首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comprehending the diversity of the regenerative potential across metazoan phylogeny represents a fundamental challenge in biology.Invertebrates like Hydra and planarians exhibit amazing feats of regeneration,in which an entire organism can be restored from minute body segments.Vertebrates like teleost fish and amphibians can also regrow large sections of the body.While this regenerative capacity is greatly attenuated in mammals,there are portions of major organs that remain regenerative.Regardless of the extent,there are common basic strategies to regeneration,including activation of adult stem cells and proliferation of differentiated cells.Here,we discuss the cellular features and molecular mechanisms that are involved in regeneration in different model organisms,including Hydra,planarians,zebrafish and newts as well as in several mammalian organs.  相似文献   

2.
Mature and juvenile tissue models of regeneration in small fish species   总被引:2,自引:0,他引:2  
The multitude of cells constituting organisms are fragile and easily damaged day by day. Therefore, maintenance of tissue morphology and function is fundamental for multicellular organisms to attain long life. For proper maintenance of tissue integrity, organisms must have mechanisms that detect the loss of tissue mass, activate the de novo production of cells, and organize those cells into functional tissues. However, these processes are only poorly understood. Here we give an overview of adult and juvenile tissue regeneration models in small fish species, such as zebrafish and medaka, and highlight recent advances at the molecular level. From these advances, we have come to realize that the epidermal and mesenchymal parts of the regenerating fish fin-that is, the wound epidermis and blastema, respectively-comprise heterogeneous populations of cells with different molecular identities that can be termed "compartments." These compartments and their mutual interactions are thought to play important roles in promoting the proper progression of tissue regeneration. We further describe the current understanding of these compartments and discuss the possible approaches to affording a better understanding of their roles and interactions during regeneration.  相似文献   

3.
Evolutionary convergence provides natural opportunities to investigate how, when, and why novel traits evolve. Many convergent traits are complex, highlighting the importance of explicitly considering convergence at different levels of biological organization, or ‘multi-level convergent evolution’. To investigate multi-level convergent evolution, we propose a holistic and hierarchical framework that emphasizes breaking down traits into several functional modules. We begin by identifying long-standing questions on the origins of complexity and the diverse evolutionary processes underlying phenotypic convergence to discuss how they can be addressed by examining convergent systems. We argue that bioluminescence, a complex trait that evolved dozens of times through either novel mechanisms or conserved toolkits, is particularly well suited for these studies. We present an updated estimate of at least 94 independent origins of bioluminescence across the tree of life, which we calculated by reviewing and summarizing all estimates of independent origins. Then, we use our framework to review the biology, chemistry, and evolution of bioluminescence, and for each biological level identify questions that arise from our systematic review. We focus on luminous organisms that use the shared luciferin substrates coelenterazine or vargulin to produce light because these organisms convergently evolved bioluminescent proteins that use the same luciferins to produce bioluminescence. Evolutionary convergence does not necessarily extend across biological levels, as exemplified by cases of conservation and disparity in biological functions, organs, cells, and molecules associated with bioluminescence systems. Investigating differences across bioluminescent organisms will address fundamental questions on predictability and contingency in convergent evolution. Lastly, we highlight unexplored areas of bioluminescence research and advances in sequencing and chemical techniques useful for developing bioluminescence as a model system for studying multi-level convergent evolution.  相似文献   

4.
Sequence evolution behaves in a relatively consistent manner, leading to one of the fundamental paradigms in biology, the existence of a ??molecular clock??. The molecular clock can be distilled to the concept of accumulation of substitutions, through time yielding a stable rate from which we can estimate lineage divergence. Over the last 50?years, evolutionary biologists have obtained an in-depth understanding of this clock??s nuances. It has been fine-tuned by taking into account the vast heterogeneity in rates across lineages and genes, leading to ??relaxed?? molecular clock methods for timetree reconstruction. Sequence rate varies with life history traits including body size, generation time and metabolic rate, and we review recent studies on this topic. However, few studies have explicitly examined correlates between molecular evolution and morphological evolution. The patterns observed across diverse lineages suggest that rates of molecular and morphological evolution are largely decoupled. We discuss how identifying the molecular mechanisms behind rapid functional radiations are central to understanding evolution. The vast functional divergence within mammalian lineages that have relatively ??slow?? sequence evolution refutes the hypotheses that pulses in diversification yielding major phenotypic change are the result of steady accumulation of substitutions. Patterns rather suggest phenotypic divergence is likely caused by regulatory alterations mediated through mechanisms such as insertions/deletions in functional regions. These can rapidly arise and sweep to fixation faster than predicted from a lineage??s sequence neutral substitution rate, enabling species to leapfrog between phenotypic ??islands??. We suggest research directions that could illuminate mechanisms behind the functional diversity we see today.  相似文献   

