首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 605 毫秒
1.
2.
Growth stimulation and inhibition are both associated with tyrosine phosphorylation. We examined the effects of epidermal growth factor (EGF), a growth stimulant, and compound 5 (Cpd 5), a protein-tyrosine phosphatase (PTPase) inhibitor, which inhibits the growth of the same Hep3B hepatoma cells. We found that both EGF and Cpd 5 induced tyrosine phosphorylation of EGF receptor (EGFR) and ERK. However, the phosphorylation caused by EGF was transient and that caused by Cpd 5 was prolonged. Furthermore, Cpd 5 action caused a strong nuclear phospho-ERK signal and induced phospho-Elk-1, a nuclear target of ERK activation, in contrast to the weak effects of EGF. An ERK kinase assay demonstrated that ERK activated by Cpd 5 could phosphorylate its physiological substrate, Elk-1. The MEK inhibitors PD098056 and U0126 abrogated both the induction by Cpd 5 of phospho-ERK, its nuclear translocation and phospho-Elk-1 and also antagonized its growth inhibitory effects. Furthermore, phospho-ERK phosphatase and phospho-Elk-1 activities were lost from nuclear extracts from Cpd 5 treated, but not EGF treated cells. In conclusion, the data show that Cpd 5 causes growth inhibition as a consequence of prolonged ERK and Elk-1 phosphorylation, likely a result of inhibition of multiple PTPases, including those acting on phospho-EGFR, on phospho-ERK, and on phospho-Elk-1, in contrast to the kinase driven transient activation resulting from EGF.  相似文献   

3.
The K-vitamin analog Cpd 5 or [2-(2-mercaptoethanol)-3-methyl-1,4-napthoquinone] is a potent cell growth inhibitor in vitro and in vivo, likely due to arylation of enzymes containing a catalytic cysteine. This results in inhibition of protein tyrosine phosphatase (PTPase) activity with resultant hyperphosphorylation of EGF receptors (EGFR) and ERK1/2 protein kinases, which are downstream to EGFR in the MAPK pathway. We used NR6 fibroblast cells, which lack endogenous EGFR and its variant cells transfected with different EGFR mutants to assess the contribution of the EGFR-mediated signaling pathway to Cpd 5-mediated ERK activation and cell growth inhibition. Cpd 5 treatment resulted in enhanced phosphorylation of EGFR at carboxyl-terminal tyrosines. This phosphorylation and activation of EGFR were found to be necessary neither for growth inhibition nor for the activation of the downstream kinases ERK1/2, since both occurred in EGFR-devoid mutant cells. U0126 and PD 098059, specific inhibitors of MEK1/2, the ERK1/2 kinases, antagonized both cell growth inhibition and ERK1/2 phosphorylation mediated by Cpd5. Cpd 5 was also found to inhibit ERK1/2 phosphatase(s) activity in lysates from all the cells tested, irrespective of their EGFR status. These results show that EGFR-independent ERK1/2 phosphorylation was involved in the mechanism of Cpd5 mediated growth inhibition. This is likely due to the observed antagonism of ERK phosphatase activity. A candidate PTPase was found to be Cdc25A, a recently identified ERK phosphatase.  相似文献   

4.
We have previously shown that Compound 5 (Cpd 5), an inhibitor of protein phosphatase Cdc25A, inhibits Hep3B human hepatoma cell growth. We now show that hepatocyte growth factor (HGF), a hepatocyte growth stimulant, can strongly enhance Cpd 5-induced growth inhibition in Hep3B cells, and this enhancement in cell growth inhibition is correlated with a much stronger ERK phosphorylation when compared to cells treated with Cpd 5 or HGF separately. We found that HGF/Cpd 5-induced ERK phosphorylation and cell growth inhibition were mediated by Akt (protein kinase B) pathway, since combination HGF/Cpd 5 treatment of Hep3B cells inhibited Akt phosphorylation at Ser-473 and its kinase activity, which led to the suppression of Raf-1 phosphorylation at Ser-259. The suppression of Raf-1 Ser-259 phosphorylation caused the induction of Raf-1 kinase activity, as well as hyper-ERK phosphorylation. Transient transfection of Hep3B cells with dominant negative Akt c-DNA further enhanced both Cpd 5- and HGF/Cpd 5-induced ERK phosphorylation, while over-expression of wild-type Akt c-DNA diminished their effects. In contrast, HGF antagonized the growth inhibitory actions of Cpd 5 on normal rat hepatocytes, thus showing a selective effect on tumor cells compared to normal cells. Our data suggest that Akt kinase negatively regulates MAPK activity at the Akt-Raf level. Suppression of Akt activity by either combination HGF/Cpd 5 treatment or by dominant negative Akt c-DNA transfection antagonizes the Akt inhibitory effect on Raf-1, resulting in an enhancement of Cpd 5-induced MAPK activation and cell growth inhibition.  相似文献   

