首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
An improved protocol, including DNA extraction with Chelex, two amplifications with a nested primer set, and DNA purification by electrophoresis, made it possible to analyze nuclear rDNA sequences of powdery mildew fungi using at most several hundred conidia or 20 cleistothecia. Nucleotide sequence diversity of the nuclear rDNA region containing the two internal transcribed spacers (ITS1 and ITS2) and 5.8S rRNA gene derived from conidia and cleistothecia was investigated for four kinds of powdery mildew fungi including two isolates of the same species. The results showed that the nucleotide sequences of the nuclear rDNA region were highly conserved between the teleomorph and the anamorph. Thus, the nucleotide sequence data obtained from either developmental stage can be used for phylogenetic studies of powdery mildew fungi. The nucleotide sequences of the 5.8S rRNA genes of the four species were highly conserved, but those of their ITS regions were variable. This suggests that the nuclear rDNA region is not suitable for phylogenetic studies of distantly related powdery mildew fungi, because too much sequence diversity exists, within the ITS, and too little phylogenetic information is contained within the 5.8S rRNA gene. However, the ITS region will be useful for phylogenetic comparison of closely related species or intraspecies. Contribution No. 132 from the Laboratory of Plant Pathology, Mie University.  相似文献   

2.
The rDNA of eukaryotic organisms is transcribed as the 40S-45S rRNA precursor, and this precursor contains the following segments: 5' - ETS - 18S rRNA - ITS 1 - 5.8S rRNA - ITS 2 - 28S rRNA - 3'. In amphibians, the nucleotide sequences of the rRNA precursor have been completely determined in only two species of Xenopus. In the other amphibian species investigated so far, only the short nucleotide sequences of some rDNA fragments have been reported. We obtained a genomic clone containing the rDNA precursor from the Japanese pond frog Rana nigromaculata and analyzed its nucleotide sequence. The cloned genomic fragment was 4,806 bp long and included the 3'-terminus of 18S rRNA, ITS 1, 5.8S rRNA, ITS 2, and a long portion of 28S rRNA. A comparison of nucleotide sequences among Rana, the two species of Xenopus, and human revealed the following: (1) The 3'-terminus of 18S rRNA and the complete 5.8S rRNA were highly conserved among these four taxa. (2) The regions corresponding to the stem and loop of the secondary structure in 28S rRNA were conserved between Xenopus and Rana, but the rate of substitutions in the loop was higher than that in the stem. Many of the human loop regions had large insertions not seen in amphibians. (3) Two ITS regions had highly diverged sequences that made it difficult to compare the sequences not only between human and frogs, but also between Xenopus and Rana. (4) The short tracts in the ITS regions were strictly conserved between the two Xenopus species, and there was a corresponding sequence for Rana. Our data on the nucleotide sequence of the rRNA precursor from the Japanese pond frog Rana nigromaculata were used to examine the potential usefulness of the rRNA genes and ITS regions for evolutionary studies on frogs, because the rRNA precursor contains both highly conserved regions and rapidly evolving regions.  相似文献   

3.
Nucleotide sequences were determined for the rRNA internal transcribed spacers 1 and 2 (ITS1 and 2) and the 5' terminus of the large subunit rRNA in selected Gyrodactylus species. Examination of primary sequence variation and secondary structure models in ITS2 and variable region V4 of the small subunit rRNA revealed that structure was largely conserved despite significant variation in sequence. ITS1 sequences were highly variable, and models of structure were unreliable but, despite this, show some resemblance to structures predicted in Digenea. ITS2 models demonstrated binding of the 3' end of 5.8S rRNA to the 5' end of the large subunit rRNA and enabled the termini of these genes to be defined with greater confidence than previously. The structure model shown here may prove useful in future phylogenetic analyses.  相似文献   

