首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Byr3 was selected as a multicopy suppressor of the sporulation defects of diploid Schizosaccharomyces pombe cells that lack ras1. Like cells mutant at byr1 and byr2, two genes that encode putative protein kinases and that in multiple copies are also suppressors of the sporulation defects of ras1 null diploid cells, cells mutant at byr3 are viable but defective in conjugation. Nucleic acid sequence indicates byr3 has the capacity to encode a protein with seven zinc finger binding domains, similar in structure to the cellular nucleic acid binding protein (CNBP), a human protein that was identified on the basis of its ability to bind DNA. Expression of CNBP in yeast can partially suppress conjugation defects of cells lacking byr3.  相似文献   

2.
3.
4.
The ras1- mutation of the fission yeast Schizosaccharomyces pombe interferes with sexual differentiation by preventing conjugation and causing inefficient sporulation. From a gene library, we have isolated a gene, byr1+, which when in high copy number restores efficient sporulation to ras1- strains. byr1+ encodes a putative 340-amino acid protein product, the sequence of which strongly suggests that it functions as a protein kinase. Gene disruption experiments show that loss of byr1+ function does not interfere with mitotic growth but it completely prevents both conjugation and sporulation. byr1 is thus another important gene in the sexual differentiation pathway and we believe that at least part of ras1 function is to act directly or indirectly through byr1 to modulate protein phosphorylation.  相似文献   

5.
《The Journal of cell biology》1996,133(6):1307-1319
A novel gene, designated byr4, was identified in Schizosaccharomyces pombe that affects the mitotic cell cycle and shows genetic interactions with the ras1 signaling pathways. Null alleles of byr4 cause cell cycle arrest in late mitosis and permit multiple rounds of septation. The multiple septa typically divide two nuclei, but the nuclei frequently do not stain equally with 4',6-diamidino-2- phenylindole (DAPI), suggesting that byr4 is required for proper karyokinesis. Overexpression of byr4 inhibits cytokinesis, but cell cycle progression continues leading to multinucleate cells. When byr4 is overexpressed, the early steps in the cytokinesis pathway, including formation of the medial F-actin ring, occur normally; however, the later steps in the pathway, including contraction of the F-actin ring, septation, and rearrangement of the medial F-actin following mitosis, rarely occur, byr4 shows two genetic interactions with ras1. The inhibition of cytokinesis by byr4 overexpression was exacerbated by null alleles of ras1 and scd1, suggesting a link between pathways needed for cell polarity and cytokinesis. Overexpression of byr4 also partially bypasses the need for ras1 for sporulation. The electrophoretic mobility of the byr4 protein varied in response to mutants that perturb cytokinesis and karyokinesis, suggesting interactions between byr4 and these gene products. A more rapidly migrating byr4 protein was found in cells with mutations in cdc16, which undergo repeated septation, and in cdc15, which fail to form a medial F-actin ring in mitosis. A slower migrating byr4 protein was found in cells with a mutation in the beta-tubulin gene, which arrests cells at the metaphase-anaphase transition.  相似文献   

6.
In the fission yeast Schizosaccharomyces pombe, ras1 regulates both sexual development (conjugation and sporulation) and cellular morphology. Two types of dominant interfering mutants were isolated in a genetic screen for ras1 mutants that blocked sexual development. The first type of mutation, at Ser-22, analogous to the H-rasAsn-17 mutant (L. A. Feig and G. M. Cooper, Mol. Cell. Biol. 8:3235-3243, 1988), blocked only conjugation, whereas a second type of mutation, at Asp-62, interfered with conjugation, sporulation, and cellular morphology. Analogous mutations at position 64 of Saccharomyces cerevisiae RAS2 or position 57 of human H-ras also resulted in dominant interfering mutants that interfered specifically and more profoundly than mutants of the first type with RAS-associated pathways in both S. pombe or S. cerevisiae. Genetic evidence indicating that both types of interfering mutants function upstream of RAS is provided. Biochemical evidence showing that the mutants are altered in their interaction with the CDC25 class of exchange factors is presented. We show that both H-rasAsn-17 and H-rasTyr-57, compared with wild-type H-ras, are defective in their guanine nucleotide-dependent release from human cdc25 and that this defect is more severe for the H-rasTyr-57 mutant. Such a defect would allow the interfering mutants to remain bound to, thereby sequestering RAS exchange factors. The more severe interference phenotype of this novel interfering mutant suggests that it functions by titrating out other positive regulators of RAS besides those encoded by ste6 and CDC25.  相似文献   