5.
Compound 5 (Cpd 5), a synthetic K vitamin analogue, or 2-(2-mercaptoethanol)-3-methyl-1,4-naphthoquinone, is a potent inhibitor of epidermal growth factor (EGF)-induced rat hepatocyte DNA synthesis and induces EGF receptor (EGFR) tyrosine phosphorylation. To understand the cellular responses to Cpd 5, its effects on the EGF signal transduction pathway were examined and compared to those of the stimulant, EGF. Cpd 5 induced a cellular response program that included the induction of EGFR tyrosine phosphorylation and the activation of the mitogen-activated protein kinase (MAPK) cascade. EGFR tyrosine phosphorylation was induced by Cpd 5 in a time- and dose-dependent manner. Coimmunoprecipitation studies demonstrated that both EGF and Cpd 5 induced tyrosine phosphorylation of EGFR was associated with increased amounts of adapter proteins Shc and Grb2, and the Ras GTP-GDP exchange protein Sos, indicating the formation of functional EGFR complexes. Although EGFR phosphorylation was induced both by the stimulant EGF and the inhibitor Cpd 5, the timing and intensity of activation by EGF and Cpd 5 were different. EGF activated EGFR transiently, whereas Cpd 5 induced an intense and sustained activation. Cpd 5-altered cells had a decreased ability to dephosphorylate tyrosine phosphorylated EGFR, providing evidence for an inhibition of tyrosine phosphatase activity. Both EGF and Cpd 5 caused an induction of phospho-extracellular response kinase (ERK), which was also more sustained with Cpd 5. Moreover, whereas Cpd 5 induced a striking translocation of phosphorylated ERK from cytosol to the nucleus, no significant nuclear translocation occurred after stimulation with EGF. The data suggest that this novel compound causes growth inhibition through antagonism of EGFR phosphatases and consequent induction of EGFR and ERK phosphorylation. This is supported by experiments with PD 153035 and PD 098059, antagonists of phosphorylation of EGFR and MAP kinase kinase (MEK), respectively, which both antagonized Cpd 5-induced phosphorylation and the inhibition of DNA synthesis. These results imply a mechanism of cell growth inhibition associated with intense and prolonged protein tyrosine phosphorylation. Protein tyrosine phosphatases may thus be a novel target for drugs designed to inhibit cell growth.  相似文献   

6.
We have now found that the most potent, Cpd 5 [2-(2-mercaptoethanol)-3-methyl-1, 4-napthoquinone], inhibits growth of doxorubicin-resistant and doxorubicin-sensitive breast cancer cells (MCF 7r and MCF 7w) in culture. Growth inhibition by Cpd 5 was antagonized by the thiol antioxidants glutathione and cysteine, but not by catalase or superoxide dismutase, suggesting that growth inhibition is probably via conjugation of cellular thiols. In support of this, we found that Cpd 5 inhibited the activity of thiol containing cellular protein tyrosine phosphatase (PTP) enzyme, with consequent induction of various tyrosine phosphoproteins, but not serine or tyrosine phosphoproteins. The tyrosine phosphorylation was also inhibited by exogenous glutathione or cysteine and could be enhanced by depletion of cellular glutathione by BSO. This effect of Cpd 5 on protein tyrosine phosphorylation was highly selective, however. Tyrosine phosphorylation of EGF-R, Erb-B2, and ERK1/2 was increased, but not that of Insulin-R or JNK. ERK1/2 tyrosine phosphorylation and growth inhibition increased with increasing concentrations of Cpd 5. Furthermore, suppression of Cpd 5-mediated ERK1/2 phosphorylation by an ERK-kinase inhibitor antagonized growth inhibition. These results suggest a strong correlation between ERK1/2 phosphorylation by Cpd 5 and growth inhibition. This novel K-vitamin analog thus inhibits MCF 7 cell growth and induces selective protein tyrosine phosphorylation.  相似文献   