4.
Secondary structure models of the 5.8S rRNA and both internal transcribed spacers (ITS1 and ITS2) are proposed for Calciodinelloideae (Peridiniaceae) and are also plausible for other dinoflagellates. The secondary structure of the 5.8S rRNA corresponds to previously developed models, with two internal paired regions and at least one 5.8S rRNA–28S rRNA interaction. A general secondary structure model of ITS1 for Calciodinelloideae (and other dinoflagellates), consisting of an open multibranch loop with three major helices, is proposed. The homology of these paired regions with those found in other taxa, published in previous studies (e.g. yeast, green algae and Platyhelmithes) remains to be determined. Finally, a general secondary structure model of ITS2 for Calciodinelloideae (and other dinoflagellates) is reconstructed. Based on the 5.8S rRNA–28S rRNA interaction, it consists of a closed multibranch loop, with four major helices. At least helix III and IV have homology with paired regions found in other eukaryotic taxa (e.g. yeast, green algae and vertebrates). Since the secondary structures of both ITS regions are more conserved than the nucleotide sequences, their analysis helps in understanding molecular evolution and increases the number of structural characters. Thus, the structure models developed in this study may be generally useful for future phylogenetic analyses.  相似文献   

5.
We used high-fidelity PCR to amplify 2 overlapping regions of the ribosomal gene complex from the rodent fur mite Myobia musculi. The amplicons encompassed a large portion of the mite's ribosomal gene complex spanning 3128 nucleotides containing the entire 18S rRNA, internal transcribed spacer (ITS) 1,5.8S rRNA, ITS2, and a portion of the 5'-end of the 28S rRNA. M. musculi's 179-nucleotide 5.8S rRNA nucleotide sequence was not conserved, so this region was identified by conservation of rRNA secondary structure. Maximum likelihood and Bayesian inference phylogenetic analyses were performed by using multiple sequence alignment consisting of 1524 nucleotides of M. musculi 18S rRNA and homologous sequences from 42 prostigmatid mites and the tick Dermacentor andersoni. The phylograms produced by both methods were in agreement regarding terminal, secondary, and some tertiary phylogenetic relationships among mites. Bayesian inference discriminated most infraordinal relationships between Eleutherengona and Parasitengona mites in the suborder Anystina. Basal relationships between suborders Anystina and Eupodina historically determined by comparing differences in anatomic characteristics were less well-supported by our molecular analysis. Our results recapitulated similar 18S rRNA sequence analyses recently reported. Our study supports M. musculi as belonging to the suborder Anystina, infraorder Eleutherenona, and superfamily Cheyletoidea.  相似文献   

6.
7.
The sequence of the Gyrodactylus salaris Malmberg, 1957, large subunit, or 28S, ribosomal RNA (rRNA) gene has been determined. This gene is the final portion of the Gyrodactylus rRNA gene operon to be sequenced and results in the first complete sequence of all rRNA genes and spacers from a monogenean. The nucleotide sequence was used to predict the secondary structure of the large subunit rRNA, and regions of conserved and variable sequence and structure were identified. The site where the 5' terminus of the 5.8S rRNA binds to a region within the large subunit rRNA was predicted and complements the anticipated interaction of the 3' terminus of the 5.8S with the 5' terminus of the large subunit rRNA. The large subunit gene may be useful in phylogenetic analysis of the Monogenea or Platyhelminthes and comparisons with other eukaryotes. The variable domains C and H may be most suitable for this purpose.  相似文献   

8.
紫芝栽培品种‘紫芝S2’(武芝2号)的ITS序列与NCBI数据库中5个紫芝菌株/分离株相似度高达99.79%-100%,在系统进化树上相聚成一类。本研究预测‘紫芝S2’基因组与参考基因组中的rRNA基因簇,分析rDNA结构及各构件序列间的多态性。从高质量‘紫芝S2’基因组中挖掘得到完整rDNA,序列全长40.377 kb,由4组串联重复的(18S、5.8S、28S、5S) rRNA基因簇组成,并含有完整的基因内间隔区(ITS1、ITS2)和基因间间隔区(IGS1、IGS2)。在紫芝S2的rDNA中,高度保守的28S rRNA基因间出现3个SNP和2个插入(1 bp,10 bp)位点;虽然第4条ITS2中有1个SNP位点,但紫芝S2的4条ITS2在二级结构上的分子形态高度一致,与ITS2数据库中其他紫芝菌株仅存在螺旋区间夹角的微小差异。由‘紫芝S2’基因组rDNA的ITS2生成的DNA条形码与二维码,可以作为该栽培品种鉴定与同源物种其他菌株鉴别的分子标记。  相似文献   

