are distinct entities.  相似文献   

20.
Total 5-HT binding sites and 5-HT1A receptor density was measured in brain regions of rats treated with imipramine (5 mg/kg body wt), desipramine (10 mg/kg body wt) and clomipramine (10 mg/kg body wt), for 40 days, using [3H]5-HT and [3H]8-OH-DPAT, respectively. It was observed that chronic exposure to tricyclic antidepressants (TCAs) results in significant downregulation of total [3H]5-HT binding sites in cortex (42–76%) and hippocampus (35–67%). The 5-HT1A receptor density was, however, decreased significantly (32–60%) only in cortex with all the three drugs. Interestingly, in hippocampus imipramine treatment increased the 5-HT1A receptor density (14%). The affinity of [3H]8-OH-DPAT was increased only with imipramine treatment both in cortex and hippocampus. The affinity of [3H]5-HT to 5-HT binding sites in cortex was increased with imipramine treatment and decreased with desipramine and clomipramine treatment. 5-HT sensitive adenylyl cyclase (AC) activity was significantly increased in cortex with imipramine (72%) and clomipramine (17%) treatment, whereas in hippocampus only imipramine treatment significantly increased AC activity (50%). In conclusion, chronic treatment with TCAs results in downregulation of cortical 5-HT1A receptors along with concomitant increase in 5-HT stimulated AC activity suggesting the involvement of cortical 5-HT1A receptors in the mechanism of action of TCAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号