7.
Extracellular signal-regulated kinase (ERK) plays a central role in regulating cell growth, differentiation, and apoptosis. We previously found that 2-(2-mercaptoethanol)-3-methyl-1,4-napthoquinone or Compound 5 (Cpd 5), is a Cdc25A protein phosphatase inhibitor and causes prolonged, strong ERK phosphorylation which is triggered by epidermal growth factor receptor (EGFR) activation. We now report that Cpd 5 can directly cause ERK phosphorylation by inhibiting Cdc25A activity independently of the EGFR pathway. We found that Cdc25A physically interacted with and de-phosphorylated phospho-ERK both in vitro and in cell culture. Inhibition of Cdc25A activity by Cpd 5 resulted in ERK hyper-phosphorylation. Transfection of Hep3B human hepatoma cells with inactive Cdc25A mutant enhanced Cpd 5 action on ERK phosphorylation, whereas over-expression of Cdc25A attenuated this Cpd 5 action. Furthermore, endogenous Cdc25A knock-down by Cdc25A siRNA resulted in a constitutive-like ERK phosphorylation and Cpd 5 treatment further enhanced it. In EGFR-devoid NR6 fibroblasts and MEK (ERK kinase) mutated MCF7 cells, Cpd 5 treatment also resulted in ERK phosphorylation, providing support for the idea that Cpd 5 can directly act on ERK phosphorylation by inhibiting Cdc25A activity. These data suggest that phospho-ERK is likely another Cdc25A substrate, and Cpd 5-caused ERK phosphorylation is probably regulated by both EGFR-dependent and EGFR-independent pathways.  相似文献   

8.
Resistin is known as an adipocyte-specific secretory hormone that can cause insulin resistance and decrease adipocyte differentiation. It can be regulated by sexual hormones. Whether environmental estrogens regulate the production of resistin is still not clear. Using 3T3-L1 adipocytes, we found that octylphenol upregulated resistin mRNA expression in dose- and time-dependent manners. The concentration of octylphenol that increased resistin mRNA levels by 50% was approximately 100 nM within 6 h of treatment. The basal half-life of resistin mRNA induced by actinomycin D was lengthened by octylphenol treatment, suggesting that octylphenol decreases the rate of resistin mRNA degradation. In addition, octylphenol stimulated resistin protein expression and release. The basal half-life of resistin protein induced by cycloheximide was lengthened by octylphenol treatment, suggesting that octylphenol decreases the rate of resistin protein degradation. While octylphenol was shown to increase activities of the estrogen receptor (ER) and MEK1, signaling was demonstrated to be blocked by pretreatment with either ICI-182780 (an ERalpha antagonist) or U-0126 (a MEK1 inhibitor), in which both inhibitors prevented octylphenol-stimulated phosphorylation of ERK. These results imply that ERalpha and ERK are necessary for the octylphenol stimulation of resistin mRNA expression. Moreover, U-0126 antagonized the octylphenol-increased resistin protein expression and release. These data suggest that the way octylphenol signaling increases resistin protein levels is similar to that by which it increases resistin mRNA levels; it is likely mediated through an ERK-dependent pathway. In vivo, octylphenol increased adipose resistin mRNA expression and serum resistin and glucose levels, supporting its in vitro effect.  相似文献   

9.
Imidazolium trans-imidazoledimethyl sulfoxide-tetrachlororuthenate (NAMI-A) is a novel ruthenium-containing experimental antimetastatic agent. Compelling evidence ascribes a pivotal role to endothelial cells in the orchestration of tumor angiogenesis and metastatic growth, suggesting antiangiogenic therapy as an attractive approach for anticancer treatment. In this context, activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathway has been found fundamental in transducing extracellular stimuli that modulate a number of cellular process including cell proliferation, migration and invasion. Here we show that exposure of the transformed endothelial cell line ECV304 to NAMI-A significantly inhibited DNA synthesis, as well as the expression of the proliferating cell nuclear antigene (PCNA). These responses were associated with a marked down-regulation of ERK phosphorylation in serum-cultured cells. In addition, NAMI-A markedly reduced serum stimulated- and completely suppressed phorbol 12-myristate 13-acetate (PMA)-triggered MAPK/ERK kinase activity. NAMI-A was also able to inhibit the phosphorylation of MEK, the upstream activator of ERK, and, similar to both the protein kinase C (PKC) inhibitor GF109203X and the MAPK/ERK (MEK) inhibitor PD98059, it completely counteracted PMA-induced ERK phosphorylation. Finally, NAMI-A and PD98059 down regulated c-myc gene expression to the same extent in serum-cultured cells and dose-dependently counteracted, and ultimately abolished, the increase in c-myc gene expression elicited by PMA in serum-free cells. These results suggest that inhibition of MEK/ERK signaling by NAMI-A may have an important role in modulating c-myc gene expression and ECV304 proliferation.  相似文献   