5.
In temperate climates, the recurring seasonal exigencies of winter represent a fundamental physiological challenge for a wide range of organisms. In response, many temperate insects enter diapause, an alternative developmental program, including developmental arrest, that allows organisms to synchronize their life cycle with seasonal environmental variation. Geographic variation in diapause phenology contributing to local climatic adaptation is well documented. However, few studies have examined how the rapid evolution of a suite of traits expressed across the diapause program may contribute to climatic adaptation on a contemporary timescale. Here, we investigate the evolution of the diapause program over the past 35 years by leveraging a “natural experiment” presented by the recent invasion of the Asian tiger mosquito, Aedes albopictus, across the eastern United States. We sampled populations from two distinct climatic regions separated by 6° of latitude (∼700 km). Using common-garden experiments, we identified regional genetic divergence in diapause-associated cold tolerance, diapause duration, and postdiapause starvation tolerance. We also found regional divergence in nondiapause thermal performance. In contrast, we observed minimal regional divergence in nondiapause larval growth traits and at neutral molecular marker loci. Our results demonstrate rapid evolution of the diapause program and imply strong selection caused by differences in winter conditions.  相似文献   

6.
Rigorous and widely applicable indicators of biodiversity are needed to monitor the responses of ecosystems to global change and design effective conservation schemes. Among the potential indicators of biodiversity, those based on the functional traits of species and communities are interesting because they can be generalized to similar habitats and can be assessed by relatively rapid field assessment across eco-regions. Functional traits, however, have as yet been rarely considered in current common monitoring schemes. Moreover, standardized procedures of trait measurement and analyses have almost exclusively been developed for plants but different approaches have been used for different groups of organisms. Here we review approaches using functional traits as biodiversity indicators focussing not on plants as usual but particularly on animal groups that are commonly considered in different biodiversity monitoring schemes (benthic invertebrates, collembolans, above ground insects and birds). Further, we introduce a new framework based on functional traits indices and illustrate it using case studies where the traits of these organisms can help monitoring the response of biodiversity to different land use change drivers. We propose and test standard procedures to integrate different components of functional traits into biodiversity monitoring schemes across trophic levels and disciplines. We suggest that the development of indicators using functional traits could complement, rather than replace, the existent biodiversity monitoring. In this way, the comparison of the effect of land use changes on biodiversity is facilitated and is expected to positively influence conservation management practices.  相似文献   

7.
Biological tubes are a prevalent structural design across living organisms. They provide essential functions during the development and adult life of an organism. Increasing progress has been made recently in delineating the cellular and molecular mechanisms underlying tubulogenesis. This review aims to introduce ascidian notochord morphogenesis as an interesting model system to study the cell biology of tube formation, to a wider cell and developmental biology community. We present fundamental morphological and cellular events involved in notochord morphogenesis, compare and contrast them with other more established tubulogenesis model systems, and point out some unique features, including bipolarity of the notochord cells, and using cell shape changes and cell rearrangement to connect lumens. We highlight some initial findings in the molecular mechanisms of notochord morphogenesis. Based on these findings, we present intriguing problems and put forth hypotheses that can be addressed in future studies.  相似文献   

8.
The coordinated movement of many organisms relies on efficient nerve–muscle communication at the neuromuscular junction (NMJ), a peripheral synapse composed of a presynaptic motor axon terminal, a postsynaptic muscle specialization, and non-myelinating terminal Schwann cells. NMJ dysfunctions are caused by traumatic spinal cord or peripheral nerve injuries as well as by severe motor pathologies. Compared to the central nervous system, the peripheral nervous system displays remarkable regenerating abilities; however, this capacity is limited by the denervation time frame and depends on the establishment of permissive regenerative niches. At the injury site, detailed information is available regarding the cells, molecules, and mechanisms involved in nerve regeneration and repair. However, a regenerative niche at the final functional step of peripheral motor innervation, i.e. at the mature neuromuscular synapse, has not been deciphered. In this review, we integrate classic and recent evidence describing the cells and molecules that could orchestrate a dynamic ecosystem to accomplish successful NMJ regeneration. We propose that such a regenerative niche must ensure at least two fundamental steps for successful NMJ regeneration: the proper arrival of incoming regenerating axons to denervated postsynaptic muscle domains, and the resilience of those postsynaptic domains, in morphological and functional terms. We here describe and combine the main cellular and molecular responses involved in each of these steps as potential targets to help successful NMJ regeneration.  相似文献   