7.
In Schizosaccharomyces pombe, rad24 and rad25 have been identified to be homologous to mammalian 14-3-3 genes and found to be involved in many cellular events, including checkpoint and meiosis. In the present study, we present evidences that Rad24 and Rad25 act as negative regulators of Byr2 (mitogen-activated protein kinase [MAPK] kinase kinase). Overexpression of rad24 or rad25 reduced mating and sporulation in homothallic wild-type cells. In contrast, the mating and sporulation efficiency of rad24- or rad25-null cells was higher than that of wild-type cells. Deletion of rad24 or rad25 increased sporulation efficiency in ras1-null diploid cells but not in byr2-, ste4-, byr1-, and spk1-null cells. Rad24 and Rad25 had no effect on the activity of constitutively active Byr1(S214DT218D). Rad24 and Rad25 bound to both the N-terminal and the C-terminal domains of Byr2 when these bacterially expressed proteins were examined. The formation of complexes in vivo between Byr2 and either Rad24 or Rad25 was also confirmed by immunocoprecipitation. Furthermore, we showed negative regulation of Byr2 by Rad25, by monitoring the mRNA level of mam2, which is regulated by both the Ras1/MAPK pathway and ste11, in various combinations of mutants. In addition, the cellular localization of Byr2 in living cells was observed by using fusion to green fluorescent protein. Byr2 was mainly localized in the cytoplasm during vegetative growth and then concentrated at the plasma membrane in response to nitrogen starvation. Deletion of rad24 or rad25 fastened the timing of Byr2 translocation. Our results are consistent with the hypothesis that one of the roles of 14-3-3 is to keep Byr2 in the cytoplasm and to affect the timing of Byr2 translocation in response to sexual developmental signal.  相似文献   

8.
In yeast, mitochondrial division and fusion are highly regulated during growth, mating and sporulation, yet the mechanisms controlling these activities are unknown. Using a novel screen, we isolated mutants in which mitochondria lose their normal structure, and instead form a large network of interconnected tubules. These mutants, which appear defective in mitochondrial division, all carried mutations in DNM1, a dynamin-related protein that localizes to mitochondria. We also isolated mutants containing numerous mitochondrial fragments. These mutants were defective in FZO1, a gene previously shown to be required for mitochondrial fusion. Surprisingly, we found that in dnm1 fzo1 double mutants, normal mitochondrial shape is restored. Induction of Dnm1p expression in dnm1 fzo1 cells caused rapid fragmentation of mitochondria. We propose that dnm1 mutants are defective in the mitochondrial division, an activity antagonistic to fusion. Our results thus suggest that mitochondrial shape is normally controlled by a balance between division and fusion which requires Dnm1p and Fzo1p, respectively.  相似文献   

9.
H. A. Fujimura 《Genetics》1990,124(2):275-282
Mating pheromones, a- and alpha-factors, arrest the division of cells of opposite mating types, alpha and a cells, respectively. I have isolated a sterile mutant of Saccharomyces cerevisiae that is defective in division arrest in response to alpha-factor but not defective in morphological changes and agglutinin induction. The mutation was designated dac2 for division arrest control by mating pheromones. The dac2 mutation was closely linked to gal1 and was different from the previously identified cell type nonspecific sterile mutations (ste4, ste5, ste7, ste11, ste12, ste18 and dac1). Although dac2 cells had no phenotype in the absence of pheromones, they showed morphological alterations and divided continuously in the presence of pheromones. As a result, dac2 cells had a mating defect. The dac2 mutation could suppress the lethality caused by the disruption of the GPA1 gene (previously shown to encode a protein with similarity to the alpha subunit of mammalian G proteins). In addition, dac2 cells formed prezygotes with wild-type cells of opposite mating types, although they could not undergo cell fusion. These results suggest that the DAC2 product may control the signal for G-protein-mediated cell-cycle arrest and indicate that the synchronization of haploid yeast cell cycles by mating pheromones is essential for cell fusion during conjugation.  相似文献   