10.
We recently found that a thioether analog of K vitamin (Cpd 5) inhibited the activity of protein-tyrosine phosphatases (PTPases) and induced protein-tyrosine phosphorylation in a human hepatoma cell line (Hep3B). We have now examined the structural requirements for induction of protein-tyrosine phosphorylation and PTPase inhibition by several K vitamin analogs. Thioether analogs with sulfhydryl arylation capacity, especially those with a hydroxy (Cpd 5) or a methoxy group at the end of the side chain, induced protein-tyrosine phosphorylation, but non-arylating analogs, such as those with an all-carbon or O-ether side chain, did not. Among the receptor-tyrosine kinases, epidermal growth factor receptors were tyrosine-phosphorylated by treatment with thioether analogs, whereas insulin and hepatocyte growth factor receptors were not. An increase in tyrosine-phosphorylated ERK2 mitogen-activated protein kinase was also observed. The activity of purified T cell PTPase was inhibited only by the thioether analogs, but not by non-arylating analogs. Furthermore, the epidermal growth factor receptor dephosphorylation activity of Hep3B cell lysates was inhibited by Cpd 5 treatment. A similar induction of protein-tyrosine phosphorylation by Cpd 5 was seen in other human hepatoma cell lines together with growth inhibition. However, one cell line (HepG2), which was relatively resistant to growth inhibition by Cpd 5, did not increase its phosphorylation levels upon Cpd 5 treatment. These results suggest that cell growth inhibition by thioether analogs is closely associated with inhibition of PTPases by sulfhydryl arylation and with tyrosine phosphorylation of selected proteins.  相似文献   

11.
12.
The mitogen-inducible gene c-myc is a key regulator of cell proliferation and transformation. Yet, the signaling pathway(s) that regulate its expression have remained largely unresolved. Using the mitogen-activated protein kinase kinase (MEK1/2) inhibitor PD98059 and dominant negative forms of Ras (N17) and ERK1 (K71R), we found that activation of Ras and extracellular signal-regulated kinase (ERK) is necessary for colony-stimulating factor-1 (CSF-1)-mediated c-Myc expression and DNA synthetic (S) phase entry. Quiescent NIH-3T3 cells expressing a partially defective CSF-1 receptor, CSF-1R (Y809F), exhibited impaired ERK1 activation and c-Myc expression and failed to enter the S phase of the cell division cycle in response to CSF-1 stimulation. Ectopic expression of a constitutively active form of MEK1 in cells expressing CSF-1R (Y809F) rescued c-Myc expression and S phase entry, but only in the presence of CSF-1-induced cooperating signals. Therefore, MEK1 participates in an obligate signaling pathway linking CSF-1R to c-Myc expression, but other signals from CSF-1R must cooperate with the MEK/ERK pathway to induce c-Myc expression and S phase entry in response to CSF-1 stimulation.  相似文献   

13.
CC chemokine receptor 1 (CCR1) has been implicated in inflammation. The present study examined the signaling mechanisms that mediate GM-CSF/IL-10-induced synergistic CCR1 protein expression in monocytic U937 cells. GM-CSF alone markedly increased both the mRNA and protein expression of CCR1. IL-10 augmented GM-CSF-induced CCR1 protein expression with no effect on mRNA expression. PD098059 and U0126 (two MEK inhibitors), and LY294002 (a PI3K inhibitor) inhibited GM-CSF/IL-10-induced CCR1 gene and protein expression. PD098059, U0126, and LY294002 also attenuated chemotaxis of GM-CSF/IL-10-primed U937 cells in response to MIP-1alpha. Immunoblotting studies show that GM-CSF alone induced ERK2 phosphorylation; whereas, IL-10 alone induced p70(S6k) phosphorylation in U937 cells. Neither cytokine when used alone induced PKB/Akt phosphorylation. Combined GM-CSF/IL-10 treatment of U937 cells induced phosphorylation of ERK2, p70(S6k), and PKB/Akt. PD098059 and U0126 completely abrogated ERK2 phosphorylation; whereas, LY294002 completely blocked PKB/Akt and p70(S6k) phosphorylation. Our findings indicate that IL-10 may potentiate GM-CSF-induced CCR1 protein expression in U937 cells via activation of PKB/Akt and p70(S6k).  相似文献   