9.
  1. It is a long‐standing challenge to understand how changes in food resources impact consumer life history traits and, in turn, impact how organisms interact with their environment. To characterize food quality effects on life history, most studies follow organisms throughout their life cycle and quantify major life events, such as age at maturity or fecundity. From these studies, we know that food quality generally impacts body size, juvenile development, and life span. Importantly, throughout juvenile development, many organisms develop through several stages of growth that can have different interactions with their environment. For example, some parasitoids typically attack larger instars, whereas larval insect predators typically attack smaller instars. Interestingly, most studies lump all juvenile stages together, which ignores these ecological changes over juvenile development.
  2. We combine a cross‐sectional experimental approach with a stage‐structured population model to estimate instar‐specific vital rates in the bean weevil, Callosobruchus maculatus across a food quality gradient. We characterize food quality effects on the bean weevil's life history traits throughout its juvenile ontogeny to test how food quality impacts instar‐specific vital rates.
  3. Vital rates differed across food quality treatments within each instar; however, their effect differed with instar. Weevils consuming low‐quality food spent 38%, 37%, and 18% more time, and were 34%, 53%, and 63% smaller than weevils consuming high‐quality food in the second, third, and fourth instars, respectively. Overall, our results show that consuming poor food quality means slower growth, but that food quality effects on vital rates, growth and development are not equal across instars. Differences in life history traits over juvenile ontogeny in response to food quality may impact how organisms interact with their environment, including how susceptible they are to predation, parasitism, and their competitive ability.
  相似文献   

10.
While many morphological, physiological, and ecological characteristics of organisms scale with body size, some do not change under size transformation. They are called invariant. A recent study recommended five criteria for identifying invariant traits. These are based on that a trait exhibits a unimodal central tendency and varies over a limited range with body mass (type I), or that it does not vary systematically with body mass (type II). We methodologically improved these criteria and then applied them to life history traits of amphibians, Anura, Caudata (eleven traits), and reptiles (eight traits). The numbers of invariant traits identified by criteria differed across amphibian orders and between amphibians and reptiles. Reproductive output (maximum number of reproductive events per year), incubation time, length of larval period, and metamorphosis size were type I and II invariant across amphibians. In both amphibian orders, reproductive output and metamorphosis size were type I and II invariant. In Anura, incubation time and length of larval period and in Caudata, incubation time were further type II invariant. In reptiles, however, only number of clutches per year was invariant (type II). All these differences could reflect that in reptiles body size and in amphibians, Anura, and Caudata metamorphosis (neotenic species go not through it) and the trend toward independence of egg and larval development from water additionally constrained life history evolution. We further demonstrate that all invariance criteria worked for amphibian and reptilian life history traits, although we corroborated some known and identified new limitations to their application.  相似文献   

11.
Given unprecedented rates of biodiversity loss, there is an urgency to better understand the ecological consequences of interactions among organisms that may lost or altered. Positive interactions among organisms of the same or different species that directly or indirectly improve performance of at least one participant can structure populations and communities and control ecosystem process. However, we are still in need of synthetic approaches to better understand how positive interactions scale spatio‐temporally across a range of taxa and ecosystems. Here, we synthesize two complementary approaches to more rigorously describe positive interactions and their consequences among organisms, across taxa, and over spatio‐temporal scales. In the first approach, which we call the mechanistic approach, we make a distinction between two principal mechanisms of facilitation—habitat modification and resource modification. Considering the differences in these two mechanisms is critical because it delineates the potential spatio‐temporal bounds over which a positive interaction can occur. We offer guidance on improved sampling regimes for quantification of these mechanistic interactions and their consequences. Second, we present a trait‐based approach in which traits of facilitators or traits of beneficiaries can modulate their magnitude of effect or how they respond to either of the positive interaction mechanisms, respectively. Therefore, both approaches can be integrated together by quantifying the degree to which a focal facilitator's or beneficiary's traits explain the magnitude of a positive effect in space and time. Furthermore, we demonstrate how field measurements and analytical techniques can be used to collect and analyze data to test the predictions presented herein. We conclude by discussing how these approaches can be applied to contemporary challenges in ecology, such as conservation and restoration and suggest avenues for future research.  相似文献   