9.
Muscodor is a non-sporulating, volatile organic compounds producing endophytic fungi that has been extensively explored as a bio-fumigant and bio-preservative. Novel species of this genus have been mainly identified using ITS sequences. However, the ITS hyper-variability hinders the creation of reproducible alignments and stable phylogenetic trees. Conserved structural data of the ITS region represents as a vital auxiliary information for accurate speciation of fungi. In the present study, secondary structural data of ITS1, 5.8S, and ITS2 region of all Muscodor species were generated using LocaRNA web server. The predicted secondary structural data displayed greater variability in ITS1 region in comparison to ITS2. The structural data of all sequences exhibited characteristic conserved features of eukaryotic rRNA. Evolutionary conserved motifs were found among all 5.8S and ITS2 sequences. Profile neighbor joining (PNJ) tree based on combined sequence-structural information of ITS region was generated in ProfDists. The PNJ tree resolved into four major groups whereby M. fengyangenesis and M. albus species formed monophyletic clades. However, three M. albus species along with other Muscodor species emerged as sister branches to the existing clades, thereby, improving the precision of phylogenetic analysis for identification of novel species of Muscodor genus. Hence, the results indicated that structural analysis along with primary sequence information can provide new insights for precise identification of Muscodor species.  相似文献   

10.
11.
12.
The secondary structure of rRNA internal transcribed spacer 2 is important in the process of ribosomal biogenesis. Trematode ITS sequences are poorly conserved and difficult to align for phylogenetic comparisons above a family level. If a conserved secondary structure can be identified, it can be used to guide primary sequence alignments. ITS2 sequences from 39 species were compared. These species span four orders of trematodes (Echinostomiformes, Plagiorchiformes, Strigeiformes, and Paramphistomiformes) and one monogenean (Gyrodactyliformes). The sequences vary in length from 251 to 431 bases, with an average GC content of 48%. The monogenean sequence could not be aligned with confidence to the trematodes. Above the family level trematode sequences were alignable from the 5′ end for 139 bases. Secondary structure foldings predicted a four-domain model. Three folding patterns were required for the apex of domain B. The folding pattern of domains C and D varies for each family. The structures display a high GC content within stems. Bases A and U are favored in unpaired regions and variable sites cluster. This produces a mosaic of conserved and variable regions with a structural conformation resistant to change. Two conserved strings were identified, one in domain B and the other in domain C. The first site can be aligned to a processing site identified in yeast and rat. The second site has been found in plants, and structural location appears to be important. A phylogenetic tree of the trematode sequences, aligned with the aid of secondary structures, distinguishes the four recognized orders. Received: 21 November 1997 / Accepted: 9 February 1998  相似文献   

13.
Most molecular ecological studies of arbuscular mycorrhizal fungi (AMF) have been based on the rRNA gene sequences. However, information about intraspecific nucleotide variation is still limited in these fungi. In this study, we calculated the inter- and intrasporal nucleotide variation of Diversispora sp. EE1 using 78 cloned sequences from four spores within a ca 4960 bp fragment of the nuclear ribosomal operon spanning the near full length small ribosomal subunit (SSU) rRNA gene, the full internal transcribed spacer (ITS: ITS1-5.8S-ITS2) and ca 2740 bp of the large ribosomal subunit (LSU) rRNA gene. Data for each marker region (SSU, ITS and LSU) originated from the very same spores. Sequence variation resulting from point mutations and small indels was recorded in all regions. Highest sequence variation was observed in the ITS region at both the inter- and intrasporal levels. The ITS1 component was more variable than ITS2, whilst the 5.8S gene was the least variable component of the ITS region. Evolutionary divergence of gene copies between spores was intermediate for the LSU and lowest for the SSU. The SSU and the LSU genes had relatively similar evolutionary divergence per spore. Sequence variant richness was not exhaustive for any of the marker regions, indicating that multiple sequences per spore from multiple spores are needed when characterizing a species. This study provides reference sequences for ecological studies, permitting identification of AMF using any of the ribosomal regions or primer systems.  相似文献   