14.
Docosahexaenoic acid (22: 6n-3; DHA) is a long chain polyunsaturated fatty acid that exists highly enriched in fish oil, and it is one of the low molecular weight food chemicals which can pass a blood brain barrier. A preliminary survey of several fatty acids for expression of growth-associated protein-43 (GAP-43), a marker of axonal growth, identified DHA as one of the most potent inducers. The human neuroblastoma SH-SY5Y cells exposed to DHA showed significant and dose-dependent increases in the percentage of cells with longer neurites. To elucidate signaling mechanisms involved in DHA-enhanced basal neuritogenesis, we examined the role of extracellular signal-regulated kinase (ERK)1/2 and intracellular reactive oxygen species (ROS) production using SH-SY5Y cells. From immunoblotting experiments, we observed that DHA induced the ROS production, protein tyrosine phosphatase inhibition, mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) phosphorylation, and sequentially ERK1/2 phosphorylation, the last of which was significantly reduced by MEK inhibitor U0126. Both antioxidants and MEK inhibitor affected DHA-induced GAP-43 expression, whereas the specific PI3K inhibitor LY294002 did not. We found that total protein tyrosine phosphatase activity was also downregulated by DHA treatment, which was counteracted by antioxidant pretreatment. These results suggest that the ROS-dependent ERK pathway, rather than PI3K, plays an important role during DHA-enhanced neurite outgrowth.  相似文献   

15.
16.
Inhibition of the protein kinase, MEK1, is a potential approach for the treatment of cancer. Inhibitors may act by prevention of activation (PoA), which involves interfering with phosphorylation of nonactivated MEK1 by the upstream kinase, B-RAF. Modulation also may occur by inhibition of catalysis (IoC) during phosphorylation of the downstream substrate, ERK2, by activated MEK1. Here, five MEK inhibitors are characterized in terms of binding affinity, PoA, and IoC. The compounds are a butadiene (U-0126), an N-alkoxy amide (CI-1040), two CI-1040 analogues (an anthranilic acid and an N-alkyl amide), and a cyanoquinoline. Some compounds give different mechanisms of inhibition (ATP-competitive, noncompetitive, or uncompetitive) in PoA compared to IoC or show a change in potency between the assays. The inhibitors also exhibit different shifts in potency when either PoA or IoC is compared with binding to nonactivated MEK. The inhibitor potency ranking, therefore, is dependent upon the assay format. When the ATP concentration equals K m, IoC IC 50 increases in the order CI-1040 approximately cyanoquinoline < anthranilic acid approximately U-0126 < alkyl amide. Conversely, the K d from nonactivated MEK1 for four of the compounds varies between more than 6-fold lower and over 18-fold higher than this IC 50, with U-0126 having the lowest K d and CI-1040 having the highest. In PoA when the ATP concentration equals K m, U-0126 has the lowest IC 50, becoming more potent than CI-1040, the cyanoquinoline, and the anthranilic acid. These observations have implications for understanding structure-activity relationships of MEK inhibitors and illustrate how assays can be designed to favor different compounds.  相似文献   