12.
If an organism''s juvenile and adult life stages inhabit different environments, certain traits may need to be independently adapted to each environment. In many organisms, a move to a different environment during ontogeny is accompanied by metamorphosis. In such organisms phenotypic induction early in ontogeny can affect later phenotypes. In laboratory experiments we first investigated correlations between body morphology and the locomotor performance traits expressed in different life stages of the common frog, Rana temporaria: swimming speed and acceleration in tadpoles; and jump-distance in froglets. We then tested for correlations between these performances across life stages. We also subjected tadpoles to unchanging or decreasing water levels to explore whether decreasing water levels might induce any carry-over effects. Body morphology and performance were correlated in tadpoles; morphology and performance were correlated in froglets: hence body shape and morphology affect performance within each life stage. However, performance was decoupled across life stages, as there was no correlation between performance in tadpoles and performance in froglets. While size did not influence tadpole performance, it was correlated with performance of the metamorphosed froglets. Experiencing decreasing water levels accelerated development time, which resulted in smaller tadpoles and froglets, i.e., a carry-over effect. Interestingly, decreasing water levels positively affected the performance of tadpoles, but negatively affected froglet performance. Our results suggest that performance does not necessarily have to be correlated between life stages. However, froglet performance is size dependent and carried over from the tadpole stage, suggesting that some important size-dependent characters cannot be decoupled via metamorphosis.  相似文献   

13.
Biology needs a concept of individuality in order to distinguish organisms from parts of organisms and from groups of organisms, to count individuals and compare traits across taxa, and to distinguish growth from reproduction. Most of the proposed criteria for individuality were designed for ‘unitary’ or ‘paradigm’ organisms: contiguous, functionally and physiologically integrated, obligately sexually reproducing multicellular organisms with a germ line sequestered early in development. However, the vast majority of the diversity of life on Earth does not conform to all of these criteria. We consider the issue of individuality in the ‘minor’ multicellular taxa, which collectively span a large portion of the eukaryotic tree of life, reviewing their general features and focusing on a model species for each group. When the criteria designed for unitary organisms are applied to other groups, they often give conflicting answers or no answer at all to the question of whether or not a given unit is an individual. Complex life cycles, intimate bacterial symbioses, aggregative development, and strange genetic features complicate the picture. The great age of some of the groups considered shows that ‘intermediate’ forms, those with some but not all of the traits traditionally associated with individuality, cannot reasonably be considered ephemeral or assumed transitional. We discuss a handful of recent attempts to reconcile the many proposed criteria for individuality and to provide criteria that can be applied across all the domains of life. Finally, we argue that individuality should be defined without reference to any particular taxon and that understanding the emergence of new kinds of individuals requires recognizing individuality as a matter of degree.  相似文献   

14.
Epigenetic variation is likely to contribute to the phenotypic plasticity and adaptative capacity of plant species, and may be especially important for long‐lived organisms with complex life cycles, including forest trees. Diverse environmental stresses and hybridization/polyploidization events can create reversible heritable epigenetic marks that can be transmitted to subsequent generations as a form of molecular “memory”. Epigenetic changes might also contribute to the ability of plants to colonize or persist in variable environments. In this review, we provide an overview of recent data on epigenetic mechanisms involved in developmental processes and responses to environmental cues in plant, with a focus on forest tree species. We consider the possible role of forest tree epigenetics as a new source of adaptive traits in plant breeding, biotechnology, and ecosystem conservation under rapid climate change.  相似文献   

15.
Phenotypic plasticity for plant development, function and life history   总被引:23,自引:0,他引:23  
A single genotype can produce different phenotypes in different environments. This fundamental property of organisms is known as phenotypic plasticity. Recently, intensive study has shown that plants are plastic for a remarkable array of ecologically important traits, ranging from diverse aspects of morphology and physiology to anatomy, developmental and reproductive timing, breeding system, and offspring developmental patterns. Comparative, quantitative genetics and molecular approaches are leading to new insights into the adaptive nature of plasticity, its underlying mechanisms and its role in the ecological distribution and evolutionary diversification of plants.  相似文献   

16.
The existence of multipotent cells in the adult tissues and organs of those vertebrates that are capable of regeneration has been accepted for decades. Although studies of vertebrate limb regeneration have yet to identify many of the specific molecules involved in regeneration, numerous tissue grafting experiments and studies of cell lineage have contributed significantly to an understanding of the origin, activation, proliferation and cell-cell interactions of these progenitor cells. This has allowed the development of ideas about the regulation of pattern formation to restore the structure and function of lost tissues and organs. An understanding of the molecular mechanisms controlling these processes has lagged behind the dramatic advances achieved with other model organisms. However, given the intense, new research interest in stem cells over the past few years, there is good reason to be encouraged that insights about the biology of mammalian stem cells will accelerate progress in understanding the biology of regeneration in organisms that can regenerate. Advances in regeneration research will then feed back in terms of devising new strategies for therapies to induce regeneration in organisms such as humans that have traditionally been viewed as incapable of regeneration.  相似文献   