14.
A complete single unit of a ribosomal RNA gene (rDNA) of M. croslandi was sequenced. The ends of the 18S, 5.8S and 28S rRNA genes were determined by using the sequences of D. melanogaster rDNAs as references. Each of the tandemly repeated rDNA units consists of coding and non-coding regions whose arrangement is the same as that of D. melanogaster rDNA. The intergenic spacer (IGS) contains, as in other species, a region with subrepeats, of which the sequences are different from those previously reported in other insect species. The length of IGSs was estimated to be 7-12 kb by genomic Southern hybridization, showing that an rDNA repeating unit of M. croslandi is 14-19 kb-long. The sequences of the coding regions are highly conserved, whereas IGS and ITS (internal transcribed spacer) sequences are not. We obtained clones with insertions of various sizes of R2 elements, the target sequence of which was found in the 28S rRNA coding region. A short segment in the IGS that follows the 3' end of the 28S rRNA gene was predicted to form a secondary structure with long stems.  相似文献   

15.
The 5.8S gene and flanking internal transcribed spacers (ITS1 and ITS2) of the rDNA were amplified from total DNA extracted from frond tissues of Livistona chinensis with universal and fungal-specific primers. These amplified fragments were cloned and sequenced. Phylogenetic analysis based on the 5.8S gene sequences indicated that the six clone sequences obtained were of different origins. Five sequences, P1-9, P2-6, P4-4, P4-5, and P4-7, belonged to the fungi and one sequence, P3-2, belonged to the plants. P1-9 was inferred to belong to the Basidiomycota based on the phylogenetic analysis of the 5.8S gene sequences but could not be identified to lower taxonomic levels. Further identification of the other four fungal clones to lower taxonomic levels was attempted based on phylogenetic analysis and sequence comparison of both the conserved 5.8S gene and the variable ITS regions. The origin of P2-6 was identified to be Glomerella and its anamorph Colletotrichum, the origins of P4-5 and P4-7 were Mycosphaerella and its anamorph Cladosporium, and the origin of P4-4 was the Herpotrichiellaceae. The direct approach to detection and taxonomic placement of endophytic fungi within host tissue without the need for conventional in vitro culturing is discussed.  相似文献   

16.
Extracted DNA from 28 Histomonas meleagridis -infected avian tissue samples from multiple hosts and geographic locations was analyzed for variation in the 5.8S rRNA and the flanking internal transcribed spacer regions (ITS 1 and ITS 2). Samples were amplified by polymerase chain reaction, sequenced, and compared with known sequences from GenBank accessions of H. meleagridis and other related protozoa. The analyses revealed significant genetic variation within H. meleagridis sequences and suggested the possibility of multiple genotypes within the samples or a possible misdiagnosis. Related protozoa found in some samples were mostly identified as Tetratrichomonas spp. However, 1 sample had a 93% identity to Simplicimonas similis , a newly described organism, suggesting the possibility of a new pathogen in poultry. A phylogenetic tree analyzing the 5.8S and flanking ITS regions was inconclusive and we were unable to resolve all H. meleagridis into a single grouping. In contrast, a tree constructed only on the 5.8S rRNA grouped all but 1 H. meleagridis sample into 1 clade, including GenBank accessions submitted from Europe. This suggests that the 5.8S region alone is more reliable in identifying H. meleagridis than are the combined 5.8S and flanking ITS regions. There was no correlation between genotypes and host species or geographic location, suggesting that H. meleagridis moves freely between multiple avian species in the sampled regions.  相似文献   