17.
It has been documented that polyamines play a critical role in the regulation of apoptosis in intestinal epithelial cells. We have recently reported that protection from TNF-alpha/cycloheximide (CHX)-induced apoptosis in epithelial cells depleted of polyamines is mediated through the inactivation of a proapoptotic mediator, JNK. In this study, we addressed the involvement of the MAPK pathway in the regulation of apoptosis after polyamine depletion of IEC-6 cells. Polyamine depletion by alpha-difluromethylornithine (DFMO) resulted in the sustained activation of ERK in response to TNF-alpha/CHX treatment. Pretreatment of polyamine-depleted IEC-6 cells with a cell membrane-permeable MEK1/2 inhibitor, U-0126, significantly inhibited TNF-alpha/CHX-induced ERK phosphorylation and significantly increased DNA fragmentation, JNK activity, and caspase-3 activity in response to TNF-alpha/CHX. Moreover, the dose dependency of U-0126-mediated inhibition of TNF-alpha/ CHX-induced ERK phosphorylation correlated with the reversal of the antiapoptotic effect of DFMO. IEC-6 cells expressing constitutively active MEK1 had decreased TNF-alpha/CHX-induced JNK phosphorylation and were significantly protected from apoptosis. Conversely, a dominant-negative MEK1 resulted in high basal activation of JNK, cytochrome c release, and spontaneous apoptosis. Polyamine depletion of the dominant-negative MEK1 cells did not prevent JNK activation or cytochrome c release and failed to confer protection from both TNF-alpha/CHX and camptothecin-induced apoptosis. Finally, expression of a dominant-negative mutant of JNK significantly protected IEC-6 cells from TNF-alpha/CHX-induced apoptosis. These data indicate that polyamine depletion results in the activation of ERK, which inhibits JNK activation and protects cells from apoptosis.  相似文献   

18.
The constitutively activated tyrosine kinase Fip1-like 1 (FIP1L1)-platelet-derived growth factor receptor α (PDGFRα) causes eosinophilic leukemia EoL-1 cells to proliferate. Recently, we demonstrated that histone deacetylase inhibitors suppressed this proliferation and induced the differentiation of EoL-1 cells into eosinophils in parallel with a decrease in the level of FIP1L1-PDGFRα. In this study, we analyzed the mechanism by which FIP1L1-PDGFRα induces the proliferation and whether the suppression of cell proliferation triggers the differentiation into eosinophils. The FIP1L1-PDGFRα inhibitor imatinib inhibited the proliferation of EoL-1 cells and decreased the level of the oncoprotein c-Myc as well as the phosphorylation of extracellular signal-regulated kinase and c-Jun N-terminal kinase (JNK). The proliferation of EoL-1 cells and expression of c-Myc were also inhibited by the MEK inhibitor U0126 and JNK inhibitor SP600125. The expression of the eosinophilic differentiation marker CCR3 was not induced by imatinib. These findings suggest that FIP1L1-PDGFRα induces the proliferation of EoL-1 cells through the induction of c-Myc expression via ERK and JNK signaling pathways, but is not involved in the inhibition of differentiation toward mature eosinophils.  相似文献   

19.
20.
The MEK1-ERK1/2 signaling pathway has been implicated in the regulation of renal epithelial cell proliferation, epithelial-to-mesenchymal transition and the induction of an invasive cell phenotype. Much less information is available about the MEK5-ERK5 module and its role in renal epithelial cell proliferation and differentiation. In the present study we have investigated the regulation of these two families of extracellular signal-regulated kinases in epidermal growth factor (EGF)-stimulated human kidney-2 (HK-2) cells and a possible interaction between ERK1/2 and ERK5. Here we report that 5 ng/ml EGF led to a strong stimulation of HK-2 cell proliferation, which was largely U0126-sensitive. Both synthetic MEK1/2 inhibitors U0126 and Cl-1040, when used at 10 and 1 microM, respectively, inhibited basal and EGF-induced ERK1/2 phosphorylation but not ERK5 phosphorylation. Long-term inhibition of MEK1/2-ERK1/2 signaling and/or vanadate-sensitive protein phosphatases enhanced and prolonged EGF-induced ERK5 phosphorylation, while transient expression of an adenoviral constitutively active MEK1 (Ad-caMEK1) construct completely blocked EGF-induced ERK5 phosphorylation. Expression of Ad-caMEK1 in HK-2 cells resulted in the upregulation of the dual-specificity phosphatases MKP-3/DUSP6, MKP-1/DUSP1, and DUSP5. The EGF-mediated time-dependent induction of MKP-3, MKP-1 and DUSP5 mRNA levels was U0126-sensitive at a concentration, which blocked EGF-mediated ERK1/2 phosphorylation but not ERK5 phosphorylation. Furthermore, U0126 inhibited EGF-induced MKP-3 and MKP-1 protein expression. Both MKP-3 and MKP-1 co-immunoprecipitated with ERK5 in unstimulated as well as in EGF-stimulated HK-2 cells. These results suggest the existence of an ERK1/2-driven negative feed-back regulation of ERK5 signaling in EGF-stimulated HK-2 cells, which is mediated by MKP-3, DUSP5 and/or MKP-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号