10.
Summary We isolated mutants of Schizosaccharomyces pombe which have deformed cell morphology, are deficient in conjugation and poor in sporulation. This phenotype is characteristic of the ras1 defective mutant previously identified. Tests of the mutants for allelism using cell fusion showed that they define five complementation groups, one of which is ras1 itself. The others are named ral1 through ral4 (ras like). Mutants in ral3 or ral4 conjugate at a very low frequency, while the others apparently do not conjugate at all. Plasmid clones complementing ral1, ral2 or ral3, which apparently carry the respective gene, were isolated from S. pombe genomic libraries. Multiple copies of either the ral2 or the ral3 gene could partially restore mating ability in ral1 strains. Multiple copies of the ras1 gene could partially restore mating ability in ral1 and ral2 strains. These results suggest that the ral1, ral2 and ras1 genes may function in a common pathway in that order. The ral3 gene may influence this pathway. Analysis of these gene products will aid identification of factors which interact with Ras proteins.  相似文献   

11.
Genes required for mating by a and alpha cells of Saccharomyces cerevisiae (STE, "sterile," genes) encode products such as peptide pheromones, pheromone receptors, and proteins responsible for pheromone processing. a-specific STE genes are those required for mating by a cells but not by alpha cells. To identify new a-specific STE genes, we have employed a novel strategy that enabled us to determine if a ste mutant defective in mating as a is also defective in mating as alpha without the need to do crosses. This technique involved a strain (K12-14b) of genotype mata1 HML alpha HMR alpha sir3ts, which mates as a at 25 degrees and as alpha at 34 degrees. We screened over 40,000 mutagenized colonies derived from K12-14b and obtained 28 a-specific ste mutants. These strains contained mutations in three known a-specific genes--STE2, STE6 and STE14--and in a new gene, STE16. ste16 mutants are defective in the production of the pheromone, a-factor, and exhibit slow growth. Based on the distribution of a-specific ste mutants described here, we infer that we have identified most if not all nonessential genes that can give rise to a-specific mating defects.  相似文献   

12.
Partial sequence analysis of the Cryptococcus neoformans MATalpha mating type locus revealed the presence of a gene with substantial sequence similarity to other fungal mitogen-activated protein (MAP) kinase kinase kinase (MAPKKK) genes. The C. neoformans gene, designated STE11alpha, showed the highest degree of similarity to the Neurospora crassa nrc-1, Schizosaccharomyces pombe byr2 and Saccharomyces cerevisiae STE11 genes. A polymerase chain reaction-mediated sib-selection technique was successfully adapted for the purpose of disrupting STE11alpha. C. neoformans ste11alphaDelta mutants were found to be sterile, consistent with the phenotypes of ste11 and byr2 mutants in S. cerevisiae and S. pombe respectively. Haploid ste11alphaDelta mutants were also found to be unable to produce hyphae, suggesting that the C. neoformans gene is functionally conserved when compared with its S. cerevisiae MAPKKK counterpart. Comparison of the wild-type STE11alpha strain with a ste11alphaDelta disruptant for virulence using the mouse model showed that the ste11alphaDelta strain was less virulent, but the difference was only minor. In spite of some of the conserved functions of STE11alpha, linkage analysis showed that STE11alpha is only found in mating type alpha strains. These results demonstrate that, although functionally conserved, the mating pathway in C. neoformans has a unique organization.  相似文献   

13.
Summary The ras1 gene, an oncogene homologue, is known to be essential for recognition of the mating pheromone and hence for conjugation but not for vegetative growth in Schizosaccharomyces pombe. To facilitate further characterization and genetic manipulation of this gene, we have mapped it by using S. pombe strains which carry the Saccharomyces cerevisiae LEU2 gene inserted next to ras1 on the chromosome. Crosses with tester strains revealed that ras1 is tightly linked to pro2 on chromosome I. Furthermore, we have shown that ras1 is allelic with ste5, one of the sterility genes described by O. Girgsdies. The map position previously reported for ste5 eventually turned out to be false.  相似文献   