17.
裸子植物5S rRNA基因序列变异及二级结构特征   总被引:2,自引:0,他引:2  
在高等植物中,5SrRNA基因一级结构是高度保守的,二级结构也相当一致。通过比较18种裸子植物5SrRNA基因序列和二级结构变异,发现55%的核苷酸位点是可变的,这种变异有68%发生在干区(双链区),其中一些变异,如双链的互补性核苷酸替代,GU配对等能够维系5SrRNA二级结构的稳定性。环区相对保守,这与5SrRNA三级结构折叠或在转录翻译过程中蛋白质、RNA的结合相关。另外,首次报道了松属环E区核苷酸的变异性,这可能与其他区域的变异一样,是假基因造成的结果。5SrRNA基因信息可反映大分类群的系统进化关系,但由于基因长度短,信息量小,其在近缘种系统分类的应用受到限制。  相似文献   

18.
The nuclear ribosomal DNA (rDNA) internal transcribed spacer (ITS) region has become an important nuclear locus for molecular systematic investigations of angiosperms at the intergenic and interspecific levels. Universal PCR primers are positioned on the conserved rRNA genes (18S, 5.8S, 26S) to amplify the entire ITS spacer region. Recent reports of fungal and algal contaminants, first described as plant ITS sequences, stress the need for diagnostic markers specific for the angiosperm ITS region. This report describes a conserved 14 base pair (bp) motif in the 5.8S rRNA gene that can be used to differentiate between flowering plants, bryophytes, and several orders of algae and fungi, including common plant pathogenic and non-pathogenic fungi. A variant of the motif (found in fungi and algae) contains a convenient EcoRI restriction site that has several applications for eliminating problematic contaminants from plant ITS preparations.  相似文献   

19.
The organization, structure, and nucleotide variability of the ribosomal repeat unit was compared among families, genera, and species of cockroaches (Insecta:Blattodea). Sequence comparisons and molecular phylogenetic analyses were used to describe rDNA repeat unit variation at differing taxonomic levels. A reverse similar 1200 bp fragment of the 28S rDNA sequence was assessed for its potential utility in reconstructing higher-level phylogenetic relationships in cockroaches. Parsimony and maximum likelihood analyses of these data strongly support the expected pattern of relationships among cockroach groups. The examined 5' end of the 28S rDNA is shown to be an informative marker for larger studies of cockroach phylogeny. Comparative analysis of the nucleotide sequences of the rDNA internal transcribed spacers (ITS1 and ITS2) among closely related species of Blattella and Periplaneta reveals that ITS sequences can vary widely in primary sequence, length, and folding pattern. Secondary structure estimates for the ITS region of Blattella species indicate that variation in this spacer region can also influence the folding pattern of the 5.8S subunit. These results support the idea that ITS sequences play an important role in the stability and function of the rRNA cluster.  相似文献   

20.
We present the sequence of the 5' terminal 585 nucleotides of mouse 28S rRNA as inferred from the DNA sequence of a cloned gene fragment. The comparison of mouse 28S rRNA sequence with its yeast homolog, the only known complete sequence of eukaryotic nucleus-encoded large rRNA (see ref. 1, 2) reveals the strong conservation of two large stretches which are interspersed with completely divergent sequences. These two blocks of homology span the two segments which have been recently proposed to participate directly in the 5.8S-large rRNA complex in yeast (see ref. 1) through base-pairing with both termini of 5.8S rRNA. The validity of the proposed structural model for 5.8S-28S rRNA complex in eukaryotes is strongly supported by comparative analysis of mouse and yeast sequences: despite a number of mutations in 28S and 5.8S rRNA sequences in interacting regions, the secondary structure that can be proposed for mouse complex is perfectly identical with yeast's, with all the 41 base-pairings between the two molecules maintained through 11 pairs of compensatory base changes. The other regions of the mouse 28S rRNA 5'terminal domain, which have extensively diverged in primary sequence, can nevertheless be folded in a secondary structure pattern highly reminiscent of their yeast' homolog. A minor revision is proposed for mouse 5.8S rRNA sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号