17.
Functional traits have been fundamental to the evolution and diversification of entire fish lineages on coral reefs. Yet their relationship with the processes promoting speciation, extinction and the filtering of local species pools remains unclear. We review the current literature exploring the evolution of diet, body size, water column use and geographic range size in reef‐associated fishes. Using published and new data, we mapped functional traits on to published phylogenetic trees to uncover evolutionary patterns that have led to the current functional diversity of fishes on coral reefs. When examining reconstructed patterns for diet and feeding mode, we found examples of independent transitions to planktivory across different reef fish families. Such transitions and associated morphological alterations may represent cases in which ecological opportunity for the exploitation of different resources drives speciation and adaptation. In terms of body size, reconstructions showed that both large and small sizes appear multiple times within clades of mid‐sized fishes and that extreme body sizes have arisen mostly in the last 10 million years (Myr). The reconstruction of range size revealed many cases of disparate range sizes among sister species. Such range size disparity highlights potential vicariant processes through isolation in peripheral locations. When accounting for peripheral speciation processes in sister pairs, we found a significant relationship between labrid range size and lineage age. The diversity and evolution of traits within lineages is influenced by trait–environment interactions as well as by species and trait–trait interactions, where the presence of a given trait may trigger the development of related traits or behaviours. Our effort to assess the evolution of functional diversity across reef fish clades adds to the burgeoning research focusing on the evolutionary and ecological roles of functional traits. We argue that the combination of a phylogenetic and a functional approach will improve the understanding of the mechanisms of species assembly in extraordinarily rich coral reef communities.  相似文献   

18.
Planarians are flatworms that constitutively maintain adult tissues through cell turnover and can regenerate entire organisms from tiny body fragments. In addition to requiring new cells (from neoblasts), these feats require mechanisms that specify tissue identity in the adult. Crucial roles for Wnt and BMP signaling in the regeneration and maintenance of the body axes have been uncovered, among other regulatory factors. Available data indicate that genes involved in positional identity regulation at key embryonic stages in other animals display persisting regionalized expression in adult planarians. These expression patterns suggest that a constitutively active gene expression map exists for the maintenance of the planarian body. Planarians thus present a fertile ground for the identification of factors regulating the regionalization of the metazoan body plan and for the study of the attributes of these factors that can lead to the maintenance and regeneration of adult tissues.  相似文献   

19.
Understanding the origins and impacts of novel traits has been a perennial interest in many realms of ecology and evolutionary biology. Here, we build on previous evolutionary and philosophical treatments of this subject to encompass novelties across biological scales and eco-evolutionary perspectives. By defining novelties as new features at one biological scale that have emergent effects at other biological scales, we incorporate many forms of novelty that have previously been treated in isolation (such as novelty from genetic mutations, new developmental pathways, new morphological features, and new species). Our perspective is based on the fundamental idea that the emergence of a novelty, at any biological scale, depends on its environmental and genetic context. Through this lens, we outline a broad array of generative mechanisms underlying novelty and highlight how genomic tools are transforming our understanding of the origins of novelty. Lastly, we present several case studies to illustrate how novelties across biological scales and systems can be understood based on common mechanisms of change and their environmental and genetic contexts. Specifically, we highlight how gene duplication contributes to the evolution of new complex structures in visual systems; how genetic exchange in symbiosis alters functions of both host and symbiont, resulting in a novel organism; and how hybridisation between species can generate new species with new niches.  相似文献   

20.
Ecosystem properties result in part from the characteristics of individual organisms. How these individual traits scale to impact ecosystem‐level processes is currently unclear. Because metabolism is a fundamental process underlying many individual‐ and population‐level variables, it provides a mechanism for linking individual characteristics with large‐scale processes. Here we use metabolism and ecosystem thermodynamics to scale from physiology to individual biomass production and population‐level energy use. Temperature‐corrected rates of individual‐level biomass production show the same body‐size dependence across a wide range of aerobic eukaryotes, from unicellular organisms to mammals and vascular plants. Population‐level energy use for both mammals and plants are strongly influenced by both metabolism and thermodynamic constraints on energy exchange between trophic levels. Our results show that because metabolism is a fundamental trait of organisms, it not only provides a link between individual‐ and ecosystem‐level processes, but can also highlight other important factors constraining ecological structure and dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号