14.
Summary Haploid homothallic strains of Schizosaccharomyces pombe with mutations in any of nine sterility genes (ste) do not mate with wild-type fertile strains. Those defective in genes ste1 to ste4 and ste7 to ste9 are also deficient in meiosis and sporulation. I found that the ste1, ste3 and ste8 genes act very early in the sexual development, presumably before the pat1-controlled conjugation-specific event. ste5 and ste6 exert their function downstream of pat1 in the initiation of conjugation and do not play any role in the meiotic pathway. ste2, ste4, ste7 and ste9 are involved in both sexual pathways: they seem to act downstream of pat1 in conjugation but upstream of pat1 in the initiation of meiosis. A new gene, aff1, whose defective allele suppresses the pat1-114-provoked haploid sporulation and arrest of vegetative growth is also described. It is supposed that the aff1 + gene product participates in a cascade of regulatory events, as a factor antagonistic to pat1.  相似文献   

15.
Eukaryotic proteins initially synthesized with a C-terminal CAAX motif (C is Cys, A is aliphatic, and X can be one of several amino acids) undergo a series of modifications involving isoprenylation of the Cys residue, proteolysis of AAX, and alpha-carboxyl methyl esterification of the newly formed isoprenyl cysteine. We have previously demonstrated that STE14 encodes the enzyme which mediates carboxyl methylation of the Saccharomyces cerevisiae CAAX proteins a-factor, RAS1, and RAS2. Here we report the nucleotide sequence of STE14, which indicates that STE14 encodes a protein of 239 amino acids, predicted to contain multiple membrane-spanning segments. Mapping data indicate that STE14 resides on chromosome IV, tightly linked to ADE8. By analysis of ste14 null alleles, we demonstrated that MATa ste14 mutants are unable to mate but are viable and exhibit no apparent growth defects. Additional analysis of ste14 ras 1 and ste14 ras2 double mutants, which grow normally, reinforces our previous conclusion that RAS function is not significantly influenced by its methylation status. We examine a-factor biogenesis in a ste14 null mutant by metabolic labeling and immunoprecipitation and demonstrate that although proteolytic processing and membrane localization of a-factor are normal, the ste14 null mutant exhibits a profound block in a-factor export. This observation suggests that the methyl group is likely to be a critical recognition determinant for the a-factor transporter, STE6, thus providing insight into the substrate specificity of STE6 and also supporting the hypothesis that carboxyl methylation can have a dramatic impact on protein-protein interactions.  相似文献   

16.
H. Mitsuzawa  I. Uno  T. Oshima    T. Ishikawa 《Genetics》1989,123(4):739-748
The yeast Saccharomyces cerevisiae contains two ras homologues, RAS1 and RAS2, whose products have been shown to modulate the activity of adenylate cyclase encoded by the CYR1 gene. To isolate temperature-sensitive mutations in the RAS2 gene, we constructed a plasmid carrying a RAS2 gene whose expression is under the control of the galactose-inducible GAL1 promoter. A ras1 strain transformed with this plasmid was subjected to ethyl methanesulfonate mutagenesis and nystatin enrichment. Screening of approximately 13,000 mutagenized colonies for galactose-dependent growth at a high temperature (37 degrees) yielded six temperature-sensitive ras2 (ras2ts) mutations and one temperature-sensitive cyr1 (cyr1ts) mutation that can be suppressed by overexpression or increased dosage of RAS2. Some ras2ts mutations were shown to be suppressed by an extra copy of CYR1. Therefore increased dosage of either RAS2 or CYR1 can suppress the temperature sensitivity caused by a mutation in the other. ras1 ras2ts and ras1 cyr1ts mutants arrested in the G1 phase of the cell cycle at the restrictive temperature, and showed pleiotropic phenotypes to varying degrees even at a temperature permissive for growth (25 degrees), including slow growth, sporulation on rich media, increased accumulation of glycogen, impaired growth on nonfermentable carbon sources, heat-shock resistance, impaired growth on low concentrations of glucose, and lithium sensitivity. Of these, impaired growth on low concentrations of glucose and sensitivity to lithium are new phenotypes, which have not been reported for mutants defective in the cAMP pathway.  相似文献   

17.
A procedure was devised to isolate mutations that could restore conjugational competence to temperature sensitive ste mutants and simultaneously confer temperature-sensitive lethal growth phenotypes. Three such mutations, falling into two complementation groups, were identified on the basis of suppression of ste5 alleles. These same mutations were later shown to be capable of suppressing ste4 and ste7 alleles. Five mutations in a single complementation group were isolated as suppressors of ste2 alleles. None of the mutations described in this study conferred a homogeneous cell cycle arrest phenotype, and all were shown to define complementation groups distinct from those previously identified in studies of cell division cycle (cdc) mutations. In no instance did pseudoreversion appear to be achieved by mutational G1 arrest of ste mutant cells. Instead, it is proposed that the mutations restore conjugation by reestablishing the normal pheromone response.  相似文献   

18.
Biological activity of the mammalian RAP genes in yeast.   总被引:5,自引:2,他引:3       下载免费PDF全文
We have screened expression libraries for mammalian cDNAs capable of suppressing defects in ras1- Schizosaccharomyces pombe. Both the RAP1A and RAP1B genes were identified in this manner. They suppress defects in cell morphology and sporulation, although not conjugation. In contrast, RAP genes do not suppress phenotypes in the yeast Saccharomyces cerevisiae that are deficient in RAS. Indeed, expression of RAP1A appears to antagonize the activated S. cerevisiae RAS2val19 gene. These results indicate that RAP proteins can interact with RAS targets, sometimes productively, sometimes nonproductively.  相似文献   

19.
Li YC  Chen CR  Chang EC 《Genetics》2000,156(3):995-1004
Ras1 GTPase is the Schizosaccharomyces pombe homolog of the mammalian Ha-Ras proto-oncoprotein. Ras1 interacts with Scd1 (aka Ral1), a presumptive guanine nucleotide exchange factor for Cdc42sp, to control organization of the cytoskeleton. In this study, we demonstrated that the scd1 deletion (scd1Delta) induced hypersensitivity to microtubule destabilizing drugs and instability of the minichromosome. Overexpression of scd1 induced formation of abnormal spindles and chromosome missegregation. The scd1 deletion worsened the defects of spindle formation in tubulin mutants; by contrast, it did not induce lethality in mutants defective in the spindle pole bodies. These genetic data suggest that Scd1 can interact with tubulin with substantial specificity to affect proper spindle formation and chromosome segregation. Subcellular localization data further illustrated that a GFP-Scd1 fusion protein can associate with the spindle. Finally, we showed that unlike ras1Delta and scd1Delta, byr2Delta (affecting the Ras1 effector for mating) is not synthetically lethal with the tubulin mutations. These data collectively suggest that the Ras1 pathway can impinge upon microtubules through Scd1, but not Byr2, to affect proper spindle formation and chromosome segregation.  相似文献   

20.
《Gene》1997,193(2):203-210
We report the cloning and characterization of a new S. pombe gene, efc25+, for `exchange factor Cdc25-like'. The C-terminal region of the predicted product of this gene displays high sequence homology with a number of guanine nucleotide exchange factors for Ras. These include Cdc25 of Saccharomyces cerevisiae, Cdc25 of Saccharomyces kluyveri, Csc25 of Candida albicans, Sdc25 of S. cerevisiae and Ste6 of Schizosaccharomyces pombe. Disruption of efc25+ resulted in cells with a spherical shape reminiscent of the abnormal morphological phenotype of ras1 deletion mutants. However, unlike ras1 null mutants, strains deleted for efc25+ were proficient for mating and sporulation. This differs from the only other Ras1 exchange factor characterized so far in S. pombe, the Ste6 protein, whose deletion results in defects in mating and sporulation but not in cell shape. We hypothesize that Efc25 is an exchange factor for Ras1 and that it is involved in a signaling pathway different from that involving Ste6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号